石墨烯纳米带的研究进展
石墨烯复合材料的制备及应用研究进展

石墨烯复合材料的制备及应用研究进展一、本文概述石墨烯,作为一种新兴的二维纳米材料,因其独特的电子结构、优异的物理和化学性能,在复合材料领域引起了广泛的关注。
石墨烯复合材料结合了石墨烯和其他材料的优点,使得这种新型复合材料在力学、电学、热学等方面表现出色,因此具有广阔的应用前景。
本文旨在综述石墨烯复合材料的制备方法、性能特点以及在不同领域的应用研究进展,以期为石墨烯复合材料的进一步研究和实际应用提供理论支持和参考。
本文将首先介绍石墨烯及其复合材料的基本概念和特性,然后重点综述石墨烯复合材料的制备方法,包括溶液混合法、原位合成法、熔融共混法等。
接着,文章将探讨石墨烯复合材料在能源、电子、生物医学、航空航天等领域的应用研究进展,分析其在提高材料性能、降低成本、推动相关产业发展等方面的重要作用。
本文还将对石墨烯复合材料未来的研究方向和应用前景进行展望,以期推动这一领域的持续发展和创新。
二、石墨烯复合材料的制备方法石墨烯复合材料的制备方法多种多样,每一种方法都有其独特的优点和适用范围。
以下是几种主要的制备方法:溶液混合法:这是最简单且最常用的方法之一。
首先将石墨烯分散在适当的溶剂中,然后通过搅拌或超声处理使其均匀分散。
接着,将所需的基体材料(如金属氧化物、聚合物等)加入溶液中,通过搅拌或热处理使石墨烯与基体材料充分混合。
通过过滤、干燥等步骤得到石墨烯复合材料。
这种方法操作简便,但石墨烯在溶剂中的分散性和稳定性是关键因素。
原位生长法:这种方法通常在高温或特定气氛下进行,利用石墨烯与基体材料之间的化学反应,使石墨烯在基体材料表面或内部原位生长。
例如,通过化学气相沉积(CVD)或热解等方法,在金属氧化物或聚合物表面生长石墨烯。
这种方法可以得到石墨烯与基体材料结合紧密、性能优异的复合材料,但操作过程较复杂,且需要特殊的设备。
熔融共混法:对于高温稳定的基体材料,如金属或某些聚合物,可以采用熔融共混法制备石墨烯复合材料。
石墨烯材料研究进展

《材料化学工程导论》报告班级学号:1001100425姓名:王卓历指导教师:日期:2013.12.23南京工业大学化学工程与工艺专业石墨烯材料研究进展及应用前景摘要:石墨烯又称单层石墨,是一种新发现的二维材料,厚度只有一个碳原子厚度。
它是目前世上最薄却也最坚硬的纳米材料,几乎是完全透明的,只吸收 2.3%的光,导热系数高达5300 W/mk,高于金刚石和碳纳米管,常温下其电子迁移率超过15000 cm2/Vs,也比碳纳米管和硅晶体高,是目前世界上电阻率最小的材料。
因电阻率极低,光透过率也较好,因此适合制作透明触控屏幕、透明电极等。
本论文首先总结了石墨烯的制备方法和表征性质及手段,然后针对石墨烯作为透明电极的可能性进行了探讨,最后基于石墨烯和碳纳米管性质的相似性,对两种不同工艺制备的石墨烯的场发射性质及电学性质进行了对比研究,表明石墨烯是一种具有潜在的场发射应用价值的新型材料。
石墨烯具有非凡的物理及电学性质,如高比表面积、高导电性、高机械强度、易于修饰及大规模生产等。
2004年石墨烯的成功剥离,使石墨烯成为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,其产品研发和应用目前正在全球范围内急剧增加。
本文通过对石墨烯的特性、制备和应用现状几方面进行了综述。
关键词:石墨烯制备应用进展石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2杂化碳(即碳以双键相连或连接其他原子)的基本结构单元,如图1所示。
石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨烯晶体,并发现了石墨烯载流子的相对论粒子特性,才引发石墨烯研究热。
这以后,制备石墨烯的新方法层出不穷,人们发现,将石墨烯引入工业化生产的领域已为时不远了[1]。
石墨烯的研究与应用综述、产业现状

石墨烯的研究与应用综述一、石墨烯的结构与特性石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是最薄的二维材料,单层的厚度仅0.335nm。
石墨烯可塑性极大,是构建其他维数碳材料的基本单元,可以包裹成零维的富勒烯结构,卷曲成一维的碳纳米管,以及堆垛成三维的石墨等。
石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨烯晶体,二人因此荣获2010年诺贝尔物理学奖。
石墨烯具有一些奇特的物理特性:导电性极强:石墨烯中的电子没有质量,电子的运动速度能够达到光速的1/300,是世界上电阻率最小的材料。
良好的导热性:石墨烯的导热性能优于碳纳米管和金刚石,单层石墨烯的导热系数可达5300瓦/米水度,远高于金属中导热系数高的银、铜等。
极好的透光性:石墨烯几乎是完全透明的,只吸收2.3%的光,并使所有光谱的光均匀地通过。
超高强度:石墨烯被证明是当代最牢固的材料,硬度比莫氏硬度10级的金刚石还高,却又拥有很好的韧性,可以弯曲。
超大比表面积:石墨烯拥有超大的比表面积(单位质量物料所具有的总面积),这使得石墨烯成为潜力巨大的储能材料。
石墨烯特殊的结构形态,具备目前世界上最硬、最薄的特征,同时具有很强的韧性、导电性和导热性,这些极端特性使其拥有巨大发展空间,应用于电子、航天、光学、储能、生物医药、日常生活等大量领域。
二、石墨烯的制备方法石墨烯的制备方法主要有机械法和化学法2种。
机械法包括微机械分离法、取向附生法和加热碳化硅法;化学法包括外延生长法、化学气相沉积法与氧化石墨还原法。
微机械分离法是直接将石墨烯薄片从较大的晶体上剪裁下来,可获得高品质石墨烯,且成本低,但缺点是石墨烯薄片尺寸不易控制,不适合量产;取向附生法是利用生长基质原子结构“种”出石墨烯,石墨烯性能令人满意,但往往厚度不均匀;加热碳化硅法能可控地制备出单层或多层石墨烯,是一种新颖、对实现石墨烯的实际应用非常重要的制备方法,但制备大面积具有单一厚度的石墨烯比较困难。
石墨烯研究报告

石墨烯研究报告石墨烯是一种由碳原子薄层构成的材料,具有许多独特的物理和化学性质,使其在电子学、电磁学、力学和光学领域中展现出重要的应用前景。
近年来,石墨烯的研究迅速发展,在各个领域中都取得了重要的成果和突破。
一、最新石墨烯研究成果1.提高石墨烯量子化合成效率的新方法石墨烯量子化合成是一种利用金属催化剂在气相中将碳原子聚集成石墨烯的方法。
由于石墨烯的高表面能和化学惰性,使其在制备过程中难以控制,从而导致反应产物不确定、量子化合成效率低下等问题。
为了解决这个问题,研究人员提出了一种新的方法——在反应过程中加入适量的乙烯,可以有效提高石墨烯的量子化合成效率。
根据发表在ACS Nano上的最新研究论文,使用这种新方法制备的石墨烯,结晶度更高、结构更完整,并具有更好的导电性能和可控性。
2.石墨烯在DNA纳米电子学中的应用DNA纳米电子学是一种与基因组学、纳米技术和电子学相关的交叉学科领域。
最近,研究人员发现,石墨烯可以用于制备DNA纳米电子学中的电极、传感器和探针等。
这是因为石墨烯具有高度可调控的电导性和相对稳定的生物相容性。
关于这一点,Research Fellow Krishnan Shrikanth博士在接受媒体采访时表示,“我们的研究解决了DNA转录的可控和准确性问题,同时也展现出石墨烯在基因测序、基因诊断和纳米药物递送中的潜力。
”3.利用石墨烯改善水氧化还原反应效率的新途径水氧化还原反应是一种非常重要的电化学反应,具有广泛的应用领域,如能源、环境和化学生产等。
由于石墨烯具有高表面积、良好的电化学特性和生物相容性等独特性质,近年来被广泛应用于水氧化还原反应中。
最近,研究人员发现,通过控制石墨烯与金属离子的相互作用,可以实现更高效的水氧化还原反应。
这种新途径将在开发新型电化学催化剂和改进电池和燃料电池等重要应用方面具有重要的作用。
二、石墨烯的应用前景石墨烯在电子学、电磁学、力学和光学领域中具有重要的应用前景,其中一些可能打破传统技术的局限。
石墨烯的研究进展

石墨烯的研究进展刘乐浩,李铁虎,赵廷凯,王大为(西北工业大学材料科学与工程学院,西安710072)摘要石墨烯是碳的又一同素异形体,具有独特的二维结构和优异的力学、电学、光学、热学等性能,成为富勒烯和碳纳米管之后的又一研究热点。
全面综述了近几年来石墨烯的制备方法,洋细讨论了微机械剥离法、化学剥离法、化学合成法、外延生长法、电弧法、化学气相沉积法的优缺点,并针对制备方法存在的产量低、结构不稳定、高污染等问题,提出了一些大规模可控制备高质量石墨烯的建议。
还结合石墨烯的结构和特性,概括了石墨烯在复合材料、微电子、光学、能源、生物医学等领域的应用进展,并展望了其主要研究方向和发展趋势。
关键词石墨烯制备方法应用中图分类号:〇613. 71 文献标识码:Research Progress on GrapheneLIU Lehao,LI Tiehu,ZHAO Tingkai,WANG Dawei (School of Materials Science and Engineering,Northwestern Polytechnical University,Xi,an 710072)Abstract As an allotrope of carbon,graphene has become a research hotspot due to its unique two-dimensional structure and excellent mechanical,electrical,optical and thermal properties. Synthesis of graphene via different approaches ,such as micro mechanical stripping, chemical stripping, chemical synthesis, epitaxial growth, arc dis- charge,and chemical vapor deposition, are discussed in detail, and strategies for producing homogeneous graphene with improved yield and structural stability while limiting its pollution are proposed. Also application progress of gre- phene in polymer composites,micro electronics, optics, energy and biomedicine are summarized, and the main research direction and development trend are imagined.Key words graphene,preparation methods,applicationo引言富勒烯[1]和碳纳米管[2]已经成为碳材料研究的热点,而在2004年,Geim等[3]又发现了碳的又一同素异形体——石墨烯(Graphene)。
石墨烯的应用现状及发展

石墨烯的应用现状及发展1. 引言1.1 石墨烯介绍石墨烯,是一种由碳原子构成的二维晶体结构材料,呈现出单层厚度的特性。
它具有许多惊人的特性,如极高的导电性、热导性和机械强度,使其被誉为“21世纪的黑金”。
石墨烯的碳原子排列形成了六角形的晶格结构,使其具有出色的导电性和导热性。
石墨烯还具有极高的强度和柔韧性,是一种非常轻巧而且坚韧的材料。
石墨烯的发现可以追溯到2004年,由英国曼彻斯特大学的研究团队首次成功剥离出石墨烯单层,并证明了它的存在。
这项突破性的发现为石墨烯的研究开辟了新的领域,吸引了全球各地的科学家、工程师和企业家的关注和投入。
自此以后,石墨烯在各个领域的应用潜力被不断挖掘和发掘,成为科技领域的热点之一。
1.2 石墨烯的发现石墨烯是一种由碳原子构成的二维晶体结构材料,厚度仅为一纳米,是迄今为止发现的最薄、最坚固、最导电的材料之一。
石墨烯最早是由英国曼彻斯特大学的安德烈·盖姆和康斯坦丁·诺沃肖洛夫于2004年成功分离出来。
他们是通过用胶带将石墨片一层一层地剥离,最终得到了单层厚度的石墨烯。
这项突破性的发现为石墨烯的研究开辟了新的篇章,也为后续的研究奠定了基础。
石墨烯的发现引起了全世界科研人员的广泛关注和研究热情,在材料科学、物理学、化学等领域掀起了一股研究热潮。
石墨烯的特殊结构和优异性能使其具有广阔的应用前景,在电子、光电、生物医学、材料等领域都有潜在的应用价值。
随着科技的不断进步和创新,石墨烯的潜力也将不断被挖掘和拓展,相信石墨烯将在未来发展中展现出更加广阔的前景。
2. 正文2.1 石墨烯在电子领域的应用石墨烯在晶体管、场效应晶体管(FET)和集成电路等方面展现出强大的潜力。
石墨烯晶体管可以实现更高的开关速度和更低的功耗,进一步推动晶体管技术的发展。
石墨烯的柔性和透明性也为柔性电子器件的制备提供了新的可能性。
石墨烯还可以用于制备高频率的微波器件、传感器和光电探测器等。
锯齿型石墨烯纳米带的第一原理研究

不同宽度锯齿型石墨烯纳米带的第一原理研究摘要:本文采用第一原理密度泛函理论,研究了不同宽度边缘饱和(氢原子)一维石墨片纳米带的电学性质。
研究表明:对于所有宽度锯齿型纳米带,其几何结构和电子结构与碳纳米带的宽度密切相关。
这为揭示纳米带尺寸效应提供了一条切实可行的道路。
关键词:密度泛函理论;石墨烯纳米带;电子结构一引言自2004年英国曼彻斯特大学的Geim等人成功制备出石墨烯以来。
人们才获得了真正意义上的二维形式的碳(graphene),石墨烯的研究热潮由此宣告开始,成为目前材料研究领域最前沿课题之一[1,6]。
石墨烯是指单层碳原子密堆排列成二维(2D)正六边形蜂窝状点阵所形成的材料,它是构成石墨的基本单元。
GNR在微电子器件的实际制造过程中更具有使用价值和研究意义。
英国Geim小组制作成由GNR组成的电路系统,发现GNR显示出很强的双极电场效应;日本Tada和Watanabe采用含时密度泛函计算了GNR的场发射,发现场发射电流的主要贡献来自于清洁的GNR边缘悬挂键。
清华大学的Huang等人[7]就通过在锯齿型石墨烯纳米带边界掺杂N或B原子的研究,发现通过在锯齿型石墨烯纳米带边界进行有选择的掺杂,可以构建出包含从金属到半导体再到金属转变同质结的场效应晶体管。
虽然从严格意义上来讲,石墨烯应该是二维无限大的,但在具体应用中材料尺寸是有限大小的。
当石墨烯的尺寸被裁剪至100nm以下时,由于限域效应,石墨烯将呈现半导体性。
因此,石墨烯的剪裁产物(如:石墨烯纳米带)及其他变体在微电子技术与器件等领域将更具有实际意义[8,9]。
本文利用第一原理密度泛函理论,研究了氢原子饱和下不同宽度锯齿型GNRs 的几何结构和电子结构,探讨了宽度对氢饱和锯齿型石墨烯纳米带几何结构和电子结构的影响。
二理论方法本文采用第一原理密度泛函软件DMOL3,首先建立两种碳纳米尖锥结构,对模型进行几何优化,得到稳定的几何构型。
结构优化过程中,采用局域密度近似(LDA),以确定能量最低的几何构型。
石墨烯的研究进展

石墨烯的研究进展石墨烯是一种二维自由态原子晶体,具有极佳的导电特性、导热特性、光学特性、机械特性,在各个不同的学科领域得到了大量探索和研究。
论文阐述了石墨烯的结构、特性、应用进展以及石墨烯具有的优缺点,并对石墨烯的应用提出了建议。
【Abstract】The graphene is a kind of two-dimensional free atom crystal with excellent conductivity,thermal conductivity,optical and mechanical properties. It has been explored and researched much in various subjects areas. In this paper,the structure,properties and application of graphene and its advantages and disadvantages are discussed. Paper puts forward the proposal for the graphene application.标签:石墨烯;结构;性质;应用1 引言石墨烯(Graphene)是一种由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,是当前发现的唯一一种二维自由态原子晶体,是除金刚石以外其他碳晶体的基本结构单元,具有许多极佳的电子及机械性能,是当前使用的材料中最薄、强度最大、导电和导热性能最好的一种纳米材料[1]。
近年来,科学界对石墨烯的研究逐渐从石墨烯的制备研究转变到对石墨烯的应用研究,并对石墨烯在光电、医学、计算机晶体管等领域都进行了大量的研究,取得了较好的成果。
2 石墨烯的结构及特性2.1 结构石墨烯是一种单原子层的碳二维纳米材料,其点阵结构是由碳六元环组成的二维蜂窝状,是构成其他石墨材料的基本单元,石墨烯主要分为单层石墨烯、双层石墨烯、少层石墨烯、多层或厚层石墨烯4个类别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规律 向前发展 ,现行 的微电子加工工艺 学 院研究者 发表 的研究成果表 明,石 墨 ( C a ) 掺杂石 墨烯基 材料 ,利用第一性原
将 在几年后接近发展的极限 ,当器件 的 烯基材 料可以用于制备风力 涡轮机和飞 理 和从 头算 起的 方法得 到石 墨烯 被 C a
尺寸缩小到一定程度时 ,传统的半导体 机机翼 的增 强复 合材料。
加工工艺将不再适用 。因此巧妙地利用 2 . 3热 学领域 G NR 的边缘 效应所 带来 的可变 电学性
k a 等 人从 理论 上研 究石 墨烯 的 声 未来 。 为组 建 纳米 电子器 件 的最 佳材 料 ,而 Ni
G NR s因其独特 的结 构特性 ,如果注重 子热导率 ,表 明在室温下单层石 墨烯 热
其边缘的工程控制 ,将会使之成为纳米 导率 很高 。这为 GNRs 制品的 日常应用 3结 束语
性 能。美 国 NAS A 为 了激励 科学 家 发 明”的导体 ,它 的可见光透 过率与波长 热 点 。 G NRs因其 独 特 的 边 缘 构 造 而 具 明出制备 太空 电梯 缆线的坚韧材料 ,曾 无关 ,可 以用来替代现在 的液晶显示材 有 了其他材料所不具备 的优 良物理化学 经发出 了 4 0 0万美元 的悬赏。G NRs 的 料 。希 腊 大 学 F r o u d a k i s 等 设 计 了 性 质 ,在光 、电、力 、热等方面都成为 出现,成 为了一种极其有希 望的材料。 新型 3 D碳材料 ,孔径 尺寸可调 ,他们 了非常具有 前景 的应 用材料 。GN Rs 领
原 子 掺 杂后 储 氢量 约 为 8 . 4 %( wt ) 。 而 GNRs比石墨烯有 更强 的可 塑性 ,应 用
2 0 0 8年 ,B a l a n d i n 等 人 研 究 了 于能源储存 非常有前景 。F a n等人利 用
能 ,可 以用来制备更加优 良的半导体器 石墨烯 的 R a ma n光 谱的 G峰频率 与高 石 墨烯 的高 电子 迁移率和 高 比表面 积 ,
在增强复合材料 方面 ,GNR s已经超越 将其称为石 墨烯柱 ,当这种新型碳材料 域的研究极具潜 力 ,它的批量制备和应
了碳 纳米管 ,可作为添加剂广泛应用到 掺杂 了锂原 子时 ,石墨烯柱的储氢量可 用必定会引发科学研究界 的巨大变化 。
参 考 文 献
【 1 1 B a l o g R, J o r g e n s e n B, A n d e r s e n M, e t a 1 .B a n d g a p o p e n i n g i n g r a p h e n e i n d u c e d b y p a t t e r n e d h y d r o g e n a d s o r p i i o n [ J 】 .N a t .Ma t e r . .
件。
温的关系 ,发 现在 室温下 ,单层石墨烯 制备 了以石 墨烯为支撑材料 的聚苯胺 石
热导率 约 比传统导 热材料 金刚石高 出 1 墨烯 复合物 ,而 GNR s的加入将 会器 件
随着 社会的飞速发展和人们生活水 倍 以上 。而石 墨烯基材料在 弹道 区域的 更多 复合材料 的多功 能性 和加工性能 。 平 的不 断提 高 , 人们 对 于 电子 设备 的 运 输特性 ,经 J i a n g 研究 发现沿平 面 2 0 0 8年 ,中 国科学 院上 海应 用 物理 研 智能化 、小型化 、集成化 以及 电子信 息 方 向热导率 呈现各 向异 性。G NRs 可 以 究所 物理生物学 实验室就开始 了新型石 的超快传输和高密度存储 的要 求越来越 用在热传导材料上 ,因为宽度小 ,制造 墨烯 基材料纳 米抗 菌材料方面的研究工 高 , 对材料尺寸 的要求 越来越小。石墨 时可 以控制其 长宽 ,因而可制成纳米级 作 ,探索 了氧化石 墨烯的抗菌特性 ,发 烯基材料具有 很好 的导 电性 ,大规模 廉 的导 热器 件 ,并且 因其边 缘 构 造 的特 现氧化石墨烯 的抗菌性源于其对大肠杆 价 的生产会促进它在 高传导 率集成 电路 殊性 ,可 以加 入 多种 元 素 对 其 改性 , 0 0 9年 , 方面 的研 究 。石 墨烯 基 材料 很 可能 成 使 其 性 能得 到 大 幅度 提 高 。2 菌细胞膜 的破坏 ,将 GNR s的性 能加以 探究利用 应用于生物材料将会 是不 久的
电子器件的主打材料。
做 了很好的理 论铺 垫。
石 墨烯在短短 的几年 间 ,从一个新 生儿快 速成长为科学 界的新星 ,随之被
2 . 2力学领域
G NRs 和石墨烯 一样有很好 的力学
2 . 4其 他领域
从光学角度来说 , GNRs 是一种 “ 透 发现 的 G NRs 更是成为了科学界的研究
2 0 1 0 ,9 ( 4 ) :3 1 5 — 9 .
I 2 】Kl e i n D J .E l e m e n t a l B e n z e n o i d s [ J 】 .C h e m.P h y s .L e f t . ,1 9 9 4 ,3 4( 2 ) :4 5 3 - 5 9 .
【 3 1l I a n M Y,O z y i l m a z B ,Z h a n g Y,K i m R.E n e r g y B a n d — Ga p E n g i n e e r i n g o f G r a p h e n e N a n o r i b b o n s… .P h y s .R e v .L e t t . ,2 0 0 7 ,9 8( 2 0 ) :