石墨烯纳米材料

合集下载

石墨烯比热容

石墨烯比热容

石墨烯比热容
摘要:
1.石墨烯的基本特性
2.石墨烯的比热容
3.石墨烯的应用前景
正文:
一、石墨烯的基本特性
石墨烯是一种由碳原子构成的单层片状结构的新材料,它是世上最薄、最坚硬的纳米材料。

石墨烯几乎完全透明,只吸收2.3% 的光。

其导热系数高达5300,w/m·k,高于碳纳米管和金刚石。

在常温下,石墨烯的电子迁移率超过15000,cm2/v·s,比纳米碳管或硅晶体高。

而其电阻率只约10-6,·cm,比铜或银更低,为世上电阻率最小的材料。

二、石墨烯的比热容
石墨烯的比热容是描述石墨烯在温度变化时,单位质量的物质所需吸收或释放的热量。

由于石墨烯的导热性能极好,它的比热容非常大,这意味着在相同的质量和温度变化下,石墨烯可以吸收或释放更多的热量。

因此,石墨烯被认为是一种优良的热绝缘材料。

三、石墨烯的应用前景
石墨烯因其独特的物理性质和化学性质,被认为是一种多功能材料,具有广泛的应用前景。

目前,石墨烯已被广泛用于制备多功能分离膜、高导高强纤维、超轻超弹性气凝胶等多种功能材料。

此外,石墨烯在电化学储能、催化、
生物医药、复合材料等方面也表现出良好的应用前景。

总之,石墨烯作为一种新型纳米材料,具有极高的比热容、导热性能和电子迁移率等特性,使其在众多领域具有广泛的应用潜力。

butyl(丁基橡胶)-石墨烯纳米复合材料

butyl(丁基橡胶)-石墨烯纳米复合材料

Study on Modified Graphene/Butyl Rubber Nanocomposites.I.Preparation and CharacterizationHuiqin Lian,1,2,3Shuxin Li,1Kelong Liu,1Liangrui Xu,1Kuisheng Wang,2Wenli Guo11Department of Materials Science and Engineering,Beijing Institute of Petrochemical Technology,Beijing,China2Department of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing,China 3Department of Chemical Engineering,Yanbian University,Beijing,ChinaButyl rubber,IIR nanocomposites based on modified graphene sheets,were fabricated by solution process-ing followed by compression molding.MG was pre-pared from natural graphite,NG through graphite oxide route.X-ray diffraction showed that the exfoliated MG was homogeneously dispersed in the IIR matrix with doping levels of1-10wt%as evidenced by the lack of the characteristic graphite reflection in the compo-sites.In contrast,the graphite retained its stacking order and showed the sharp characteristic peak in the NG-IIR composites.Scanning electron microscope images of the fracture surfaces of the IIR matrix showed that MG nanofillers exhibited better compati-bility than NG did.The mechanical properties of the MG-IIR nanocomposites were significantly improved due to the efficient distribution of the large surface area MG sheet.The tensile modulus of nanocomposite with doping level of MG10wt%was16times that of the pure IIR.POLYM.ENG.SCI.,00:000–000,2011.ª2011 Society of Plastics EngineersINTRODUCTIONCommercial butyl rubber(IIR)is a copolymer of isobu-tylene and a small amount of isoprene.It is employed in the inner linings of automobile tires and in other specialty application due to its characteristics of chemical inertness, impermeability to gases and weatherability.However, unsaturated bonds in IIR,due to the presence of isoprene monomer units in the backbone,can be attacked by atmos-pheric ozone leading to oxidative degradation and chain cleavage.Also in somefields,such as aerospace,aircraft and high-vacuum systems,IIR does not meet the extremely high-gas barrier as well as the high mechanical properties requirements.Therefore,there exists a continuous interest in lowering gas permeability and improving the mechanical properties of IIR by various techniques[1,2].It is well known that polymeric nanocomposites are of great interest for both scientific challenges and industrial applications due to their enhanced mechanical properties and unique material properties[3–5].Compared with con-ventional systems,nanomaterials are more effective rein-forcements because the stress transfer from the matrix to the reinforcement is more efficient in nanocomposites due to the increased surface area,assuming good adhesion at the interface.Also,the crack propagation length at the interface becomes longer,improving the strength and toughness.In addition to improving the mechanical prop-erty,nanofillers,such as layered silicate or carbon nanotubes,can provide dramatic improvement in thermal stability,dimensional stability,heat-distortion tempera-ture,and barrier property[6–11].Recently,graphite oxide (GO)has attracted increasing interest as afiller for poly-mer nanocomposites due to its high dispersive capacity, long coherence length and the barrier property[12,13]. GO with a typical pseudo-two-dimensional structure gen-erally contains hydroxyl,carboxyl and ether groups, which causes GO to absorb polar molecules easily and thus GO/polymer composites can be formed.Such struc-tural nanocomposites can provide reinforcement to the base polymer matrix.Also,GO may also have other desirable properties,such as mass diffusion coefficients, coefficients of thermal expansion,dielectric constants, thermal/chemical stability,solvent resistance,selectivity, conductivity,and resistivity to membrane fouling and poisoning.However,as a reinforcement of IIR,the hydro-philic surface of GO makes it difficult to disperse in the hydrophobic IIR matrix.Therefore,it is an importantCorrespondence to:Wenli Guo;e-mail:wlguo2008@Contract grant sponsor:Natural Science Foundation of China(NSFC);contract grant number:51063009;contract grant sponsor:BeijingNatural Science Foundation of China;contract grant number:KZ200910017001.DOI10.1002/pen.21997Published online in Wiley Online Library().V C2011Society of Plastics EngineersPOLYMER ENGINEERING AND SCIENCE—-2011Administratorissue to improve the compatibility of the GO sheet with the IIR matrix.Moreover,methods used to prepare polymeric nano-composites include in-situ polymerization [14],solution mixing [15],melting compound [16],and cocoagulating of polymeric composite solution [17].Considering the manufacture process of the IIR,slurry and solution pro-cess,the solution mixing is promising to fabricate IIR hybrids in the IIR industry.In this study,we report for the first time the fabrication of well-dispersed modified graphene in IIR composites through solution process.The MG nanosheets are homo-geneously dispersed in the IIR matrix with doping level of 1–10wt%.Compared with the pure IIR,the resulting nanocomposite membranes exhibit dramatic enhancement of mechanical properties.To the best of our knowledge,this is the first report of totally exfoliated graphite to reinforce IIR with outstanding mechanical property.The properties of vulcanization plateau,gas barrier,cure capa-bility,and rubber damping are under study and the results will be published in the near future.EXPERIMENTAL PROCEDURES MaterialsNatural graphite flakes with a partical size of 30l m were purchased from Aladdin Reagent Company (China).Cetyltrimethylammonium bromide (CTAB)was bought from Fuchen Chemical Reagents(Tianjin,China).Butyl rubber (IIR 1751)was obtained from YanShan Petrochem-ical Company of China.The other reagents (NaOH,NaNO 3,and KMnO 4)of analytical grade and 98%H 2SO 4,30%H 2O 2were purchased from Sinopharm Chemical Reagent Co.Ltd.(China)and were used as received with-out further purification.Ultrapure water with resistivity of 18M O was produced by a Milli-Q(Millipore,USA)and was used for solution preparation.Preparation of MG/NG-IIR Composite SheetsThe procedure used to prepare the MG-IIR nano-composite sheets was shown in Fig. 1.First,based on Hummers’method [18],the graphite was oxidized by con-centrated sulfuric acid to create polar hydrophilic groups (ÀÀCOOH,C ¼¼O,ÀÀOH)on the surface.The GO was dispersed in cetyltrimethylammonium bromide solution (20wt%)and ultrasonicated for 0.5h,followed by me-chanical stirring at 258C for 24h.During this process,the tertiary amine reacted with the carboxylic groups on the oxidized surface via an acid-base reaction or via hydrogen bonding between the surface ÀÀOH or C ¼¼O group and the amine groups.The suspension was filtrated and washed three times with water,dried at 408C in a vacuum for 24h.The resulting MG was added into the 15wt%solution of IIR in hexane by sonication for 0.5h to form a colloidal suspension.Then the mixture was stirred for 6h at 258C.The amounts of MG/NG added were 0,1,3,5,10wt%ofthe mass of rubber.The composite solution was then coa-gulated by adding methanol and the precipitated nanocom-posite was dried in a vacuum.Finally,sheet samples were prepared by vacuum compression molding using a 2mm thick spacer at 1008C under 10MPa for ing this procedure,the NG-IIR composite sheets were prepared.CHARACTERIZATION AND MEASUREMENTS The as-made membrane was characterized by X-ray diffraction (XRD,Scintag PAD X diffractometer,Cu K a source,operated at 45kV and 40mA).The samples were scanned with 58/min between 2y of 28–308.SEM observation was performed using Tecnai T12,at an acceleration voltage of 15kV with gold -posite samples were imaged by first fracturing in liquid nitrogen.TGA was performed using a TA Instrument Q500attached to an automatic programmer from ambient tem-perature to 5008C at a heating rate of 108C/min in a nitro-gen atmosphere.A TA instrument Q1000was used to record the DSC traces at a heating rate of 108C/min.Measurements of mechanical properties were con-ducted at 25628C according to relevant ISO standard (ISO 37).Tensile tests were measured on an Autograph AGS-J SHIMADZU universal testing machine at a cross-head speed of 500mm/min.The reported values were the average of five measurements.RESULTS AND DISCUSSIONThe FTIR spectra of NG,GO,and MG were shown in Fig.2.The FT-IR spectrum of NG showed no significant features.While that of GO showed quite differentFIG.1.Schematic representation for the fabrication of MG-IIR nano-composite membrane.2POLYMER ENGINEERING AND SCIENCE—-2011DOI 10.1002/pencharacter by the presence of new bands.The broad bandat3405cm21could be assigned to stretching of the ÀÀOH groups on the GO surface.The bands at1720and 1070cm21were associated with stretching of the C¼¼Oand CÀÀO stretching vibrations of carboxylic groupsrespectively.The FTIR spectrum of MG confirmed theeffective functionalization of graphene.The double bandsat2849and2919cm21were antisymmetric and symmet-ric CÀÀH stretching vibrations of theÀÀCH2ÀÀgroups from surfactant molecules[19]respectively.The bands at 1463and1127cm21were corresponding to CÀÀH bend-ing and the C-N stretching vibration respectively.The spectrum also showed a C¼¼C peak at1574cm21corre-sponding to the skeletal vibration of graphene sheets[20]. These spectral features showed that MG was successfully synthesized.The XRD patterns of the NG,GO,MG were shown inFig.3.The sharp diffraction peak around26.5o for pris-tine graphite(Fig.3a)showed that the basal spacing was0.34nm.Because of the strong Van der Waals force andstatic electric force between the sheets of graphite,thesheet was difficult to disperse.Thus a relatively strongoxidative acid was used to oxidize the graphite creatingpolar groups on the surface of graphite sheet.The surfac-tant of cetyltrimethyl ammonium bromide was used to functionalize the oxidized graphite through acid-base reaction to obtain stable exfoliated graphene sheets.As shown in Fig.3a,the GO showed two diffraction peaks at 2y of9.7o and25.3o,corresponding to a d-spacing of0.91 and0.35nm,respectively,and indicated that the GO was not fully oxidized and the additional peak at25.3o was that of unoxidized graphite.From Fig.3b,MG showed no characteristic peak indicating that the modified graphene sheet had been exfoliated completely.The XRD patterns of MG/NG-IIR nanocomposites membranes with different doping levels were presented in Fig.4.As shown in Fig.4a,the broad peak of2y around 15o appeared in IIR and NG-IIR membranes,due to the amorphous phase of IIR.Toki et al.[21]reported that the amorphous peak of IIR changed during uniaxial deforma-tion.In this case,with NG loading increase,the broad peak shifted slightly,from2y of14.7o in IIR to14.4o in 10wt%NG-IIR composite.It was deduced that NG did not influence the crystallization behavior of IIR very much.From Fig.4a,the diffraction peak at2y around 26.5o appeared in NG and NG-IIR composites because the NG retained its stacking order in the composite.XRD diffraction curves of MG-IR nanocomposites were shown in Fig.4b.The diffraction ascribed to graphite or oxidized graphite did not appear in all of the XRD patterns of composites,indicating the complete exfoliation of the MG in the IIR matrix.SEM images of the fractured surfaces of the as-made MG-IIR and NG-IIR composites were shown in Fig.5. SEM images of NG-IIR composites showed a smooth to-pography with the NG remained its stacking order in the IIR matrix(Fig.5a and b).In contrast,the MG-IIR com-posites appeared a rough surface and the MG dispersed in IIR matrix homogenously(Fig.5c and d).This is likely due to the organic modifier on the surface of MG produc-ing good compatibility with IIR matrix.These results were coincident with the XRD test.TGA under a nitrogen atmosphere was performed on NG,MG,IIR and MG-IIR composites to obtain the struc-ture of MG and composites,as well as to determine the effects of the MG on the thermal stability of the compo-sites.The resulting curves were shown in Fig.6.From FIG.2.FT-IR spectra of NG,GO andMG.FIG.3.The XRD patterns of(a)NG,GO and(b)MG.The curves are shifted vertically for clarity.DOI10.1002/pen POLYMER ENGINEERING AND SCIENCE—-20113FIG.4.The XRD patterns of composites(a)NG-IIR and(b)MG-IIR.The curves are shifted vertically forclarity.FIG.5.SEM images of fracture surface of(a,b)NG-IIR nanocomposites and(c,d)MG-IIR nanocompo-sites.4POLYMER ENGINEERING AND SCIENCE—-2011DOI10.1002/penNG curve of Fig.6a,graphite maintained its weight under the test condition.The curve of MG indicated that MG was composed of 17wt%graphene and 83wt%organicmodifiers.The functional surface contributed to the dis-persion of MG in the IIR solution as well as to the com-patibility with the IIR matrix in the composite membrane.Figure 6b indicated that the IIR began to decompose at 2698C and degraded completely at 4158C.In the case of MG/IIR composites,the weight loss below 3008C was attributed to the decomposition of the small organic molecules on the surface of graphene.Table 1listed the temperature at 5wt%loss of the TGA curve of IIR and MG-IIR composites.The pure IIR lost 5wt%at 3248C and the value was the highest of all the curvesobtained.FIG.6.(a)TG curves of NG and MG;(b)TG curves of MG-IIR nano-composites and (c)DTG curves of MG-IIR nanocomposites.TABLE 1.Thermal propertiesofpureIIRandMG-IIRnanocomposites.IIR 1%MG-IIR 3%MG-IIR 5%MG-IIR 10%MG-IIRT 5wt%(8C)a 324297321256236T mrv (8C)b 372368375378383a Temperature at 5wt%loss.bTemperature at the maximum reactivevelocity.FIG.7.DSC curves of MG-IIRnanocomposites.FIG.8.Tensile stress-strain curve of (a)MG-IIR nanocomposites and (b)NG-IIR nanocomposites.DOI 10.1002/pen POLYMER ENGINEERING AND SCIENCE—-20115The temperature at5wt%loss decreased with the increas-ing MG content when the MG contents were3,5,and10wt%in composites respectively.This might be due to theamount of small molecule of organic modifier increasedwith the increasing MG content.Thefirst derivative of the TGA curve(DTA curvesshown in Fig.6c showed the variation in weight withtime(dW/dT)as a function of temperature.The DTApeaks indicated the temperature of the maximum reactivevelocity.Table1listed the temperature at the maximumreactive velocity of the DTA curve of IIR and MG-IIRcomposites.Pure rubber reached the maximum reactivevelocity at3728C.The value of1wt%MG-IIR nanocom-posite was3688C and it was lower than that of IIR.Thismight be that the amount of graphene was too low toinfluence the thermal stability of the composite,whilesmall organic molecules on the surface of graphene withlow decomposition temperature induced the thermaldecomposition.For all other composites,the temperatureat the maximum reactive velocity increased with increas-ing graphene content,and for the10wt%composite itwas increased by118C compared with pure IIR.Thisindicated that the thermal stability of IIR was improvedby the addition of graphene.A significant number ofpapers had reported increased thermal stability of variouspolymers using graphene asfiller[15,22,23].T.Kuilaet al.reported that the better thermal stability of gra-phene/polyethylene composite system was due to the highaspect ratio of the monodispersed graphene layers whichacted as a barrier and inhibited the emission of small gas-eous molecules[23].DSC for the MG/IIR nanocomposites was shown inFig.7.The glass transition(T g)temperature of IIR wasobserved at270.58C,and the MG loading increased,theT g values of composites which were269.28C,268.68C, 268.98C,and269.18C with the loading levels of1,3,5, 10wt%,respectively.All the composites showed aslightly higher T g than that of pure IIR;among them thehighest one was268.68C of3wt%MG-IIR nanocompo-site.It indicated that the effective exfoliation of the MGincreased the T g due to the interaction between MG andpared with the results of graphene/polystyrenenanocomposite[24],the incorporation of PS nanoparticleson graphene sheets resulted in an increase in T g by178C,while the exfoliated MG did not influence the T g of MG-IIR nanocomposite very much.Therefore,the properties of nano-filler influenced the phase behavior of polymer matrix.The interaction between MG and IIR is under further study.The typical stress–strain curves for the MG-IIR and NG-IIR compositesfilms were presented in Fig.8.The mechanical performance of MG/IIR and NG/IIR compos-itefilms was significantly increased compared with pure IIRfilm(Fig.8a and b).The effect of MG content on mechanical properties of the nanocomposites was shown in Table 2.Stresses at 100%,200,and300%elongation of composites increased along with the MG loading increase.Therefore,in this study,MG-IIR nanocomposites had higher mechanical properties than that of pure IIR.On the basis of these stress–strain curves of tensile tests(Fig.8a and b),Young’s moduli were taken as the linear regression of the initial linear part of stress–strain curves.Figure9a showed the representative calculated Young’s moduli of IIR,NG-IIR,and MG-IIR.The corre-sponding Young’s modulus values were shown in Fig.9b. The addition of MG grapheneflakes significantly increased the Young’s modulus.Remarkably,the Young’s modulus of10wt%MG-IIR was16times that of pure IIR.In comparison,the10wt%NG-IIR compositesTABLE 2.Mechanical properties of pure IIR and MG-IIR nanocomposites.Stress at 100%(MPa)Stress at200%(MPa)Stress at300%(MPa)IIR0.170.190.181%MG-IIR0.250.230.183%MG-IIR0.440.380.295%MG-IIR0.540.430.3110%MG-IIR0.770.590.40FIG.9.(a)Representative calculated Young’s moduli of IIR,NG-IIR,and MG-IIR based on the slope of the elastic region.(b)Dependence ofYoung’s modulus on loading offillers in MG-IIR and NG-IIR nanocom-posites.6POLYMER ENGINEERING AND SCIENCE—-2011DOI10.1002/penimproved3.5times only,as shown in Fig.9b.It might be that the NG stacks did not exfoliate or intercalate in the IIR matrix.This result coincided with the results of the XRD and SEM analysis.Therefore,from the result of mechanical properties,it was deduced that the modifier on the surface of the gra-phene sheet not only caused the sheet to disperse in the IIR matrix,but also bonded to the large rubber chain in two dimensions,which gave the nanocomposite better tensile performance.According to the reference[25],gra-phene layers in poly(vinyl chloride)matrix enhanced the mechanical properties of PVC,because of the strong interfacial adhesion.Therefore,in our case,MG-IIR nano-composites had higher mechanical properties than the pure IIR,which may be due to the homogenous distribu-tion of exfoliated MG and the good compatibility with polymer matrix.CONCLUSIONMG-IIR nanocomposites were prepared by solution processing.SEM and XRD analysis indicated that the exfoliated MG was homogeneously disperse in the IIR matrix.The addition of MG greatly improved the mechan-ical property of the nanocomposites.The nanocomposites with10wt%MG showed the highest Young’s modulus, 3.4MPa,which was about16times higher than that of pure IIR,0.21MPa.REFERENCES1.S.Takahashi,H.A.Goldberg,C.A.Feeney,D.P.Karim,M.Farrell,K.O’Leary,and R.Paul,Polymer,47,3083 (2006).2.Y.Liang,W.Cao,Z.Li,Y.Wang,Y.Wu,and L.Zhang,Polym.Test.,27,270(2008).3.N.A.Kotov,Nature,442,254(2006).4.M.A.Pulickel and M.T.James,Nature,447,1066(2007).5.E.P.Giannelis,Adv.Mater.,8,29(1996).6.Camenzinda,W.R.Caserib,and S.E.Pratsinis,Nano Today,5,48(2010).7.S.C.Tjong,Mater.Sci.Eng.,R53,73(2006).8.Suresha,B.N.Ravi Kumar,M.Venkataramareddy,and T.Jayaraju,Mater.Des.,31,1993(2010).9.H.Kim and C.W.Macosko,Polymer,50,3797(2009).10.Y.Liang,Y.Wang,Y.Wu,Y.Lu,H.Zhang,and L.Zhang,Polym.Test.,24,12(2005).11.E.Burgaz,H.Lian,R.H.Alonso,L.Estevez,and E.P.Gian-nelis,Polymer,50,2348(2009).12.Y.Lian,Y.Liu,T.Jiang,J.Shu,H.Lian,and M.Cao,J.Phys.Chem.C,114,21(2010).13.K.Kalaitzidou,H.Fukushima,and L.T.Drzal,Compos.Sci.Technol.,67,2045(2007).14.J.M.Herrera-Alonso,Z.Sedlakova,and E.Marand,J.Membr.Sci.,349,251(2010).15.S.Ansari and E.P.Giannelis,J.Polym.Sci.Part B:Polym.Phys.,47,888(2009).uki, A.Tukigase,and M.Kato,Polymer,43,2185(2002).17.L.Q.Zhang,Y.Z.Wang,Y.Q.Wang,Y.Sui,and D.S.Yu,J.Appl.Polym.Sci.,78,1873(2000).18.W.S.Hummers and R.E.Offeman,J.Am.Chem.Soc.,80,1339(1958).19.P.J.Thistlethwaite and M.S.Hook,Langmuir,16,4993(2000).20.T.Szabo,O.Berkesi,and I.Dekany,Carbon,43,3186(2005).21.S.Toki,I.Sics,B.S.Hsiao,S.Murakami,M.Tosaka,S.Poompradub,S.Kohjiya,and Y.Ikeda,J.Polym.Sci.Part B:Polym.Phys.,42,956(2004).22.Q.L.Bao,H.Zhang,J.X.Yang,S.Wang,D.Y.Tong,R.Jose,S.Ramakrishna,C.T.Lim,and K.P.Loh,Adv.Funct.Mater.,20,1(2010).23.T.Kuila,S.Bose,C.E.Hong,M.E.Uddin,P.Khanra,N.H.Kim,and J.H.Lee,Carbon,49,1033(2011).24.A.S.Patole,S.P.Patole,H.Kang,J.Yoo,T.Kim,and J.Ahn,J.Colloid Interface Sci.,350,530(2010).25.S.Vadukumpully,J.Paul,N.Mahanta,and S.Valiyaveettil,Carbon,49,198(2011).DOI10.1002/pen POLYMER ENGINEERING AND SCIENCE—-20117。

碳纳米管,石墨烯,炭黑的关系

碳纳米管,石墨烯,炭黑的关系

碳纳米管,石墨烯,炭黑的关系
碳纳米管、石墨烯和炭黑都是碳的同素异形体,它们之间有一定的关系。

石墨烯是一种由单层碳原子组成的二维材料,具有优异的导电性、导热性和强度等性能。

而碳纳米管则是一种由碳原子组成的中空管状结构,可以是单壁或多壁结构,具有优异的力学性能和电学性能。

炭黑则是一种由碳原子组成的粉末状物质,通常用于橡胶、塑料、涂料等领域,具有良好的导电性和黑色着色性。

碳纳米管和石墨烯都是由碳原子组成的,但它们的结构和性能有很大的不同。

碳纳米管可以看作是由石墨烯卷曲而成的,因此它们在一定程度上具有相似的性能,例如高导电性、高强度等。

但碳纳米管的直径比石墨烯要小很多,因此它们的性能也有所不同,例如碳纳米管的力学性能比石墨烯更好。

新型材料介绍

新型材料介绍

新型材料介绍新型材料是指相比传统材料,具有更优异性能和特性的材料。

近年来,随着科技的发展和需求的改变,新型材料得到了广泛的研究和应用。

以下是对一些常见新型材料的介绍:1. 石墨烯:石墨烯是由碳原子构成的二维晶体结构,具有极高的导电性、导热性和机械强度。

它是目前已知的最薄的材料,被誉为“21世纪的超级材料”。

石墨烯在电子设备、能源存储和传输、生物医学等领域有着广泛的应用前景。

2. 纳米材料:纳米材料是尺寸在纳米级别的材料,具有出色的独特性能。

纳米材料可以提高材料的稳定性、强度和导电性,并且可以在催化、光电子和生物学等领域发挥重要作用。

例如,纳米颗粒可以用于制备高效的太阳能电池和高灵敏度的生物传感器。

3. 智能材料:智能材料是可以对外界刺激做出相应反应的材料。

智能材料可以根据环境、温度、光线、压力等变化,实现形状变化、改变颜色、反应速度等特性。

智能材料在自动化、智能传感器和智能纺织品等领域有广泛的应用。

4. 生物材料:生物材料是仿生学研究中的一类材料,可以用于生物医学领域中的组织工程、药物传递和修复医学等方面。

例如,生物可降解支架材料可以在体内逐渐降解,并促进新的组织生长和修复。

5. 具有特殊功能的材料:这类材料在特定环境或条件下拥有特殊的性能和功能。

例如,形状记忆合金可以在恢复原始形状的条件下实现可逆形变,被广泛应用于航天、汽车和医疗器械等领域。

此外,还有具有超疏水性、超吸水性和光学功能的材料等。

新型材料的应用有望在能源、环境、医疗、电子、交通等领域产生重大影响。

通过研发和应用新型材料,可以推动技术创新和社会发展。

然而,新型材料的研究和应用也面临着许多挑战,如成本高昂、可持续性问题和潜在的环境风险等。

因此,在推动新型材料的发展的同时,也要注重与其他领域的协调和平衡。

石墨烯纳米片-石墨烯产品介绍

石墨烯纳米片-石墨烯产品介绍

石墨烯纳米片-石墨烯产品介绍产品名称中文名称:石墨烯纳米片 1-5 nm英文名称:Graphene nanoplates 1-5nm性质片径:1-3μm厚度:1-5 nm电导率:500-1000 S/cm应用新能源电池、抗静电、散热、提高机械强度、导电复合材料、涂料改性剂、物理学基础研究、石墨烯晶体管、电子芯片、天线材料、航空航天等。

产品名称中文名称: 石墨烯纳米片 3-10 nm英文名称:Graphene Nanoplate 3-10 nm·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、性质形态:黑色粉末参数直径:5-10μm厚度:3-10nm比表面积:31.657m2/g碳含量:>99.5%应用在PPO,POM,PPS,PC,ABS,PP,PE,PS,尼龙和橡胶高性能复合材料。

提高复合材料的拉伸强度、刚度、耐腐蚀、耐磨损性及防静电和润滑剂等特性。

改善力学性能改善导电性能其他信息使用方法:建议将石墨纳米片通过双辊、班伯里密炼机、双螺杆挤出机等一般用于塑料工业的仪器与目标聚合物混合。

为了让石墨烯纳米片在目标聚合物基·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、质中更好的分散,建议在与塑料树脂粉末混合之前添加一些表面改性剂,如硅烷偶联剂、钛酸酯偶联剂或铝酸酯偶联剂。

使用须知:本品为黑色粉末,使用不当可能引起呼吸道、眼部轻微刺激,直接接触会引起皮肤干燥,建议使用时佩戴口罩和手套。

先进纳米材料制造商和技术服务商——江苏先丰纳米材料科技有限公司,2009年成立以来一直在科研和工业两个方面为客户提供完善服务。

科研客户超过一万家,工业客户超过两百家,其中世界五百强客户达到10%以上。

《石墨烯及碳纳米管增强铜基复合材料组织与性能研究》

《石墨烯及碳纳米管增强铜基复合材料组织与性能研究》

《石墨烯及碳纳米管增强铜基复合材料组织与性能研究》一、引言随着科技的不断进步,材料科学在许多领域取得了重大突破。

其中,铜基复合材料因其优异的导电性、导热性及良好的机械性能,在电子、电力、航空航天等领域得到了广泛应用。

近年来,石墨烯和碳纳米管因其独特的物理和化学性质,被广泛用于增强铜基复合材料的性能。

本文将针对石墨烯及碳纳米管增强铜基复合材料的组织与性能进行深入研究。

二、石墨烯及碳纳米管的基本性质石墨烯是一种由单层碳原子构成的二维材料,具有优异的导电性、导热性和机械强度。

而碳纳米管则是由卷曲的石墨烯片构成的管状结构,也具有很好的导电和导热性能,且强度非常高。

这些特性使得石墨烯和碳纳米管成为增强铜基复合材料的理想选择。

三、实验方法与材料制备本实验采用石墨烯和碳纳米管作为增强相,制备了不同比例的铜基复合材料。

首先,将石墨烯和碳纳米管分别与铜粉混合,通过热压法制备出铜基复合材料。

通过对制备工艺的优化,我们得到了不同石墨烯和碳纳米管含量的铜基复合材料。

四、组织结构分析通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察了铜基复合材料的微观组织结构。

结果表明,石墨烯和碳纳米管在铜基体中分布均匀,且与铜基体具有良好的界面结合。

此外,随着石墨烯和碳纳米管含量的增加,复合材料的晶粒尺寸有所减小,晶界更加清晰。

五、性能研究1. 力学性能:通过对铜基复合材料进行拉伸测试,发现随着石墨烯和碳纳米管含量的增加,复合材料的抗拉强度和硬度均有所提高。

这主要归因于石墨烯和碳纳米管的优异机械性能以及与铜基体的良好界面结合。

2. 电学性能:通过测量铜基复合材料的电导率,发现其电导率随着石墨烯和碳纳米管含量的增加而略有降低,但仍保持较高的电导率水平。

这表明石墨烯和碳纳米管的添加对铜基体的电导性能影响较小。

3. 热学性能:由于石墨烯和碳纳米管具有优异的导热性能,因此铜基复合材料的热导率也有所提高。

通过热导率测试,发现随着石墨烯和碳纳米管含量的增加,复合材料的热导率逐渐提高。

纳米石墨烯分子的氢化-概述说明以及解释

纳米石墨烯分子的氢化-概述说明以及解释

纳米石墨烯分子的氢化-概述说明以及解释1.引言1.1 概述概述石墨烯是自2004年被发现以来引起广泛研究的一种二维碳材料,由于其独特的结构和优异的性能,在领域中引起了极大的兴趣和关注。

然而,纯石墨烯在环境中的稳定性和反应活性限制了其广泛应用的可能性。

为了改善这一问题,研究人员通过氢化反应将氢原子引入石墨烯分子中,形成纳米石墨烯分子。

这种氢化的过程不仅提高了纳米石墨烯的环境稳定性,还赋予了它独特的性质和潜在的应用价值。

本文旨在探讨纳米石墨烯分子的氢化过程,包括原理、方法以及其在应用中的潜力。

首先,将介绍纳米石墨烯的基本概念和特点,以便更好地了解氢化对其性质的影响。

接着,将详细讲解氢化反应的原理,包括氢原子与石墨烯中碳原子的相互作用机理。

然后,将介绍纳米石墨烯分子的氢化方法,包括化学氢化和物理氢化等不同的实验手段。

这些方法将被讨论其优缺点以及对纳米石墨烯分子结构和性质的影响。

在文章的结论部分,将总结纳米石墨烯分子的氢化对其重要性,并探讨其在各个领域中的潜在应用价值。

纳米石墨烯分子的氢化可以改变其电子结构、化学活性和机械性能,从而拓宽了其在能量存储、催化、传感器等领域的应用。

最后,将展望纳米石墨烯分子的氢化在未来的发展方向,包括进一步探索新型的氢化方法、优化纳米石墨烯分子的性能以及扩大其在实际应用中的应用范围。

通过对纳米石墨烯分子的氢化的深入研究,我们可以更好地理解和控制石墨烯材料的性质,进而推动其在各个领域的应用和发展。

本文希望为读者提供一个全面而系统的了解纳米石墨烯分子的氢化过程的基础,并为相关研究和应用提供一定的指导和启示。

1.2 文章结构文章结构部分的内容如下:本文共分为三个主要部分,即引言、正文和结论。

在引言部分,我们将对纳米石墨烯分子的氢化进行概述。

首先,我们将介绍纳米石墨烯的基本特性和应用领域。

接着,我们将说明本文的结构和内容安排。

最后,我们将明确本文的目的和意义,为读者提供一个清晰的导读。

石墨烯纳米机器人及其应用

石墨烯纳米机器人及其应用

石墨烯纳米机器人及其应用
石墨烯是一种由碳原子组成的二维材料,具有优异的导电、导热、机械强度和
化学稳定性等性质。

近年来,石墨烯的研究引起了广泛的关注,因其极高的表面积和超强的化学反应能力,被认为是制造纳米机器人的理想材料之一。

石墨烯纳米机器人是指由数百至数千个石墨烯材料分子组成的机器人。

这些机
器人具有高度的自主性和可编程性,能够在特定环境下执行任务,如移动、传递物质、检测、治疗等。

由于石墨烯具有極好的強度和导电性能,石墨烯纳米机器人将能够应用于一系列医疗、电子、能源等领域的技术中。

在医疗领域,石墨烯纳米机器人可以应用于精准医疗中,如诊断、治疗和药物
递送等方面。

例如,一些研究者采用石墨烯纳米机器人制备与药物分子相结合的设备,可以将这些纳米机器人进行输送到人体内部,实现针对肿瘤细胞的精准治疗。

在电子领域,石墨烯纳米机器人具有广泛的应用前景。

石墨烯自身是一种优秀
的电子导体,可以用于构建高效的晶体管和传感器等电子元件。

同时,石墨烯材料的特殊结构和性质,还可以用于微机器人、智能电子贴片等多种领域的应用。

在能源领域,石墨烯纳米机器人也有很多应用。

由于石墨烯具有超强的导电性
能和化学稳定性,因此可以用于制造具有高效能量转换率的太阳能电池和容量更高的锂离子电池,从而推动清洁能源的发展。

总之,石墨烯纳米机器人是最前沿的科技发展领域之一,其应用前景十分广泛。

随着科技水平的不断提升,相信将来石墨烯纳米机器人将能够产生更加惊人的应用效果,为人类带来更大的福祉和发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档