2016-2017学年浙江省温州市十校联合体高一(上)期末数学试卷(解析版)
浙江省温州市高一数学上学期期末联考试题

2016学年第一学期温州“十校联合体”期末考试联考高一联考数学学科 试题考生须知:1.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.2.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上. 3.选择题的答案须用2B 铅笔将答题纸上对应题目的答案标号涂黑,如要改动,须将原填涂处用橡皮擦净.4.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,答案写在本试题卷上无效.选择题部分一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若角α的始边是x 轴正半轴,终边过点()34-,P ,则αcos 的值是 A .4B .-3C .54D .53-2.已知集合{}0P y y =≥,若P Q Q =I ,则集合Q 不可能是....A .{}R x x y y ∈=,|2B .{}R x y y x∈=,2|C . {}0,lg |>=x x y yD .∅3.函数()02sin >+=a x a y 的单调递增区间是A.⎪⎭⎫ ⎝⎛-2,2ππ B.⎪⎭⎫ ⎝⎛--2,ππ C .⎪⎭⎫ ⎝⎛ππ,2 D .⎪⎭⎫⎝⎛ππ2,234.已知向量a 、b 不共线,若=AB a+2b ,=BC 4-a-b ,=D C 5-a-3b , 则四边形ABCD 是A.梯形B. 平行四边形C . 矩形D .菱形5.已知⎥⎦⎤⎢⎣⎡∈ππθ,2,则()⎪⎭⎫ ⎝⎛-++θπθπ2sin sin 21= A.θθcos sin -B .θθsin cos -C . ()θθcos sin -±D .θθcos sin +6.已知()b a b ab a y xyx<<+≤+--1,则A.0≥+y xB. 0≤+y x C . 0≤-y x D .0≥-y x 7.已知函数()()0ln ≠=a ax x f ,()x xx g sin 3+=-,则A.()()f x g x +是偶函数B. ()()f x g x ⋅是偶函数 C . ()()f x g x +是奇函数 D. ()()f x g x ⋅是奇函数8.设实数1x 、2x 是函数()xx x f ⎪⎭⎫⎝⎛-=21ln 的两个零点,则A.021<x xB. 1021<<x x C . 121=x x D.121>x x 9.已知函数()()12sin ϕ+=x x f ,()()22,4cos 212πϕπϕϕ≤≤+=,x x g命题①:若直线ϕ=x 是函数()x f 和()x g 的对称轴,则直线()Z k k x ∈+=ϕπ21是函数()x g 的对称轴;命题②:若点()0,ϕP 是函数()x f 和()x g 的对称中心,则点()Z k k Q ∈⎪⎭⎫ ⎝⎛+04 ,ϕπ是函数()x f 的中心对称.A. 命题①②都正确B. 命题①②都不正确 C . 命题①正确,命题②不正确 D. 命题①不正确,命题②正确10. 已知函数()()t t x x f t --=2,R ∈t ,设⎩⎨⎧≥<=)()(),()()(),()(x f x f x f x f x f x f x f b a b b a a , 若b a <<0,则A. ()()b f x f ≥ 且当0>x 时()()x b f x b f +≥-B. ()()b f x f ≥ 且当0>x 时()()x b f x b f +≤- C .()()a f x f ≥ 且当0>x 时()()x a f x a f +≥- D.()()a f x f ≥ 且当0>x 时()()x a f x a f +≤-非选择题部分 (共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
数学---浙江省温州市十校联合体联考2016-2017学年高一(上)期中试卷

浙江省温州市十校联合体联考2016-2017学年高一(上)期中数学试卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣1≤x≤2},B={|x|x<1},则A∪(∁R B)等于()A.{x|x≥1}B.{x|x≥﹣1} C.{x|﹣1≤x≤2}D.{x|1≤x≤2}2.(5分)函数f(x)=的定义域是()A.(0,4)B.(4,+∞)C.[4,+∞) D.(﹣4,4)3.(5分)设3a=4,则log23的值等于()A.2a B.a C.D.4.(5分)已知函数则=()A.B.e C.D.﹣e5.(5分)函数f(x)=e﹣|x﹣1|的图象是()A.B.C.D.6.(5分)下列函数中,可能是奇函数的是()A.f(x)=x2+ax+1,a∈R B.f(x)=x+2a﹣1,a∈RC.f(x)=log2(ax2﹣1),a∈R D.f(x)=(x﹣a)|x|,a∈R7.(5分)已知函数f(x)=m x﹣1,g(x)=﹣1+log m x(m>0,m≠1),有如下两个命题:p:f(x)的定义域和g[f(x)]的值域相等.q:g(x)的定义域和f[g(x)]的值域相等.则()A.命题p,q都正确B.命题p正确,命题q不正确C.命题p,q都不正确D.命题q不正确,命题p正确8.(5分)已知函数f(x)=2(a∈R),且f(1)>f(3),f(2)>f(3)()A.若k=1,则|a﹣1|<|a﹣2| B.若k=1,则|a﹣1|>|a﹣2|C.若k=2,则|a﹣1|<|a﹣2| D.若k=2,则|a﹣1|>|a﹣2|二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(4分)不等式()x﹣5≤2x的解集是.10.(6分)log2+log 23•log34=,当a<0时,••a﹣1=.11.(4分)设集合A={﹣4,t2},集合B={t﹣5,9,1﹣t},若9∈A∩B,则实数t=.12.(6分)已知函数f(x)是定义在R上的奇函数,当x>0时f(x)=log2x,则f(﹣4)+f(0)=;若f(a)>f(﹣a),则实数a的取值范围是.13.(6分)设f:x→|x|+1是非空集合A到非空集合B的映射,若A={﹣1,0,1}且集合B 只有两个元素,则B=;若B={1,2},则满足条件的集合A的个数是.14.(4分)已知a≥0且{y|y=2|x|,﹣2≤x≤a}=[m,n],记g(a)=n﹣m,则g(a)=.15.(6分)定义max{{x,y}=,设f(x)=max{a x﹣a,﹣log a x}(x∈R+,a>0,a≠1).若a=,则f(2)+f()=;若a>1,则不等式f(x)≥2的解集是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)已知函数f(x)=.(Ⅰ)证明:f(x)≥;(Ⅱ)若f(x0)=,求x0的值.17.(15分)已知函数f(x)=x+的图象过点P(1,5).(Ⅰ)求实数m的值,并证明函数f(x)是奇函数;(Ⅱ)利用单调性定义证明f(x)在区间[2,+∞)上是增函数.18.(15分)设集合A={x|ax2+bx+1=0}(a∈R,b∈R),集合B={﹣1,1}.(Ⅰ)若B⊆A,求实数a的值;(Ⅱ)若A∩B≠∅,求a2﹣b2+2a的值.19.(15分)已知函数f(x)=2ax﹣2,g(x)=a(x﹣2a)(x+2﹣a),a∈R且a≠0.(Ⅰ)若{x|f(x)g(x)=0}={1,2},求实数a的值;(Ⅱ)若{x|f(x)<0或g(x)<0}=R,求实数a的取值范围.20.(15分)函数f(x)=﹣x2+(3﹣2m)x+2+m(0<m≤1).(Ⅰ)若x∈[0,m],证明:f(x)≤;(Ⅱ)求|f(x)|在[﹣1,1]上的最大值g(m).参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.C3.D4.A5.B6.D7.C8.D二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.{x|x≥}10.﹣a11.﹣312.﹣2 a>1或﹣1<a<0.13.{1,2}714.15.或x≥log a(a+2)}三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.证明:(Ⅰ)当x<1时,由于是减函数∴…(3分)当x≥1时,由于是增函数,∴…(6分)∴…(7分)解:(Ⅱ)当x0<1时,由于,∵…(10分)当x0≥1时,由于∵…(13分)x0=0或x0=2…(14分)17.解:(Ⅰ)的图象过点P(1,5),∴5=1+m,∴m=4…(2分)∴,f(x)的定义域为{x|x≠0},关于原点对称,…(4分)∴f(x)=﹣f(x),…(6分)f(x)是奇函数.…(7分)(Ⅱ)证明:设x2>x1≥2,则(10分)又x2﹣x1>0,x1≥2,x2>2,∴x1x2>4…(12分)∴f(x2)﹣f(x1)>0,∴f(x2)>f(x1),即f(x)在区间[2,+∞)上是增函数…(15分)18.解:(Ⅰ)由于B⊆A,且B={﹣1,1},而集合A中最多有2个元素,故A={﹣1,1};…(4分)由韦达定理得:…(7分)(Ⅱ)根据题意,分2种情况讨论:1°若1∈A,则a+b=﹣1,…(9分)所以a2﹣b2+2a=(a+b)(a﹣b)+2a=﹣(a﹣b)+2a=a+b=﹣1…(11分)2°若﹣1∈A,则a﹣b=﹣1,…(13分)所以a2﹣b2+2a=(a+b)(a﹣b)+2a=﹣(a+b)+2a=a﹣b=﹣1综上,a2﹣b2+2a=﹣1…(15分)19.解:(Ⅰ)…(2分)g(x)=a(x﹣2a)(x+a﹣2)=0得x=2a,x=2﹣a…(4分)∵{x|f(x)g(x)=0}={1,2},∴…(6分)经检验a=1符合题意,∴a=1…(7分)(Ⅱ)解法1:设由于{x|f(x)<0或g(x)<0}=R当a>0时,x→+∞总有f(x)>0,g(x)>0不符合题意…(9分)当a<0时,由f(x),g(x)的图象可得f(x)<0或g(x)<0成立则…(13分)∴…(15分)(Ⅱ)解法2:设由于{x|f(x)<0或g(x)<0}=R当a>0时,x→+∞总有f(x)>0,g(x)>0不符合题意…(9分)当a<0时,若f(x)<0,则若g(x)<0,则x∈(2﹣a,+∞)∪(﹣∞,2a)则…(13分)∴综上…(15分)20.(Ⅰ)证明:∵0<m≤1,∴f(x)的对称轴x=∈[,),①0<m≤时,函数f(x)=﹣x2+(3﹣2m)x+2+m开口向下,在[0,m)函数是增函数,∴f(x)≤f(m)=﹣m2+(3﹣2m)m+2+m=﹣3m2+4m+2=﹣3;②当时,f(x)max=f()==<.综上,f(x)≤;(Ⅱ)函数f(x)=﹣x2+(3﹣2m)x+2+m=﹣(x﹣)2+,若0,则0<2m≤1,f(x)的对称轴x=∈[1,),则f(x)在[﹣1,1]上为增函数,∵f(1)=4﹣m∈[),|f(﹣1)|=|3m﹣2|∈[,2).∴|f(1)|>|f(﹣1)|,∴|f(x)|在[﹣1,1]上的最大值g(m)=f(1)=4﹣m;若<m≤1,则1<2m≤2,f(x)的对称轴x=∈(,1],则f(x)在[﹣1,1]上先增后减,且最小值为f(﹣1)=3m﹣2,最大值为f()=m2﹣2m+.∵|f(﹣1)|=|3m﹣2|∈[0,1],f()=m2﹣2m+=.∴|f(x)|在[﹣1,1]上的最大值g(m)=f()=m2﹣2m+.综上,g(m)=.。
浙江省温州市十校联合体2016-2017学年高一上学期期末联考化学试题

考生须知:1.本试题卷分选择题和非选择题两部分,满分100分,考试时间90分钟。
2.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
3.选择题的答案须用2B铅笔将答题纸上对应题目的答案标号涂黑,如要改动,须将原填涂处用橡皮擦净。
4.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,答案写在本试题卷上无效。
5、可能用到的相对原子质量:H-1 C-12 N-14 O-16 Na-23 Mg-24 S-32 Cl-35.5 Fe-56 Cu-64 Mn-55选择题部分一、选择题(本题共25小题,每小题2分,共50分。
每小题列出的四个备选项中只有一个是符合题目要求,不选、多选、错选均不得分)1.下列属于盐的是A.CO2 B.Ca(ClO)2 C.Na2O D.H2CO3【答案】B【解析】试题分析:由金属阳离子或铵根离子与酸根离子组成的化合物是盐,A、CO2是非金属氧化物,A错误;B、次氯酸钙是盐,B正确;C、氧化钠是金属氧化物,C错误;D、碳酸是酸,D错误,答案选B。
考点:考查物质分类2.下列仪器名称为“分液漏斗”的是A. B. D.【答案】B【解析】试题分析:四种仪器分别是干燥管、分液漏斗、长颈漏斗和漏斗,答案选B。
考点:考查仪器识别3.下列属于电解质的是A.二氧化硫B.铁 C.四氯化碳D.碳酸钠【答案】D【解析】试题分析:溶于水或在熔融状态下能够自身电离出离子的化合物是电解质,溶于水和在熔融状态下均不能够自身电离出离子的化合物是非电解质,蔗糖、四氯化碳均是非电解质,碳酸钠是电解质,铁是单质,不是电解质,也不是非电解质,答案选D。
考点:考查电解质判断4.下列反应的反应物中,第IVA族元素的氧化物作为氧化剂的是A.Na2CO3+SiO2Na2SiO3+CO2↑B.CO+H2O CO2+H2C.CO2+2NaOH=Na2CO3+H2O D.CO+2H2CH3OH【答案】D【解析】试题分析:A、反应中元素的化合价均不变,是非氧化还原反应,A错误;B、氢元素化合价降低,水是氧化剂,CO是还原剂,B错误;C、反应中元素的化合价均不变,是非氧化还原反应,C错误;D、碳元素化合价降低,CO是氧化剂,氢气是还原剂,D正确,答案选D。
浙江省温州市高一数学上学期期末试卷(含解析)

2015-2016学年浙江省温州市高一(上)期末数学试卷一、选择题(本大题共18个小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项符合题目要求)1.cos600°=()A.B.﹣C.D.﹣2.已知集合A={x|2x+a>0}(a∈R),且1∉A,2∈A,则()A.a>﹣4 B.a≤﹣2 C.﹣4<a<﹣2 D.﹣4<a≤﹣23.若幂函数y=f(x)的图象经过点(,3),则该幂函数的解析式为()A.y=x﹣1B.y=x C.y=x D.y=x34.已知a=log32,b=log2,c=2,则()A.c>a>b B.c>b>a C.a>c>b D.a>b>c5.下列各式中正确的是()A.﹣=(﹣x)B.x=﹣C.(﹣x)=x D.x=x6.下列函数中,值域为C.(﹣∞,﹣2) D.(﹣∞,﹣2]18.存在函数f(x)满足:对任意x∈R都有()A.f(|x|)=x B.f(|x|)=x2+2x C.f(|x+1|)=x D.f(|x+1|)=x2+2x二、填空题(本大题共4个小题,每小题4分,共16分)19.计算:(log23)•(log34)= .20.函数f(x)=2的单调递增区间为.21.对a,b∈R,记max{a,b}=,则函数f(x)=max{|x+1|,x+2}(x∈R)的最小值是.22.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈,使得f(x1)=g(x2),则实数a的取值范围是.三、解答题(本大题共3个小题,共30分.解答应写出文字说明、证明过程或演算步骤)23.设全集为实数集R,函数f(x)=lg(2x﹣1)的定义域为A,集合B={x||x|﹣a≤0}(a∈R)(Ⅰ)若a=2,求A∪B和A∩B(Ⅱ)若∁R A∪B=∁R A,求a的取值范围.24.已知△ABC的三个内角分别为A,B,C,且A≠.(Ⅰ)化简;(Ⅱ)若角A满足sinA+cosA=.(i)试判断△ABC是锐角三角形还是钝角三角形,并说明理由;(ii)求tanA的值.25.已知定理:“实数m,n为常数,若函数h(x)满足h(m+x)+h(m﹣x)=2n,则函数y=h(x)的图象关于点(m,n)成中心对称”.(Ⅰ)已知函数f(x)=的图象关于点(1,b)成中心对称,求实数b的值;(Ⅱ)已知函数g(x)满足g(2+x)+g(﹣x)=4,当x∈时,都有g(x)≤3成立,且当x∈时,g(x)=2k(x﹣1)+1,求实数k的取值范围.2015-2016学年浙江省温州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共18个小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项符合题目要求)1.cos600°=()A.B.﹣C.D.﹣【考点】运用诱导公式化简求值.【专题】三角函数的求值.【分析】利用诱导公式把要求的式子化为﹣cos60°,从而求得结果.【解答】解:cos600°=cos=cos240°=cos=﹣cos60°=﹣,故选:B.【点评】本题主要考查利用诱导公式进行化简求值,属于基础题.2.已知集合A={x|2x+a>0}(a∈R),且1∉A,2∈A,则()A.a>﹣4 B.a≤﹣2 C.﹣4<a<﹣2 D.﹣4<a≤﹣2【考点】元素与集合关系的判断.【专题】集合思想;定义法;集合.【分析】根据元素和集合的关系,解不等式组即可得到结论.【解答】解:∵1∉A,2∈A,∴,解得﹣4<a≤﹣2,故选:D.【点评】本题主要考查元素和集合关系的应用,根据条件解不等式是解决本题的关键,比较基础.3.若幂函数y=f(x)的图象经过点(,3),则该幂函数的解析式为()A.y=x﹣1B.y=x C.y=x D.y=x3【考点】幂函数的概念、解析式、定义域、值域.【专题】函数思想;综合法;函数的性质及应用.【分析】利用幂函数的形式设出f(x),将点的坐标代入求出函数的解析式.【解答】解:∵f(x)是幂函数设f(x)=xα∴图象经过点(,3),∴3=,∴α=﹣1∴f(x)=x﹣1故选:A.【点评】本题考查利用待定系数法求知函数模型的解析式.4.已知a=log32,b=log2,c=2,则()A.c>a>b B.c>b>a C.a>c>b D.a>b>c【考点】对数值大小的比较.【专题】计算题;转化思想;函数的性质及应用.【分析】利用对数函数、指数函数性质求解.【解答】解:∵0=log31<a=log32<log33=1,b=log2<log21=0,c=2>20=1,∴c>a>b.故选:A.【点评】本题考查三个数大小的比较,是基础题,解题时要认真审题,注意对数函数、指数函数性质的合理运用.5.下列各式中正确的是()A.﹣=(﹣x)B.x=﹣C.(﹣x)=x D.x=x【考点】根式与分数指数幂的互化及其化简运算.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用根式与分数指数幂性质、运算法则求解.【解答】解:在A中,﹣=﹣≠(﹣x),故A错误;在B中,x=≠﹣,故B错误;在C中,(﹣x)=x,故C正确;在D中,x=±x≠,故D错误.故选:C.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意根式与分数指数幂性质的合理运用.6.下列函数中,值域为=﹣sin(α+)=﹣.故选:C.【点评】本题主要考查了诱导公式的应用,属于基础题.15.在一块顶角为120°、腰长为2的等腰三角形钢板废料OAB中裁剪扇形,现有如图所示两种方案,则()A.方案一中扇形的周长更长B.方案二中扇形的周长更长C.方案一中扇形的面积更大D.方案二中扇形的面积更大【考点】扇形面积公式.【专题】计算题;转化思想;数形结合法;三角函数的求值.【分析】由已知利用弧长公式,扇形面积公式求出值比较大小即可.【解答】解:∵△AOB为顶角为120°、腰长为2的等腰三角形,∴A=B=30°=,AM=AN=1,AD=2,∴方案一中扇形的周长=2=4+,方案二中扇形的周长=1+1+1×=2+,方案一中扇形的面积=2×=,方案二中扇形的周长==,故选:A.【点评】本题主要考查了弧长公式,扇形面积公式的应用,考查了计算能力,属于基础题.16.某种型号的电脑自投放市场以来,经过三次降价,单价由原来的5000元降到2560元,则平均每次降价的百分率是()A.10% B.15% C.16% D.20%【考点】函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】设降价百分率为x%,由题意知5000(1﹣x%)2=2560,由此能够求出这种手机平均每次降价的百分率.【解答】解:设降价百分率为x%,∴5000(1﹣x%)3=2560,解得x=20.故选:D.【点评】本题考查数列的性质和应用,解题时要注意挖掘隐含条件,寻找数量关系,建立方程.17.已知函数f(x)=x|x|,若对任意的x≤1有f(x+m)+f(x)<0恒成立,则实数m的取值范围是()A.(﹣∞,﹣1) B.(﹣∞,﹣1] C.(﹣∞,﹣2) D.(﹣∞,﹣2]【考点】函数恒成立问题.【专题】函数思想;转化思想;函数的性质及应用.【分析】根据函数f(x)的解析式判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系将不等式进行转化,利用参数分离法转化为求函数的最值即可.【解答】解:f(x)=x|x|=,则函数f(x)在定义域为增函数,且f(﹣x)=﹣x|﹣x|=﹣x|x|=﹣f(x),则函数f(x)为奇函数,则若对任意的x≤1有f(x+m)+f(x)<0恒成立,等价为若对任意的x≤1有f(x+m)<﹣f(x)=f(﹣x),即x+m<﹣x恒成立,即m<﹣2x恒成立,∵x≤1,∴﹣2x≥﹣2,则m<﹣2,故选:C【点评】本题主要考查不等式恒成立问题,根据条件判断函数的奇偶性和单调性是解决本题的关键.利用参数分离法是解决不等式恒成立问题的常用方法.18.存在函数f(x)满足:对任意x∈R都有()A.f(|x|)=x B.f(|x|)=x2+2x C.f(|x+1|)=x D.f(|x+1|)=x2+2x【考点】函数的对应法则;函数的概念及其构成要素.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】在A、B中,分别取x=±1,由函数性质能排除选项A和B;令|x+1|=t,t≥0,则x2+2x=t2﹣1,求出f(x)=x2﹣1,能排除选项C.【解答】解:在A中,取x=1,则f(1)=1,取x=﹣1,则f(1)=﹣1,不成立;在B中,令|x|=t,t≥0,x=±t,取x=1,则f(1)=3,取x=﹣1,则f(1)=﹣1,不成立;在C中,令|x+1|=t,t≥0,则x2+2x=t2﹣1,∴f(t)=t2﹣1,即f(x)=x2﹣1,故C不成立,D成立.故选:D.【点评】本题考查抽象函数的性质,是中档题,解题时要认真审题,注意函数性质的合理运用.二、填空题(本大题共4个小题,每小题4分,共16分)19.计算:(log23)•(log34)= 2 .【考点】对数的运算性质.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据换底公式计算即可.【解答】解:(log23)•(log34)=•=2,故答案为:2.【点评】本题考查了换底公式,属于基础题.20.函数f(x)=2的单调递增区间为,使得f(x1)=g(x2),则实数a的取值范围是∪.【考点】对数函数的图象与性质.【专题】函数思想;分类法;函数的性质及应用.【分析】分别求出f(x1)和g(x2)的值域,令f(x1)的值域为g(x2)的值域的子集列出不等式解出a.【解答】解:∵x1∈上是增函数,∴g(0)≤g(x2)≤g(2),即g(x2)的值域为,∴,解得﹣1≤a≤0.(2)若a≥2,则g(x)在上是减函数,∴g(2)≤g(x2)≤g(1),即g(x2)的值域为,∴,解得2≤a≤3.(3)若0<a≤1,则g min(x)=g(a)=1,g max(x)=g(2)=a2﹣4a+5,∴g(x)的值域为,∴,解得0.(4)若1<a<2,则g min(x)=g(a)=1,g max(x)=g(0)=a2+1,∴g(x)的值域为,∴,解得a<2.综上,a的取值范围是∪∪(0,2﹣)∪(,2)=∪.故答案为∪.【点评】本题考查了二次函数的值域,对数函数的单调性与值域,集合间的关系,分类讨论思想,属于中档题.三、解答题(本大题共3个小题,共30分.解答应写出文字说明、证明过程或演算步骤)23.设全集为实数集R,函数f(x)=lg(2x﹣1)的定义域为A,集合B={x||x|﹣a≤0}(a∈R)(Ⅰ)若a=2,求A∪B和A∩B(Ⅱ)若∁R A∪B=∁R A,求a的取值范围.【考点】交、并、补集的混合运算;并集及其运算;交集及其运算.【专题】计算题;集合思想;综合法;集合.【分析】(Ⅰ)先求出A=(),由a=2便可求出B=,然后进行并集、交集的运算即可;(Ⅱ)根据条件便有B⊆C R A,可求出,可讨论B是否为空集:B=∅时会得到a<0;而B≠∅时得到a≥0,且B={x|﹣a≤x≤a},这样便可得到,这两种情况下得到的a的范围求并集便可得出a的取值范围.【解答】解:(Ⅰ)A=;a=2时,B=;∴A∪B=时,都有g(x)≤3成立,且当x∈时,g(x)=2k(x﹣1)+1,求实数k的取值范围.【考点】抽象函数及其应用.【专题】综合题;新定义;分类讨论;分析法;函数的性质及应用;不等式的解法及应用.【分析】(Ⅰ)由对称性可得f(1+x)+f(1﹣x)=2b,化简整理,即可得到b=2;(Ⅱ)由g(2+x)+g(﹣x)=4可得g(x)的图象关于点(1,2)对称,且g(1)=2,对k讨论,当k=0,k>0,k<0,结合对称性和单调性,要使g(x)≤3,只需g(x)max≤3,运用单调性求得最大值,解不等式即可得到所求范围.【解答】解:(Ⅰ)函数f(x)=的图象关于点(1,b)成中心对称,可得f(1+x)+f(1﹣x)=2b,即有+=4=2b,解得b=2;(Ⅱ)由g(2+x)+g(﹣x)=4可得g(x)的图象关于点(1,2)对称,且g(1)=2,当k=0时,g(x)=2(0≤x≤1),又g(x)关于(1,2)对称,可得g(x)=2(0≤x≤2),显然g(x)≤3恒成立;当k>0时,g(x)=2k(x﹣1)+1在递增,又g(x)关于点(1,2)对称,可得g(x)在递增,g(x)≤3,只需g(x)max=g(2)≤3,又g(2)+g(0)=4,则g(0)≥1即21﹣k≥1,即有0≤k≤1;当k<0时,g(x)=2k(x﹣1)+1在递减,又g(x)关于(1,2)对称,可得g(x)在递减,要使g(x)≤3,只需g(x)max=g(0)≤3,即21﹣k≤3,解得1﹣log23≤k<0.综上可得,1﹣log23≤k≤1.【点评】本题考查函数的对称性和运用,同时考查函数的单调性的运用,以及不等式恒成立问题的解法,考查运算能力,属于中档题.11。
2015-2016学年浙江省温州市高一(上)期末数学试卷(解析版)

2015-2016学年浙江省温州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共18个小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项符合题目要求)1.cos600°=()A. B.﹣C.D.﹣【考点】运用诱导公式化简求值.【专题】三角函数的求值.【分析】利用诱导公式把要求的式子化为﹣cos60°,从而求得结果.【解答】解:cos600°=cos=cos240°=cos=﹣cos60°=﹣,故选:B.【点评】本题主要考查利用诱导公式进行化简求值,属于基础题.2.已知集合A={x|2x+a>0}(a∈R),且1∉A,2∈A,则()A.a>﹣4 B.a≤﹣2 C.﹣4<a<﹣2 D.﹣4<a≤﹣2【考点】元素与集合关系的判断.【专题】集合思想;定义法;集合.【分析】根据元素和集合的关系,解不等式组即可得到结论.【解答】解:∵1∉A,2∈A,∴,解得﹣4<a≤﹣2,故选:D.【点评】本题主要考查元素和集合关系的应用,根据条件解不等式是解决本题的关键,比较基础.3.若幂函数y=f(x)的图象经过点(,3),则该幂函数的解析式为()A.y=x﹣1B.y=x C.y=x D.y=x3【考点】幂函数的概念、解析式、定义域、值域.【专题】函数思想;综合法;函数的性质及应用.【分析】利用幂函数的形式设出f(x),将点的坐标代入求出函数的解析式.【解答】解:∵f(x)是幂函数设f(x)=xα∴图象经过点(,3),∴3=,∴α=﹣1∴f(x)=x﹣1故选:A.【点评】本题考查利用待定系数法求知函数模型的解析式.4.已知a=log32,b=log2,c=2,则()A.c>a>b B.c>b>a C.a>c>b D.a>b>c【考点】对数值大小的比较.【专题】计算题;转化思想;函数的性质及应用.【分析】利用对数函数、指数函数性质求解.【解答】解:∵0=log31<a=log32<log33=1,b=log2<log21=0,c=2>20=1,∴c>a>b.故选:A.【点评】本题考查三个数大小的比较,是基础题,解题时要认真审题,注意对数函数、指数函数性质的合理运用.5.下列各式中正确的是()A.﹣=(﹣x)B.x=﹣ C.(﹣x)=x D.x=x【考点】根式与分数指数幂的互化及其化简运算.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用根式与分数指数幂性质、运算法则求解.【解答】解:在A中,﹣=﹣≠(﹣x),故A错误;在B中,x=≠﹣,故B错误;在C中,(﹣x)=x,故C正确;在D中,x=±x≠,故D错误.故选:C.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意根式与分数指数幂性质的合理运用.6.下列函数中,值域为[1,+∞)的是()A.y=2x+1B.y=C.y=+1 D.y=x+【考点】函数的值域.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】前三项都可由解析式看出值域:y=2x+1>0,y=,y=,从而判断出这三项不正确,对于D,先得到,两个不等式相加便可得到,这样便可得出该函数的值域,即得出D正确.【解答】解:A.2x+1>0,∴y=2x+1的值域为(0,+∞),∴该选项错误;B.,∴的值域为[0,+∞),∴该选项错误;C.|x|>0;∴;∴;∴的值域为(1,+∞),∴该选项错误;D.x﹣1≥0;∴;∴;即y≥1;∴的值域为[1,+∞),∴该选项正确.故选:D.【点评】考查函数值域的概念,指数函数的值域,以及反比例函数的值域,一次函数的值域,根据不等式的性质求值域的方法.7.下列函数中,与函数y=2x表示同一函数的是()A.y=B.y=C.y=()2D.y=log24x【考点】判断两个函数是否为同一函数.【专题】对应思想;定义法;函数的性质及应用.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.【解答】解:对于A,y==2x(x≠0)与y=2x(x∈R)的定义域不同,∴不是同一函数;对于B,y==2|x|(x∈R)与y=2x(x∈R)的解析式不同,∴不是同一函数;对于C,y==2x(x≥0)与y=x(x∈R)的定义域不同,∴C是同一函数;对于D,y=log24x=log222x=2x(x∈R)与y=2x(x∈R)的定义域相同,对应关系也相同,∴是同一函数.故选:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.8.已知函数f(x)=,则f(﹣1)+f(0)=()A.3 B.4 C.5 D.6【考点】函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】根据函数的表达式求出f(﹣1)和f(0)的值,求和即可.【解答】解:∴函数f(x)=,∴f(﹣1)=1+2=3,f(0)=1,∴f(﹣1)+f(0)=3+1=4,故选:B.【点评】本题考察了求函数值问题,考察分段函数,是一道基础题.9.函数f(x)=x﹣2+lnx的零点所在的一个区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】函数零点的判定定理;二分法求方程的近似解.【专题】计算题;函数的性质及应用.【分析】由题意,函数f(x)=x﹣2+lnx在定义域上单调递增,再求端点函数值即可【解答】解:函数f(x)=x﹣2+lnx在定义域上单调递增,f(1)=1﹣2<0,f(2)=2+ln2﹣2>0,故函数f(x)=x﹣2+lnx的零点所在区间是(1,2);故选B.【点评】本题考查了函数的零点的判断,属于基础题.10.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b 的图象是()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】先由函数f(x)的图象判断a,b的范围,再根据指数函数的图象和性质即可得到答案.【解答】解:由函数的图象可知,﹣1<b<0,a>1,则g(x)=a x+b为增函数,当x=0时,y=1+b>0,且过定点(0,1+b),故选:C【点评】本题考查了指数函数和二次函数的图象和性质,属于基础题.11.已知函数f(x)=e x﹣e﹣x,e为自然对数的底,则下列结论正确的是()A.f(x)为奇函数,且在R上单调递增B.f(x)为偶函数,且在R上单调递增C.f(x)为奇函数,且在R上单调递减D.f(x)为偶函数,且在R上单调递减【考点】函数奇偶性的判断;函数单调性的判断与证明.【专题】函数思想;综合法;函数的性质及应用.【分析】可先得出f(x)的定义域为R,求f(﹣x)=﹣f(x),从而得出f(x)为奇函数,根据指数函数的单调性便可看出x增大时,f(x)增大,从而得到f(x)在R上单调递增,这样便可找出正确选项.【解答】解:f(x)的定义域为R;f(﹣x)=e﹣x﹣e x=﹣f(x);∴f(x)为奇函数;x增加时,e﹣x减小,﹣e﹣x增加,且e x增加,∴f(x)增加;∴f(x)在R上单调递增.故选A.【点评】考查奇函数的定义,判断一个函数为奇函数的方法和过程,以及增函数的定义,指数函数的单调性.12.已知sinα=3cosα,则sinα•cosα的值为()A. B.C.D.【考点】同角三角函数基本关系的运用.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用本题主要考查同角三角函数的基本关系,求得要求式子的值.【解答】解:∵sinα=3cosα,∴tanα=3,则sinα•cosα===,故选:B.【点评】本题主要考查同角三角函数的基本关系的应用,属于基础题.13.已知定义在R上的函数f(x)满足:对任意x1,x2∈R(x1≠x2),均有>0,e为自然对数的底,则()A.f()<f()<f(e)B.f(e)<f()<f()C.f(e)<f()<f()D.f()<f()<f(e)【考点】函数单调性的性质.【专题】函数思想;综合法;函数的性质及应用.【分析】根据条件及增函数的定义容易判断出f(x)在R上单调递增,从而比较这三个数的大小便可得出对应的函数值的大小,从而找出正确选项.【解答】解:∵;∴对任意的x1,x2∈R,x1<x2时,会得到f(x1)<f(x2);∴f(x)在R上为增函数;又;∴.故选:A.【点评】考查增函数的定义,根据增函数的定义比较函数值大小的方法,清楚这三个数的大小关系.14.设<α<π,若sin(α+)=,则cos(+α)=()A.﹣B. C.﹣D.【考点】运用诱导公式化简求值.【专题】计算题;转化思想;三角函数的求值.【分析】利用角的范围可确定三角函数值的符号,利用诱导公式即可求值.【解答】解:∵<α<π,<α+<,sin(α+)=>0,∴<α+<π,可得:<+α<,∴cos(+α)=cos[(α+)+]=﹣sin(α+)=﹣.故选:C.【点评】本题主要考查了诱导公式的应用,属于基础题.15.在一块顶角为120°、腰长为2的等腰三角形钢板废料OAB中裁剪扇形,现有如图所示两种方案,则()A.方案一中扇形的周长更长B.方案二中扇形的周长更长C.方案一中扇形的面积更大D.方案二中扇形的面积更大【考点】扇形面积公式.【专题】计算题;转化思想;数形结合法;三角函数的求值.【分析】由已知利用弧长公式,扇形面积公式求出值比较大小即可.【解答】解:∵△AOB为顶角为120°、腰长为2的等腰三角形,∴A=B=30°=,AM=AN=1,AD=2,∴方案一中扇形的周长=2=4+,方案二中扇形的周长=1+1+1×=2+,方案一中扇形的面积=2×=,方案二中扇形的周长==,故选:A.【点评】本题主要考查了弧长公式,扇形面积公式的应用,考查了计算能力,属于基础题.16.某种型号的电脑自投放市场以来,经过三次降价,单价由原来的5000元降到2560元,则平均每次降价的百分率是()A.10% B.15% C.16% D.20%【考点】函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】设降价百分率为x%,由题意知5000(1﹣x%)2=2560,由此能够求出这种手机平均每次降价的百分率.【解答】解:设降价百分率为x%,∴5000(1﹣x%)3=2560,解得x=20.故选:D.【点评】本题考查数列的性质和应用,解题时要注意挖掘隐含条件,寻找数量关系,建立方程.17.已知函数f(x)=x|x|,若对任意的x≤1有f(x+m)+f(x)<0恒成立,则实数m的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,﹣1]C.(﹣∞,﹣2)D.(﹣∞,﹣2]【考点】函数恒成立问题.【专题】函数思想;转化思想;函数的性质及应用.【分析】根据函数f(x)的解析式判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系将不等式进行转化,利用参数分离法转化为求函数的最值即可.【解答】解:f(x)=x|x|=,则函数f(x)在定义域为增函数,且f(﹣x)=﹣x|﹣x|=﹣x|x|=﹣f(x),则函数f(x)为奇函数,则若对任意的x≤1有f(x+m)+f(x)<0恒成立,等价为若对任意的x≤1有f(x+m)<﹣f(x)=f(﹣x),即x+m<﹣x恒成立,即m<﹣2x恒成立,∵x≤1,∴﹣2x≥﹣2,则m<﹣2,故选:C【点评】本题主要考查不等式恒成立问题,根据条件判断函数的奇偶性和单调性是解决本题的关键.利用参数分离法是解决不等式恒成立问题的常用方法.18.存在函数f(x)满足:对任意x∈R都有()A.f(|x|)=x B.f(|x|)=x2+2x C.f(|x+1|)=x D.f(|x+1|)=x2+2x【考点】函数的对应法则;函数的概念及其构成要素.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】在A、B中,分别取x=±1,由函数性质能排除选项A和B;令|x+1|=t,t≥0,则x2+2x=t2﹣1,求出f(x)=x2﹣1,能排除选项C.【解答】解:在A中,取x=1,则f(1)=1,取x=﹣1,则f(1)=﹣1,不成立;在B中,令|x|=t,t≥0,x=±t,取x=1,则f(1)=3,取x=﹣1,则f(1)=﹣1,不成立;在C中,令|x+1|=t,t≥0,则x2+2x=t2﹣1,∴f(t)=t2﹣1,即f(x)=x2﹣1,故C不成立,D成立.故选:D.【点评】本题考查抽象函数的性质,是中档题,解题时要认真审题,注意函数性质的合理运用.二、填空题(本大题共4个小题,每小题4分,共16分)19.计算:(log23)•(log34)=2.【考点】对数的运算性质.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据换底公式计算即可.【解答】解:(log23)•(log34)=•=2,故答案为:2.【点评】本题考查了换底公式,属于基础题.20.函数f(x)=2的单调递增区间为[0,+∞).【考点】复合函数的单调性.【专题】转化思想;综合法;函数的性质及应用.【分析】由题意可得,本题即求函数t=x2﹣1的增区间,再利用二次函数的性质可得结论.【解答】解:函数f(x)=2的单调递增区间,即函数t=x2﹣1的增区间,再利用二次函数的性质可得函数t=x2﹣1的增区间为[0,+∞),故答案为:[0,+∞).【点评】本题主要考查指数函数、二次函数的性质,复合函数的单调性,属于中档题.21.对a,b∈R,记max{a,b}=,则函数f(x)=max{|x+1|,x+2}(x∈R)的最小值是.【考点】函数的最值及其几何意义.【专题】计算题;分类讨论;分析法;函数的性质及应用.【分析】讨论当|x+1|≥x+2,|x+1|<x+2时,求出f(x)的解析式,由单调性可得最小值.【解答】解:当|x+1|≥x+2,即x+1≥x+2或x+1≤﹣x﹣2,解得x≤﹣时,f(x)=|x+1|,递减,则f(x)的最小值为f(﹣)=|﹣+1|=;当|x+1|<x+2,可得x>﹣时,f(x)=x+2,递增,即有f(x)>,综上可得f(x)的最小值为.故答案为:.【点评】本题考查函数的最值的求法,考查绝对值不等式的解法,注意运用分类讨论的思想方法,以及函数的单调性,属于中档题.22.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是[﹣1,2﹣]∪[,3].【考点】对数函数的图象与性质.【专题】函数思想;分类法;函数的性质及应用.【分析】分别求出f(x1)和g(x2)的值域,令f(x1)的值域为g(x2)的值域的子集列出不等式解出a.【解答】解:∵x1∈[2,6),∴f(2)≤f(x1)<f(6),即2≤f(x1)<3,∴f(x1)的值域为[2,3).g(x)的图象开口向上,对称轴为x=a,(1)若a≤0,则g(x)在[0,2]上是增函数,∴g(0)≤g(x2)≤g(2),即g(x2)的值域为[a2+1,a2﹣4a+5],∴,解得﹣1≤a≤0.(2)若a≥2,则g(x)在[0,2]上是减函数,∴g(2)≤g(x2)≤g(1),即g(x2)的值域为[a2﹣4a+5,a2+1],∴,解得2≤a≤3.(3)若0<a≤1,则g min(x)=g(a)=1,g max(x)=g(2)=a2﹣4a+5,∴g(x)的值域为[1,a2﹣4a+5],∴,解得0.(4)若1<a<2,则g min(x)=g(a)=1,g max(x)=g(0)=a2+1,∴g(x)的值域为[1,a2+1],∴,解得a<2.综上,a的取值范围是[﹣1,0]∪[2,3]∪(0,2﹣)∪(,2)=[﹣1,2﹣]∪[,3].故答案为[﹣1,2﹣]∪[,3].【点评】本题考查了二次函数的值域,对数函数的单调性与值域,集合间的关系,分类讨论思想,属于中档题.三、解答题(本大题共3个小题,共30分.解答应写出文字说明、证明过程或演算步骤)23.设全集为实数集R,函数f(x)=lg(2x﹣1)的定义域为A,集合B={x||x|﹣a≤0}(a∈R)(Ⅰ)若a=2,求A∪B和A∩B(Ⅱ)若∁R A∪B=∁R A,求a的取值范围.【考点】交、并、补集的混合运算;并集及其运算;交集及其运算.【专题】计算题;集合思想;综合法;集合.【分析】(Ⅰ)先求出A=(),由a=2便可求出B=[﹣2,2],然后进行并集、交集的运算即可;(Ⅱ)根据条件便有B⊆C R A,可求出,可讨论B是否为空集:B=∅时会得到a<0;而B≠∅时得到a≥0,且B={x|﹣a≤x≤a},这样便可得到,这两种情况下得到的a的范围求并集便可得出a的取值范围.【解答】解:(Ⅰ)A=;a=2时,B=[﹣2,2];∴A∪B=[﹣2,+∞),;(Ⅱ)∵(C R A)∪B=C R A;∴B⊆C R A;;①当B=∅时,a<0;②当B≠∅时,B={x|﹣a≤x≤a}(a≥0);∴,且a≥0;∴;综上得,a的取值范围为.【点评】考查函数定义域的概念及求法,对数的真数大于0,绝对值不等式的解法,交集、并集的运算,以及子集、补集的概念,不要漏了B=∅的情况.24.已知△ABC的三个内角分别为A,B,C,且A≠.(Ⅰ)化简;(Ⅱ)若角A满足sinA+cosA=.(i)试判断△ABC是锐角三角形还是钝角三角形,并说明理由;(ii)求tanA的值.【考点】三角函数中的恒等变换应用;三角函数的化简求值.【专题】函数思想;综合法;三角函数的求值.【分析】(Ⅰ)由三角形内角和以及诱导公式化简可得原式=cosA;(Ⅱ)由sinA+cosA=和sin2A+cos2A=1,联立可解得sinA=,cosA=﹣,可得(i)△ABC是钝角三角形;(ii)tanA==﹣【解答】解:(Ⅰ)由题意化简可得:==cosA;(Ⅱ)∵sinA+cosA=,又sin2A+cos2A=1,结合sinA应为正数,联立可解得sinA=,cosA=﹣,∴A为钝角,故可得(i)△ABC是钝角三角形;(ii)tanA==﹣【点评】本题考查三角函数恒等变换,涉及三角函数化简求值和同角三角函数基本关系,属基础题.25.已知定理:“实数m,n为常数,若函数h(x)满足h(m+x)+h(m﹣x)=2n,则函数y=h(x)的图象关于点(m,n)成中心对称”.(Ⅰ)已知函数f(x)=的图象关于点(1,b)成中心对称,求实数b的值;(Ⅱ)已知函数g(x)满足g(2+x)+g(﹣x)=4,当x∈[0,2]时,都有g(x)≤3成立,且当x∈[0,1]时,g(x)=2k(x﹣1)+1,求实数k的取值范围.【考点】抽象函数及其应用.【专题】综合题;新定义;分类讨论;分析法;函数的性质及应用;不等式的解法及应用.【分析】(Ⅰ)由对称性可得f(1+x)+f(1﹣x)=2b,化简整理,即可得到b=2;(Ⅱ)由g(2+x)+g(﹣x)=4可得g(x)的图象关于点(1,2)对称,且g(1)=2,对k讨论,当k=0,k>0,k<0,结合对称性和单调性,要使g(x)≤3,只需g(x)max≤3,运用单调性求得最大值,解不等式即可得到所求范围.【解答】解:(Ⅰ)函数f(x)=的图象关于点(1,b)成中心对称,可得f(1+x)+f(1﹣x)=2b,即有+=4=2b,解得b=2;(Ⅱ)由g(2+x)+g(﹣x)=4可得g(x)的图象关于点(1,2)对称,且g(1)=2,当k=0时,g(x)=2(0≤x≤1),又g(x)关于(1,2)对称,可得g(x)=2(0≤x≤2),显然g(x)≤3恒成立;当k>0时,g(x)=2k(x﹣1)+1在[0,1]递增,又g(x)关于点(1,2)对称,可得g(x)在[0,2]递增,g(x)≤3,只需g(x)max=g(2)≤3,又g(2)+g(0)=4,则g(0)≥1即21﹣k≥1,即有0≤k≤1;当k<0时,g(x)=2k(x﹣1)+1在[0,1]递减,又g(x)关于(1,2)对称,可得g(x)在[0,2]递减,要使g(x)≤3,只需g(x)max=g(0)≤3,即21﹣k≤3,解得1﹣log23≤k<0.综上可得,1﹣log23≤k≤1.【点评】本题考查函数的对称性和运用,同时考查函数的单调性的运用,以及不等式恒成立问题的解法,考查运算能力,属于中档题.2016年3月2日。
浙江省温州市高一数学上学期期末试卷(含解析)

2015-2016学年浙江省温州市高一(上)期末数学试卷一、选择题(本大题共18个小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项符合题目要求)1.cos600°=()A.B.﹣C.D.﹣2.已知集合A={x|2x+a>0}(a∈R),且1∉A,2∈A,则()A.a>﹣4 B.a≤﹣2 C.﹣4<a<﹣2 D.﹣4<a≤﹣23.若幂函数y=f(x)的图象经过点(,3),则该幂函数的解析式为()A.y=x﹣1B.y=x C.y=x D.y=x34.已知a=log32,b=log2,c=2,则()A.c>a>b B.c>b>a C.a>c>b D.a>b>c5.下列各式中正确的是()A.﹣=(﹣x)B.x=﹣C.(﹣x)=x D.x=x6.下列函数中,值域为[1,+∞)的是()A.y=2x+1B.y=C.y=+1 D.y=x+7.下列函数中,与函数y=2x表示同一函数的是()A.y=B.y=C.y=()2D.y=log24x8.已知函数f(x)=,则f(﹣1)+f(0)=()A.3 B.4 C.5 D.69.函数f(x)=x﹣2+lnx的零点所在的一个区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)10.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b 的图象是()A.B.C.D.11.已知函数f(x)=e x﹣e﹣x,e为自然对数的底,则下列结论正确的是()A.f(x)为奇函数,且在R上单调递增B.f(x)为偶函数,且在R上单调递增C.f(x)为奇函数,且在R上单调递减D.f(x)为偶函数,且在R上单调递减12.已知sinα=3cosα,则sinα•cosα的值为()A.B.C.D.13.已知定义在R上的函数f(x)满足:对任意x1,x2∈R(x1≠x2),均有>0,e为自然对数的底,则()A.f()<f()<f(e) B.f(e)<f()<f() C.f(e)<f()<f()D.f()<f()<f(e)14.设<α<π,若sin(α+)=,则cos(+α)=()A.﹣B.C.﹣D.15.在一块顶角为120°、腰长为2的等腰三角形钢板废料OAB中裁剪扇形,现有如图所示两种方案,则()A.方案一中扇形的周长更长B.方案二中扇形的周长更长C.方案一中扇形的面积更大D.方案二中扇形的面积更大16.某种型号的电脑自投放市场以来,经过三次降价,单价由原来的5000元降到2560元,则平均每次降价的百分率是()A.10% B.15% C.16% D.20%17.已知函数f(x)=x|x|,若对任意的x≤1有f(x+m)+f(x)<0恒成立,则实数m的取值范围是()A.(﹣∞,﹣1) B.(﹣∞,﹣1] C.(﹣∞,﹣2) D.(﹣∞,﹣2]18.存在函数f(x)满足:对任意x∈R都有()A.f(|x|)=x B.f(|x|)=x2+2x C.f(|x+1|)=x D.f(|x+1|)=x2+2x二、填空题(本大题共4个小题,每小题4分,共16分)19.计算:(log23)•(log34)= .20.函数f(x)=2的单调递增区间为.21.对a,b∈R,记max{a,b}=,则函数f(x)=max{|x+1|,x+2}(x∈R)的最小值是.22.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是.三、解答题(本大题共3个小题,共30分.解答应写出文字说明、证明过程或演算步骤)23.设全集为实数集R,函数f(x)=lg(2x﹣1)的定义域为A,集合B={x||x|﹣a≤0}(a∈R)(Ⅰ)若a=2,求A∪B和A∩B(Ⅱ)若∁R A∪B=∁R A,求a的取值范围.24.已知△ABC的三个内角分别为A,B,C,且A≠.(Ⅰ)化简;(Ⅱ)若角A满足sinA+cosA=.(i)试判断△ABC是锐角三角形还是钝角三角形,并说明理由;(ii)求tanA的值.25.已知定理:“实数m,n为常数,若函数h(x)满足h(m+x)+h(m﹣x)=2n,则函数y=h(x)的图象关于点(m,n)成中心对称”.(Ⅰ)已知函数f(x)=的图象关于点(1,b)成中心对称,求实数b的值;(Ⅱ)已知函数g(x)满足g(2+x)+g(﹣x)=4,当x∈[0,2]时,都有g(x)≤3成立,且当x∈[0,1]时,g(x)=2k(x﹣1)+1,求实数k的取值范围.2015-2016学年浙江省温州市高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共18个小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项符合题目要求)1.cos600°=()A.B.﹣C.D.﹣【考点】运用诱导公式化简求值.【专题】三角函数的求值.【分析】利用诱导公式把要求的式子化为﹣cos60°,从而求得结果.【解答】解:cos600°=cos=cos240°=cos=﹣cos60°=﹣,故选:B.【点评】本题主要考查利用诱导公式进行化简求值,属于基础题.2.已知集合A={x|2x+a>0}(a∈R),且1∉A,2∈A,则()A.a>﹣4 B.a≤﹣2 C.﹣4<a<﹣2 D.﹣4<a≤﹣2【考点】元素与集合关系的判断.【专题】集合思想;定义法;集合.【分析】根据元素和集合的关系,解不等式组即可得到结论.【解答】解:∵1∉A,2∈A,∴,解得﹣4<a≤﹣2,故选:D.【点评】本题主要考查元素和集合关系的应用,根据条件解不等式是解决本题的关键,比较基础.3.若幂函数y=f(x)的图象经过点(,3),则该幂函数的解析式为()A.y=x﹣1B.y=x C.y=x D.y=x3【考点】幂函数的概念、解析式、定义域、值域.【专题】函数思想;综合法;函数的性质及应用.【分析】利用幂函数的形式设出f(x),将点的坐标代入求出函数的解析式.【解答】解:∵f(x)是幂函数设f(x)=xα∴图象经过点(,3),∴3=,∴α=﹣1∴f(x)=x﹣1故选:A.【点评】本题考查利用待定系数法求知函数模型的解析式.4.已知a=log32,b=log2,c=2,则()A.c>a>b B.c>b>a C.a>c>b D.a>b>c【考点】对数值大小的比较.【专题】计算题;转化思想;函数的性质及应用.【分析】利用对数函数、指数函数性质求解.【解答】解:∵0=log31<a=log32<log33=1,b=log2<log21=0,c=2>20=1,∴c>a>b.故选:A.【点评】本题考查三个数大小的比较,是基础题,解题时要认真审题,注意对数函数、指数函数性质的合理运用.5.下列各式中正确的是()A.﹣=(﹣x)B.x=﹣C.(﹣x)=x D.x=x【考点】根式与分数指数幂的互化及其化简运算.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用根式与分数指数幂性质、运算法则求解.【解答】解:在A中,﹣=﹣≠(﹣x),故A错误;在B中,x=≠﹣,故B错误;在C中,(﹣x)=x,故C正确;在D中,x=±x≠,故D错误.故选:C.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意根式与分数指数幂性质的合理运用.6.下列函数中,值域为[1,+∞)的是()A.y=2x+1B.y=C.y=+1 D.y=x+【考点】函数的值域.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】前三项都可由解析式看出值域:y=2x+1>0,y=,y=,从而判断出这三项不正确,对于D,先得到,两个不等式相加便可得到,这样便可得出该函数的值域,即得出D正确.【解答】解:A.2x+1>0,∴y=2x+1的值域为(0,+∞),∴该选项错误;B.,∴的值域为[0,+∞),∴该选项错误;C.|x|>0;∴;∴;∴的值域为(1,+∞),∴该选项错误;D.x﹣1≥0;∴;∴;即y≥1;∴的值域为[1,+∞),∴该选项正确.故选:D.【点评】考查函数值域的概念,指数函数的值域,以及反比例函数的值域,一次函数的值域,根据不等式的性质求值域的方法.7.下列函数中,与函数y=2x表示同一函数的是()A.y=B.y=C.y=()2D.y=log24x【考点】判断两个函数是否为同一函数.【专题】对应思想;定义法;函数的性质及应用.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.【解答】解:对于A,y==2x(x≠0)与y=2x(x∈R)的定义域不同,∴不是同一函数;对于B,y==2|x|(x∈R)与y=2x(x∈R)的解析式不同,∴不是同一函数;对于C,y==2x(x≥0)与y=x(x∈R)的定义域不同,∴C是同一函数;对于D,y=log24x=log222x=2x(x∈R)与y=2x(x∈R)的定义域相同,对应关系也相同,∴是同一函数.故选:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.8.已知函数f(x)=,则f(﹣1)+f(0)=()A.3 B.4 C.5 D.6【考点】函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】根据函数的表达式求出f(﹣1)和f(0)的值,求和即可.【解答】解:∴函数f(x)=,∴f(﹣1)=1+2=3,f(0)=1,∴f(﹣1)+f(0)=3+1=4,故选:B.【点评】本题考察了求函数值问题,考察分段函数,是一道基础题.9.函数f(x)=x﹣2+lnx的零点所在的一个区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】函数零点的判定定理;二分法求方程的近似解.【专题】计算题;函数的性质及应用.【分析】由题意,函数f(x)=x﹣2+lnx在定义域上单调递增,再求端点函数值即可【解答】解:函数f(x)=x﹣2+lnx在定义域上单调递增,f(1)=1﹣2<0,f(2)=2+ln2﹣2>0,故函数f(x)=x﹣2+lnx的零点所在区间是(1,2);故选B.【点评】本题考查了函数的零点的判断,属于基础题.10.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g(x)=a x+b 的图象是()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】先由函数f(x)的图象判断a,b的范围,再根据指数函数的图象和性质即可得到答案.【解答】解:由函数的图象可知,﹣1<b<0,a>1,则g(x)=a x+b为增函数,当x=0时,y=1+b>0,且过定点(0,1+b),故选:C【点评】本题考查了指数函数和二次函数的图象和性质,属于基础题.11.已知函数f(x)=e x﹣e﹣x,e为自然对数的底,则下列结论正确的是()A.f(x)为奇函数,且在R上单调递增B.f(x)为偶函数,且在R上单调递增C.f(x)为奇函数,且在R上单调递减D.f(x)为偶函数,且在R上单调递减【考点】函数奇偶性的判断;函数单调性的判断与证明.【专题】函数思想;综合法;函数的性质及应用.【分析】可先得出f(x)的定义域为R,求f(﹣x)=﹣f(x),从而得出f(x)为奇函数,根据指数函数的单调性便可看出x增大时,f(x)增大,从而得到f(x)在R上单调递增,这样便可找出正确选项.【解答】解:f(x)的定义域为R;f(﹣x)=e﹣x﹣e x=﹣f(x);∴f(x)为奇函数;x增加时,e﹣x减小,﹣e﹣x增加,且e x增加,∴f(x)增加;∴f(x)在R上单调递增.故选A.【点评】考查奇函数的定义,判断一个函数为奇函数的方法和过程,以及增函数的定义,指数函数的单调性.12.已知sinα=3cosα,则sinα•cosα的值为()A.B.C.D.【考点】同角三角函数基本关系的运用.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用本题主要考查同角三角函数的基本关系,求得要求式子的值.【解答】解:∵sinα=3cosα,∴tanα=3,则sinα•cosα===,故选:B.【点评】本题主要考查同角三角函数的基本关系的应用,属于基础题.13.已知定义在R上的函数f(x)满足:对任意x1,x2∈R(x1≠x2),均有>0,e为自然对数的底,则()A.f()<f()<f(e) B.f(e)<f()<f() C.f(e)<f()<f()D.f()<f()<f(e)【考点】函数单调性的性质.【专题】函数思想;综合法;函数的性质及应用.【分析】根据条件及增函数的定义容易判断出f(x)在R上单调递增,从而比较这三个数的大小便可得出对应的函数值的大小,从而找出正确选项.【解答】解:∵;∴对任意的x1,x2∈R,x1<x2时,会得到f(x1)<f(x2);∴f(x)在R上为增函数;又;∴.故选:A.【点评】考查增函数的定义,根据增函数的定义比较函数值大小的方法,清楚这三个数的大小关系.14.设<α<π,若sin(α+)=,则cos(+α)=()A.﹣B.C.﹣D.【考点】运用诱导公式化简求值.【专题】计算题;转化思想;三角函数的求值.【分析】利用角的范围可确定三角函数值的符号,利用诱导公式即可求值.【解答】解:∵<α<π,<α+<,sin(α+)=>0,∴<α+<π,可得:<+α<,∴cos(+α)=cos[(α+)+]=﹣sin(α+)=﹣.故选:C.【点评】本题主要考查了诱导公式的应用,属于基础题.15.在一块顶角为120°、腰长为2的等腰三角形钢板废料OAB中裁剪扇形,现有如图所示两种方案,则()A.方案一中扇形的周长更长B.方案二中扇形的周长更长C.方案一中扇形的面积更大D.方案二中扇形的面积更大【考点】扇形面积公式.【专题】计算题;转化思想;数形结合法;三角函数的求值.【分析】由已知利用弧长公式,扇形面积公式求出值比较大小即可.【解答】解:∵△AOB为顶角为120°、腰长为2的等腰三角形,∴A=B=30°=,AM=AN=1,AD=2,∴方案一中扇形的周长=2=4+,方案二中扇形的周长=1+1+1×=2+,方案一中扇形的面积=2×=,方案二中扇形的周长==,故选:A.【点评】本题主要考查了弧长公式,扇形面积公式的应用,考查了计算能力,属于基础题.16.某种型号的电脑自投放市场以来,经过三次降价,单价由原来的5000元降到2560元,则平均每次降价的百分率是()A.10% B.15% C.16% D.20%【考点】函数的值.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】设降价百分率为x%,由题意知5000(1﹣x%)2=2560,由此能够求出这种手机平均每次降价的百分率.【解答】解:设降价百分率为x%,∴5000(1﹣x%)3=2560,解得x=20.故选:D.【点评】本题考查数列的性质和应用,解题时要注意挖掘隐含条件,寻找数量关系,建立方程.17.已知函数f(x)=x|x|,若对任意的x≤1有f(x+m)+f(x)<0恒成立,则实数m的取值范围是()A.(﹣∞,﹣1) B.(﹣∞,﹣1] C.(﹣∞,﹣2) D.(﹣∞,﹣2]【考点】函数恒成立问题.【专题】函数思想;转化思想;函数的性质及应用.【分析】根据函数f(x)的解析式判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系将不等式进行转化,利用参数分离法转化为求函数的最值即可.【解答】解:f(x)=x|x|=,则函数f(x)在定义域为增函数,且f(﹣x)=﹣x|﹣x|=﹣x|x|=﹣f(x),则函数f(x)为奇函数,则若对任意的x≤1有f(x+m)+f(x)<0恒成立,等价为若对任意的x≤1有f(x+m)<﹣f(x)=f(﹣x),即x+m<﹣x恒成立,即m<﹣2x恒成立,∵x≤1,∴﹣2x≥﹣2,则m<﹣2,故选:C【点评】本题主要考查不等式恒成立问题,根据条件判断函数的奇偶性和单调性是解决本题的关键.利用参数分离法是解决不等式恒成立问题的常用方法.18.存在函数f(x)满足:对任意x∈R都有()A.f(|x|)=x B.f(|x|)=x2+2x C.f(|x+1|)=x D.f(|x+1|)=x2+2x【考点】函数的对应法则;函数的概念及其构成要素.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】在A、B中,分别取x=±1,由函数性质能排除选项A和B;令|x+1|=t,t≥0,则x2+2x=t2﹣1,求出f(x)=x2﹣1,能排除选项C.【解答】解:在A中,取x=1,则f(1)=1,取x=﹣1,则f(1)=﹣1,不成立;在B中,令|x|=t,t≥0,x=±t,取x=1,则f(1)=3,取x=﹣1,则f(1)=﹣1,不成立;在C中,令|x+1|=t,t≥0,则x2+2x=t2﹣1,∴f(t)=t2﹣1,即f(x)=x2﹣1,故C不成立,D成立.故选:D.【点评】本题考查抽象函数的性质,是中档题,解题时要认真审题,注意函数性质的合理运用.二、填空题(本大题共4个小题,每小题4分,共16分)19.计算:(log23)•(log34)= 2 .【考点】对数的运算性质.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据换底公式计算即可.【解答】解:(log23)•(log34)=•=2,故答案为:2.【点评】本题考查了换底公式,属于基础题.20.函数f(x)=2的单调递增区间为[0,+∞).【考点】复合函数的单调性.【专题】转化思想;综合法;函数的性质及应用.【分析】由题意可得,本题即求函数t=x2﹣1的增区间,再利用二次函数的性质可得结论.【解答】解:函数f(x)=2的单调递增区间,即函数t=x2﹣1的增区间,再利用二次函数的性质可得函数t=x2﹣1的增区间为[0,+∞),故答案为:[0,+∞).【点评】本题主要考查指数函数、二次函数的性质,复合函数的单调性,属于中档题.21.对a,b∈R,记max{a,b}=,则函数f(x)=max{|x+1|,x+2}(x∈R)的最小值是.【考点】函数的最值及其几何意义.【专题】计算题;分类讨论;分析法;函数的性质及应用.【分析】讨论当|x+1|≥x+2,|x+1|<x+2时,求出f(x)的解析式,由单调性可得最小值.【解答】解:当|x+1|≥x+2,即x+1≥x+2或x+1≤﹣x﹣2,解得x≤﹣时,f(x)=|x+1|,递减,则f(x)的最小值为f(﹣)=|﹣+1|=;当|x+1|<x+2,可得x>﹣时,f(x)=x+2,递增,即有f(x)>,综上可得f(x)的最小值为.故答案为:.【点评】本题考查函数的最值的求法,考查绝对值不等式的解法,注意运用分类讨论的思想方法,以及函数的单调性,属于中档题.22.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是[﹣1,2﹣]∪[,3] .【考点】对数函数的图象与性质.【专题】函数思想;分类法;函数的性质及应用.【分析】分别求出f(x1)和g(x2)的值域,令f(x1)的值域为g(x2)的值域的子集列出不等式解出a.【解答】解:∵x1∈[2,6),∴f(2)≤f(x1)<f(6),即2≤f(x1)<3,∴f(x1)的值域为[2,3).g(x)的图象开口向上,对称轴为x=a,(1)若a≤0,则g(x)在[0,2]上是增函数,∴g(0)≤g(x2)≤g(2),即g(x2)的值域为[a2+1,a2﹣4a+5],∴,解得﹣1≤a≤0.(2)若a≥2,则g(x)在[0,2]上是减函数,∴g(2)≤g(x2)≤g(1),即g(x2)的值域为[a2﹣4a+5,a2+1],∴,解得2≤a≤3.(3)若0<a≤1,则g min(x)=g(a)=1,g max(x)=g(2)=a2﹣4a+5,∴g(x)的值域为[1,a2﹣4a+5],∴,解得0.(4)若1<a<2,则g min(x)=g(a)=1,g max(x)=g(0)=a2+1,∴g(x)的值域为[1,a2+1],∴,解得a<2.综上,a的取值范围是[﹣1,0]∪[2,3]∪(0,2﹣)∪(,2)=[﹣1,2﹣]∪[,3].故答案为[﹣1,2﹣]∪[,3].【点评】本题考查了二次函数的值域,对数函数的单调性与值域,集合间的关系,分类讨论思想,属于中档题.三、解答题(本大题共3个小题,共30分.解答应写出文字说明、证明过程或演算步骤)23.设全集为实数集R,函数f(x)=lg(2x﹣1)的定义域为A,集合B={x||x|﹣a≤0}(a∈R)(Ⅰ)若a=2,求A∪B和A∩B(Ⅱ)若∁R A∪B=∁R A,求a的取值范围.【考点】交、并、补集的混合运算;并集及其运算;交集及其运算.【专题】计算题;集合思想;综合法;集合.【分析】(Ⅰ)先求出A=(),由a=2便可求出B=[﹣2,2],然后进行并集、交集的运算即可;(Ⅱ)根据条件便有B⊆C R A,可求出,可讨论B是否为空集:B=∅时会得到a<0;而B≠∅时得到a≥0,且B={x|﹣a≤x≤a},这样便可得到,这两种情况下得到的a的范围求并集便可得出a的取值范围.【解答】解:(Ⅰ)A=;a=2时,B=[﹣2,2];∴A∪B=[﹣2,+∞),;(Ⅱ)∵(C R A)∪B=C R A;∴B⊆C R A;;①当B=∅时,a<0;②当B≠∅时,B={x|﹣a≤x≤a}(a≥0);∴,且a≥0;∴;综上得,a的取值范围为.【点评】考查函数定义域的概念及求法,对数的真数大于0,绝对值不等式的解法,交集、并集的运算,以及子集、补集的概念,不要漏了B=∅的情况.24.已知△ABC的三个内角分别为A,B,C,且A≠.(Ⅰ)化简;(Ⅱ)若角A满足sinA+cosA=.(i)试判断△ABC是锐角三角形还是钝角三角形,并说明理由;(ii)求tanA的值.【考点】三角函数中的恒等变换应用;三角函数的化简求值.【专题】函数思想;综合法;三角函数的求值.【分析】(Ⅰ)由三角形内角和以及诱导公式化简可得原式=cosA;(Ⅱ)由sinA+cosA=和sin2A+cos2A=1,联立可解得sinA=,cosA=﹣,可得(i)△ABC 是钝角三角形;(ii) tanA==﹣【解答】解:(Ⅰ)由题意化简可得:==cosA;(Ⅱ)∵sinA+cosA=,又sin2A+cos2A=1,结合sinA应为正数,联立可解得sinA=,cosA=﹣,∴A为钝角,故可得(i)△ABC是钝角三角形;(ii) tanA==﹣【点评】本题考查三角函数恒等变换,涉及三角函数化简求值和同角三角函数基本关系,属基础题.25.已知定理:“实数m,n为常数,若函数h(x)满足h(m+x)+h(m﹣x)=2n,则函数y=h(x)的图象关于点(m,n)成中心对称”.(Ⅰ)已知函数f(x)=的图象关于点(1,b)成中心对称,求实数b的值;(Ⅱ)已知函数g(x)满足g(2+x)+g(﹣x)=4,当x∈[0,2]时,都有g(x)≤3成立,且当x∈[0,1]时,g(x)=2k(x﹣1)+1,求实数k的取值范围.【考点】抽象函数及其应用.【专题】综合题;新定义;分类讨论;分析法;函数的性质及应用;不等式的解法及应用.【分析】(Ⅰ)由对称性可得f(1+x)+f(1﹣x)=2b,化简整理,即可得到b=2;(Ⅱ)由g(2+x)+g(﹣x)=4可得g(x)的图象关于点(1,2)对称,且g(1)=2,对k讨论,当k=0,k>0,k<0,结合对称性和单调性,要使g(x)≤3,只需g(x)max≤3,运用单调性求得最大值,解不等式即可得到所求范围.【解答】解:(Ⅰ)函数f(x)=的图象关于点(1,b)成中心对称,可得f(1+x)+f(1﹣x)=2b,即有+=4=2b,解得b=2;(Ⅱ)由g(2+x)+g(﹣x)=4可得g(x)的图象关于点(1,2)对称,且g(1)=2,当k=0时,g(x)=2(0≤x≤1),又g(x)关于(1,2)对称,可得g(x)=2(0≤x≤2),显然g(x)≤3恒成立;当k>0时,g(x)=2k(x﹣1)+1在[0,1]递增,又g(x)关于点(1,2)对称,可得g(x)在[0,2]递增,g(x)≤3,只需g(x)max=g(2)≤3,又g(2)+g(0)=4,则g(0)≥1即21﹣k≥1,即有0≤k≤1;当k<0时,g(x)=2k(x﹣1)+1在[0,1]递减,又g(x)关于(1,2)对称,可得g(x)在[0,2]递减,要使g(x)≤3,只需g(x)max=g(0)≤3,即21﹣k≤3,解得1﹣log23≤k<0.综上可得,1﹣log23≤k≤1.【点评】本题考查函数的对称性和运用,同时考查函数的单调性的运用,以及不等式恒成立问题的解法,考查运算能力,属于中档题.。
浙江省温州市十校联合体2017届高三上学期期末考试数学试题(详细答案版)

2016-2017学年第一学期温州十校联合体高三期末考试数学学科 试题考生须知:1.本卷共4页满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字。
3.所有答案必须写在答题纸上,写在试卷上无效;4.考试结束后,只需上交答题纸。
一、选择题:本大题共10小题,每小题4分,共40分。
1.已知集合}2|{x y x P -==,)}1ln(|{+==x y x Q ,则=Q P ( )A .{|12}x x -≤≤B .{|12}x x -≤<C .{|12}x x -<≤D .{|12}x x -<<2.若复数iz -=12,其中i 为虚数单位,则z = ( ) A .1−iB .1+iC .−1+iD .−1−i 3. “一条直线l 与平面α内无数条直线异面”是“这条直线与平面α平行”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4. 二项式6(x的展开式中常数项为 ( ) A .15- B .15 C .20- D .205.若向量(sin2,cos ),(1,cos )a b ααα==,且21tan =α,则a b ⋅的值是 ( ) A .58 B .56 C .54 D .2 6.点P 为直线34y x =上任一点,12(5,0),(5,0)F F -,则下列结论正确的是 ( ) A .12||||||8PF PF ->B .12||||||8PF PF -=C .12||||||8PF PF -<D .以上都有可能7.设函数2log (),0()2,0x x x f x x -<⎧=⎨≥⎩,若关于x 的方程2()()0f x af x -=恰有三个不同的实数根,则实数a 的取值范围是 ( )A .[0,)+∞B .(0,)+∞C .(1,)+∞D . [1,)+∞8.已知数列{}n a 的首项11a =,前n 项和为n S ,且满足122n n a S ++=,则满足2100111100010n n S S <<的n 的最大值是 ( )A .8B .9C .10D .119.在OMN ∆中,点A 在OM 上,点B 在ON 上,且//AB MN ,2OA OM =,若O P x O A y O B =+,则终点P 落在四边形ABNM 内(含边界)时,21y x x +++的取值范围是 ( ) A .1[,2]2 B .1[,3]3 C .3[,3]2 D . 4[,4]310.点P 为棱长是2的正方体1111ABCD A BC D -的内切球O 球面上的动点,点M 为11B C 的中点,若满足DP BM ⊥,则动点P 的轨迹的长度为 ( )ABCD二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
浙江省温州市十校联合体2016-2017学年高一上学期期中联考数学试题Word版含答案

高一数学试题卷本试题卷分选择题和非选择题两部分。
全卷共4页, 选择题部分1至2页, 非选择题部分2至4页。
满分150分, 考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分 (共40分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}1,21<=≤≤-=x x B x x A ,则 ()B A R 等于A .{}1x x ≥ B.{}1x x ≥- C. {}21≤≤-x x D .{}12x x ≤≤2.函数x x f 2log 2)(+-=的定义域是A .()40,B .()∞+,4C .[)∞+,4D .()44,-3.设43=a ,则3log 2的值等于A .a 2B .aC .a1 D .a 24.已知函数()⎪⎩⎪⎨⎧><=0,ln 0,x x x e x f x 则()[]=e f f 1A .e1B .eC .e 1-D .e -5. 函数()1--=x ex f 的图象是6.下列函数中,可能是奇函数的是A . ()R a ax x x f ∈++=,12B .Ra x x f a ∈+=-,12)(C .()()R a ax x f ∈-=,1log 22 D .()()R a x a x x f ∈-=, 7.已知函数()1-=x m x f ,()x x g m log 1+-=()10≠>m m ,,有如下两个命题:✍()x f 的定义域和()[]x f g 的值域相等.✍()x g 的定义域和()[]x g f 的值域相等.A .命题✍✍ 都正确B . 命题✍正确,命题✍不正确C .命题✍✍ 都不正确D . 命题✍不正确,命题✍正确 8.已知函数()()2()ka x f x a -=∈R ,且(1)(3)f f >,(2)(3)f f >.A. 若1k =,则12a a -<-B. 若1k =,则12a a ->-C. 若2k =,则12a a -<-D. 若2k =,则12a a ->-非选择题部分 (共110分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上, 不能答在试题卷上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年浙江省温州市十校联合体高一(上)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4.00分)若角α的始边是x轴正半轴,终边过点P(4,﹣3),则cosα的值是()A.4 B.﹣3 C.D.﹣2.(4.00分)若集合P={y|y≥0},P∩Q=Q,则集合Q不可能是()A.{y|y=x2,x∈R}B.{y|y=2x,x∈R}C.{y|y=lgx,x>0} D.∅3.(4.00分)函数y=a|sinx|+2(a>0)的单调递增区间是()A.(﹣,)B.(﹣π,﹣)C.(,π)D.(,2π)4.(4.00分)已知向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则四边形ABCD是()A.梯形B.平行四边形C.矩形D.菱形5.(4.00分)已知,则=()A.sinθ﹣cosθB.cosθ﹣sinθC.±(sinθ﹣cosθ)D.sinθ+cosθ6.(4.00分)已知a x+b y≤a﹣x+b﹣y(1<a<b),则()A.x+y≥0 B.x+y≤0 C.x﹣y≤0 D.x﹣y≥07.(4.00分)已知函数f(x)=ln|ax|(a≠0),g(x)=x﹣3+sinx,则()A.f(x)+g(x)是偶函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)•g(x)是奇函数8.(4.00分)设实数x1、x2是函数的两个零点,则()A.x1x2<0 B.0<x1x2<1 C.x1x2=1 D.x1x2>19.(4.00分)已知函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤.命题 ①:若直线x=φ是函数f(x)和g(x)的对称轴,则直线x=kπ+φ(k∈Z)是函数g(x)的对称轴;命题 ②:若点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(+φ,0)(k∈Z)是函数f(x)的中心对称.()A.命题①②•‚都正确B.命题①②•‚都不正确C.命题 ①正确,命题‚②不正确D.命题 ①不正确,命题‚②正确10.(4.00分)已知函数f t(x)=(x﹣t)2﹣t,t∈R,设f(x)=,若0<a<b,则()A.f(x)≥f(b)且当x>0时f(b﹣x)≥f(b+x)B.f(x)≥f(b)且当x>0时f(b﹣x)≤f(b+x)C.f(x)≥f(a)且当x>0时f(a﹣x)≥f(a+x)D.f(x)≥f(a)且当x>0时f(a﹣x)≤f(a+x)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(4.00分)若幂函数f(x)=x a的图象过点(2,),则a=.12.(4.00分)已知弧长为πcm的弧所对的圆心角为,则这条弧所在圆的直径是cm,这条弧所在的扇形面积是cm2.13.(6.00分)已知函数f(x)=2tan(ωx+ϕ)的最小正周期为,且,则ω=,ϕ=.14.(6.00分)已知函数f(x)=cos2x+sinx﹣1,则f(x)值域是,f(x)的单调递增区间是.15.(6.00分)已知函数若f(x)在上既有最大值又有最小值,则实数a的取值范围是.16.(6.00分)已知AB是单位圆O上的一条弦,λ∈R,若的最小值是,则|AB|=,此时λ=.17.(4.00分)已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},记集合A中元素的个数为n(A),定义m(A,B)=,若m(A,B)=1,则正实数a的值是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14.00分)已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},(Ⅰ)求A∩B、(∁U A)∪(∁U B);(Ⅱ)若{x|2k﹣1≤x≤2k+1}⊆A,求实数k的取值范围.19.(15.00分)已知函数f(x)=sin(2x+φ)(),且.(Ⅰ)求函数y=f(x)的最小正周期T及φ的值;(Ⅱ)当x∈[0,]时,求函数y=f(x)的最小值.20.(15.00分)已知函数f(x)=2x+cosα﹣2﹣x+cosα,x∈R,且.(1)若0≤α≤π,求α的值;(2)当m<1时,证明:f(m|cosθ|)+f(1﹣m)>0.21.(15.00分)已知二次函数f(x)=x2﹣2x+3(Ⅰ)若函数的最小值为3,求实数m的值;(Ⅱ)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求实数k的取值范围.22.(15.00分)已知函数(a∈R).(Ⅰ)当时,求f(x)的单调区间;(Ⅱ)若对任意的x>0恒成立,求a的取值范围.2016-2017学年浙江省温州市十校联合体高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4.00分)若角α的始边是x轴正半轴,终边过点P(4,﹣3),则cosα的值是()A.4 B.﹣3 C.D.﹣【分析】由题意可得x=4,y=﹣3,可得r=5,由cosα=运算求得结果.【解答】解:由题意可得x=4,y=﹣3,∴r=5,∴cosα==,故选C.2.(4.00分)若集合P={y|y≥0},P∩Q=Q,则集合Q不可能是()A.{y|y=x2,x∈R}B.{y|y=2x,x∈R}C.{y|y=lgx,x>0} D.∅【分析】根据P∩Q=Q可得Q⊆P,由已知中集合P={y|y≥0},分别判断四个答案中的集合是否满足要求,比照后可得答案.【解答】解:∵集合P={y|y≥0},P∩Q=Q,∴Q⊆P∵A={y|y=x2,x∈R}={y|y≥0},满足要求B={y|y=2x,x∈R}={y|y>0},满足要求C={y|y=lgx,x>0}=R,不满足要求D=∅,满足要求故选:C.3.(4.00分)函数y=a|sinx|+2(a>0)的单调递增区间是()A.(﹣,)B.(﹣π,﹣)C.(,π)D.(,2π)【分析】根据正弦函数的图象以及函数的解析式画出函数的图象,由图象判断即可.【解答】解:在坐标系中画出函数y=a|sinx|+2(a>0)的图象:根据图象得到函数的一个增区间是:(﹣π,﹣),故选:B.4.(4.00分)已知向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则四边形ABCD是()A.梯形B.平行四边形C.矩形D.菱形【分析】根据题意,由向量的加减运算法可得=++=﹣8﹣2,进而分析可得=2,即直线AD与BC平行,而向量与不共线,即直线AB与CD 不平行,即可得答案.【解答】解:根据题意,向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则向量=++=﹣8﹣2,分析可得:=2,即直线AD与BC平行,而向量与不共线,即直线AB与CD不平行,故四边形ABCD是梯形;故选:A.5.(4.00分)已知,则=()A.sinθ﹣cosθB.cosθ﹣sinθC.±(sinθ﹣cosθ)D.sinθ+cosθ【分析】直接由三角函数的诱导公式化简结合已知条件计算即可得答案.【解答】解:由,===|sinθ﹣cosθ|=sinθ﹣cosθ,故选:A.6.(4.00分)已知a x+b y≤a﹣x+b﹣y(1<a<b),则()A.x+y≥0 B.x+y≤0 C.x﹣y≤0 D.x﹣y≥0【分析】构造函数f(x)=a x﹣a﹣x,g(y)=b﹣y﹣b y,结合函数的单调性,可得x ≤0,且y≤0,即x+y≤0时,a x﹣a﹣x≤b﹣y﹣b y恒成立,进而a x+b y≤a﹣x+b﹣y.【解答】解:∵a x+b y≤a﹣x+b﹣y,∴a x﹣a﹣x≤b﹣y﹣b y,令f(x)=a x﹣a﹣x,g(y)=b﹣y﹣b y,∵1<a<b,则f(x)为增函数,g(y)为减函数,且f(0)=g(0)=0,故x≤0,且y≤0,即x+y≤0时,a x﹣a﹣x≤b﹣y﹣b y恒成立,故选:B.7.(4.00分)已知函数f(x)=ln|ax|(a≠0),g(x)=x﹣3+sinx,则()A.f(x)+g(x)是偶函数B.f(x)•g(x)是偶函数C.f(x)+g(x)是奇函数D.f(x)•g(x)是奇函数【分析】运用定义分别判断f(x),g(x)的奇偶性,再设F(x)=f(x)g(x),计算F﹣x)与F(x)的关系,即可得到结论.【解答】解:函数f(x)=ln|ax|(a≠0),由ln|﹣ax|=ln|ax|,可得f(x)为偶函数;g(x)=x﹣3+sinx,由(﹣x)﹣3+sin(﹣x)=﹣(x﹣3+sinx),可得g(x)为奇函数.设F(x)=f(x)g(x),由F(﹣x)=f(﹣x)g(﹣x)=f(x)(﹣g(x))=﹣F(x),可得F(x)为奇函数.故选:D.8.(4.00分)设实数x1、x2是函数的两个零点,则()A.x1x2<0 B.0<x1x2<1 C.x1x2=1 D.x1x2>1【分析】能够分析出f(x)的零点便是函数y=|lnx|和函数y=()x交点的横坐标,从而可画出这两个函数图象,由图象列出不等式组,然后求解即可.【解答】解:令f(x)=0,∴|lnx|=()x;∴函数f(x)的零点便是上面方程的解,即是函数y=|lnx|和函数y=()x的交点,画出这两个函数图象如下:由图看出<﹣lnx1<1,﹣1<lnx1<0,0<lnx2<;∴﹣1<lnx1+lnx2<0;∴﹣1<lnx1x2<0;∴0<<x1x2<1故选:B.9.(4.00分)已知函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤.命题 ①:若直线x=φ是函数f(x)和g(x)的对称轴,则直线x=kπ+φ(k∈Z)是函数g(x)的对称轴;命题 ②:若点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(+φ,0)(k∈Z)是函数f(x)的中心对称.()A.命题①②•‚都正确B.命题①②•‚都不正确C.命题 ①正确,命题‚②不正确D.命题 ①不正确,命题‚②正确【分析】根据题意求出函数f(x)、g(x)的对称轴与对称中心,再判断命题①、②是否正确.【解答】解:∵函数f(x)=sin(2x+φ1),g(x)=cos(4x+φ2),|φ1|≤,|φ2|≤;∴函数f(x)的对称轴为2x+φ1=kπ+,即x=kπ+﹣φ1,k∈Z,令2x+φ1=kπ,解得x=kπ﹣φ1,∴f(x)对称中心为(kπ﹣φ1,0),k∈Z;函数g(x)的对称轴为4x+φ2=kπ,即x=kπ﹣φ2,k∈Z,令4x+φ2=kπ+,解得x=kπ+﹣φ2,对称中心为(kπ+﹣φ2,0),k∈Z;∵直线x=φ是函数f(x)和g(x)的对称轴,∴直线x=kπ+φ(k∈Z)是函数g(x)的对称轴,命题①正确;∵点P(φ,0)是函数f(x)和g(x)的对称中心,则点Q(+φ,0)(k∈Z)不一定是函数f(x)的中心对称,命题②错误.故选:C.10.(4.00分)已知函数f t(x)=(x﹣t)2﹣t,t∈R,设f(x)=,若0<a<b,则()A.f(x)≥f(b)且当x>0时f(b﹣x)≥f(b+x)B.f(x)≥f(b)且当x>0时f(b﹣x)≤f(b+x)C.f(x)≥f(a)且当x>0时f(a﹣x)≥f(a+x)D.f(x)≥f(a)且当x>0时f(a﹣x)≤f(a+x)【分析】解方程f a(x)=f b(x)得交点坐标,函数f(x)的图象,f a(x)=(x ﹣a)2﹣a≥﹣a,f b(x)=(x﹣b)2﹣b≥﹣b,且﹣b<﹣a即可判断.【解答】解:作函数f(x)的图象,且解方程f a(x)=f b(x)得,(x﹣a)2﹣a=(x﹣b)2﹣b,解得x=,f a(x)=(x﹣a)2﹣a≥﹣a,f b(x)=(x﹣b)2﹣b≥﹣b,且﹣b<﹣af(x)≥f(b)且当x>0时f(b﹣x)≤f(b+x),故选:B二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(4.00分)若幂函数f(x)=x a的图象过点(2,),则a=.【分析】由已知得2a=,由此能求出a=.【解答】解:∵幂函数y=x a的图象过点(2,),∴2a=,解得a=,故答案为:.12.(4.00分)已知弧长为πcm的弧所对的圆心角为,则这条弧所在圆的直径是8cm,这条弧所在的扇形面积是2πcm2.【分析】根据弧长公式求出对应的半径,然后根据扇形的面积公式求面积即可.【解答】解:∵弧长为πcm的弧所对的圆心角为,∴半径r=4cm,直径是8cm,∴这条弧所在的扇形面积为S==2πcm2.故答案为8,2π.13.(6.00分)已知函数f(x)=2tan(ωx+ϕ)的最小正周期为,且,则ω=2,ϕ=﹣.【分析】根据函数的最小正周期,求出ω的值,再求出φ的值.【解答】解:函数f(x)=2tan(ωx+ϕ)的最小正周期为,∴=,解得ω=2;又,即2tan(2×+φ)=﹣2,∴2tanφ=﹣2,即tanφ=﹣1;又|φ|<,∴φ=﹣.故答案为:2,.14.(6.00分)已知函数f(x)=cos2x+sinx﹣1,则f(x)值域是,f(x)的单调递增区间是.【分析】由三角函数的诱导公式化简f(x)=﹣sin2x+sinx,然后利用换元法再结合二次函数的性质,求得函数的最值以及单调区间.【解答】解:f(x)=cos2x+sinx﹣1=(1﹣sin2x)+sinx﹣1=﹣sin2x+sinx,设sinx=t,t∈[0,1],∴f(x)=﹣t2+t=﹣t(t﹣1),当t=,即sinx=,x=时函数f(x)取得最大值为,当t=0,即sinx=0时,函数f(x)取得最小值为0.∴f(x)值域是,f(x)的单调递增区间是.故答案为:,.15.(6.00分)已知函数若f(x)在上既有最大值又有最小值,则实数a的取值范围是(﹣,0).【分析】画出函数f(x)的图象,若f(x)在上既有最大值又有最小值,结合图象得到,解得即可.【解答】解:f(x)的图象如图所示∵f(x)在上既有最大值又有最小值,∴,解得﹣<a<0,故a的取值范围为(﹣,0),故答案为:(﹣,0),16.(6.00分)已知AB是单位圆O上的一条弦,λ∈R,若的最小值是,则|AB|=1或,此时λ=.【分析】不妨设=(1,0),=(cosθ,sinθ),θ∈[0,2π).则==≥=|sinθ|=,可得θ=,,,.即可得出.【解答】解:不妨设=(1,0),=(cosθ,sinθ),θ∈[0,2π).则===≥=|sinθ|=,∴θ=,,,.=,或=.则|AB|=1或.此时λ=cosθ=.故答案分别为:1或,.17.(4.00分)已知集合A={1,2},B={x|(x2+ax)(x2+ax+2)=0},记集合A中元素的个数为n(A),定义m(A,B)=,若m(A,B)=1,则正实数a的值是.【分析】根据A={1,2},B={x|(x2+ax)(x2+ax+2)=0},且m(A,B)=1,可知集合B要么是单元素集合,要么是三元素集合,然后对方程|x2+ax+1|=1的根的个数进行讨论,即可求得a的所有可能值,进而可得结论.【解答】解:由于(x2+ax)(x2+ax+2)=0等价于x2+ax=0 ①或x2+ax+2=0 ②,又由A={1,2},且m(A,B)=1,∴集合B要么是单元素集合,要么是三元素集合,1°集合B是单元素集合,则方程①有两相等实根,②无实数根,∴a=0;2°集合B是三元素集合,则方程①有两不相等实根,②有两个相等且异于①的实数根,即,解得a=±2,综上所述a=0或a=±2,∵a>0,∴a=,故答案为.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(14.00分)已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},(Ⅰ)求A∩B、(∁U A)∪(∁U B);(Ⅱ)若{x|2k﹣1≤x≤2k+1}⊆A,求实数k的取值范围.【分析】(1)根据题意,解不等式﹣3≤x﹣1≤2可得B={x|﹣2≤x≤3},由交集的定义可得A∩B={x|1<x≤3},进而结合补集的性质可得(∁U A)∪(∁U B)=∁u (A∩B),计算A∩B的补集即可得(∁U A)∪(∁U B),(2)根据题意,若{x|2k﹣1≤x≤2k+1}⊆A,则必有2k﹣1>1或2k+1<﹣4,解可得k的范围,即可得答案.【解答】解:(1)根据题意,﹣3≤x﹣1≤2⇒﹣2≤x≤3,则B={x|﹣3≤x﹣1≤2}={x|﹣2≤x≤3},故A∩B={x|1<x≤3},(∁U A)∪(∁U B)=∁U(A∩B)={x|x≤1,或x>3};(2)若{x|2k﹣1≤x≤2k+1}⊆A,则必有2k﹣1>1或2k+1<﹣4,解可得:k>1或.19.(15.00分)已知函数f(x)=sin(2x+φ)(),且.(Ⅰ)求函数y=f(x)的最小正周期T及φ的值;(Ⅱ)当x∈[0,]时,求函数y=f(x)的最小值.【分析】(Ⅰ)根据最小正周期的定义即可求出,再根据,即可求出φ=,(Ⅱ)根据正弦函数的性质即可求出.【解答】解:(Ⅰ),∵f(0)=sinφ=,,∴φ=,(Ⅱ)由(1)可得f(x)=sin(2x+),∵x∈[0,],∴2x+∈[,],∴函数y=f(x)的最小值为﹣20.(15.00分)已知函数f(x)=2x+cosα﹣2﹣x+cosα,x∈R,且.(1)若0≤α≤π,求α的值;(2)当m<1时,证明:f(m|cosθ|)+f(1﹣m)>0.【分析】(1)由f(1),解方程和特殊三角函数值,即可得到;(2)运用余弦函数的性质和参数分离,结合函数的单调性和奇偶性,即可得证.【解答】解:(1),,…(2分)…(3分)由0≤α≤π,∴…(7分)(2)证明:∵m<1,若|cosθ|≠1,则,…(9分)∴,m(|cosθ|﹣1)>﹣1,m|cosθ|>m﹣1,又|cosθ|=1时左式也成立,∴m|cosθ|>m﹣1…(11分)由(1)知,,在x∈R上为增函数,且为奇函数,…(13分)∴f(m|cosθ|)>f(m﹣1)∴f(m|cosθ|)+f(1﹣m)>0…(15分)21.(15.00分)已知二次函数f(x)=x2﹣2x+3(Ⅰ)若函数的最小值为3,求实数m的值;(Ⅱ)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求实数k的取值范围.【分析】(Ⅰ)令t=log3x,(﹣1≤t≤1),则y=(t+m﹣1)2+2,由题意可得最小值只能在端点处取得,分别求得m的值,加以检验即可得到所求值;(Ⅱ)判断f(x)在(2,4)递增,设x1>x2,则f(x1)>f(x2),原不等式即为f(x1)﹣f(x2)<k(x1﹣x2),即有f(x1)﹣kx1<f(x2)﹣kx2,由题意可得g(x)=f(x)﹣kx在(2,4)递减.由g(x)=x2﹣(2+k)x+3,求得对称轴,由二次函数的单调区间,即可得到所求范围【解答】解(Ⅰ)令t=log3x+m,∵,∴t∈[m﹣1,m+1],从而y=f(t)=t2﹣2t+3=(t﹣1)2+2,t∈[m﹣1,m+1]当m+1≤1,即m≤0时,,解得m=﹣1或m=1(舍去),当m﹣1<1<m+1,即0<m<2时,y min=f(1)=2,不合题意,当m﹣1≥1,即m≥2时,,解得m=3或m=1(舍去),综上得,m=﹣1或m=3,(Ⅱ)不妨设x1<x2,易知f(x)在(2,4)上是增函数,故f(x1)<f(x2),故|f(x1)﹣f(x2)|<k|x1﹣x2|可化为f(x2)﹣f(x1)<kx2﹣kx1,即f(x2)﹣kx2<f(x1)﹣kx1(*),令g(x)=f(x)﹣kx,x∈(2,4),即g(x)=x2﹣(2+k)x+3,x∈(2,4),则(*)式可化为g(x2)<g(x1),即g(x)在(2,4)上是减函数,故,得k≥6,故k的取值范围为[6,+∞)22.(15.00分)已知函数(a∈R).(Ⅰ)当时,求f(x)的单调区间;(Ⅱ)若对任意的x>0恒成立,求a的取值范围.【分析】(Ⅰ)将a的值带入f(x),求出f(x)的解析式,从而求出f(x)的单调区间即可;(Ⅱ)通过讨论x的范围,去掉绝对值号,分离参数a,从而求出a 的范围即可.【解答】解:(Ⅰ)当时,….(2分)所以f(x)的单调递增区间是(0,1],(﹣∞,﹣1],单调递减区间是[1,+∞),[﹣1,0)….(6分)(Ⅱ)由得,∴①当0<x<1时,,∴…(8分)∵∴a≥1…(10分)②当x>1时,,∴…(12分)∵,∴….…(14分)综上所述,a的取值范围是.…(15分)。