微波技术与天线实验10利用HFSS仿真对称振子阵列天线

合集下载

【案例分析】经典HFSS仿真实例详解

【案例分析】经典HFSS仿真实例详解

【案例分析】经典HFSS仿真实例详解新朋友请点击上⽅RFsister关注我们关于仿真软件HFSS相信⼤家多少都有听过,这是⼀款⾮常强⼤好⽤的仿真软件,已经被应⽤于多个领域,当然,天线设计也离不开仿真软件。

本期⼩编为⼤家带来的是经典天线——对称振⼦天线仿真。

下⾯我们先来看看软件的简介。

HFSS – High Frequency Structure Simulator,Ansoft公司推出的三维电磁仿真软件,⽬前已被ANSYS公司收购;是世界上第⼀个商业化的三维结构电磁场仿真软件,业界公认的三维电磁场设计和分析的⼯业标准。

HFSS提供了⼀简洁直观的⽤户设计界⾯、精确⾃适应的场解器、拥有空前电性能分析能⼒的功能强⼤后处理器,能计算任意形状三维⽆源结构的S参数和全波电磁场。

HFSS软件拥有强⼤的天线设计功能,它可以计算天线参量,如增益、⽅向性、远场⽅向图剖⾯、远场3D图和3dB带宽;绘制极化特性,包括球形场分量、圆极化场分量、Ludwig第三定义场分量和轴⽐。

使⽤HFSS,可以计算:①基本电磁场数值解和开边界问题,近远场辐射问题;②端⼝特征阻抗和传输常数;③ S参数和相应端⼝阻抗的归⼀化S参数;④结构的本征模或谐振解。

⽽且,由Ansoft HFSS和Ansoft Designer构成的Ansoft⾼频解决⽅案,是⽬前唯⼀以物理原型为基础的⾼频设计解决⽅案,提供了从系统到电路直⾄部件级的快速⽽精确的设计⼿段,覆盖了⾼频设计的所有环节。

下⾯我们先来看看建⽴HFSS⼯程的⼀般过程。

(1)⾸先第⼀步是运⾏Ansoft HFSS:(2)然后单击下图红框处图标,在当前⼯程中插⼊⼀个设计:(3)选择求解类型,如下图:(4)为建⽴模型设置合适的单位,如下图:(5)在3D窗⼝中建⽴模型。

(6)设置需要的辐射边界。

(7)如果选择激励求解或激励终端求解,则需要为模型设置激励。

(8)设置求解频率及扫频操作等。

(9)点击下图按钮,检查当前⼯程的有效性。

射频和微波工程实践入门、用HFSS仿真微波传输线和元件

射频和微波工程实践入门、用HFSS仿真微波传输线和元件

用HFSS仿真微波传输线和元件第一章用HFSS仿真微波传输线和元件 01.1 Ansoft HFSS概述 01.1.1 HFSS简介 01.1.2 HFSS的应用领域 (1)1.2 HFSS软件的求解原理 (1)1.3 HFSS的基本操作介绍 (3)1.3.1 HFSS的操作界面和菜单功能介绍 (3)1.3.2 HFSS仿真分析基本步骤 (4)1.3.3 HFSS的建模操作 (5)1.4 HFSS设计实例1——矩形波导的设计 (10)1.4.1 工程设置 (10)1.4.2 建立矩形波导模型 (11)1.4.3 设置边界条件 (12)1.4.4 设置激励源wave port (14)1.4.5 设置求解频率 (15)1.4.6 计算及后处理 (15)1.4.7 添加电抗膜片 (17)1.5 HFSS设计实例2——E-T型波导的设计 (23)1.5.1 初始设置 (23)1.5.2 建立三维模型 (24)1.5.3 分析设置 (27)1.5.4 保存工程 (27)1.5.5 分析 (27)1.5.6 生成报告 (28)1.6 HFSS设计实例3——H-T型波导的设计 (31)1.6.1 创建工程 (31)1.6.2 创建模型 (32)1.6.3 仿真求解设置 (36)1.6.4 比较结果 (37)1.7 HFSS设计实例4——双T型波导的设计 (39)1.7.1 初始设置 (39)1.7.2 建立三维模型 (40)1.7.3 分析设置 (43)1.7.4 保存工程 (44)1.7.5 分析 (44)1.7.6 生成报告 (45)1.8 HFSS设计实例5——魔T型波导的设计 (47)1.8.1 建立匹配膜片与金属杆 (48)1.8.2 分析设置 (48)1.9 HFSS设计实例6——圆波导的设计 (52)1.9.1 初始设置 (52)1.9.2 建立三维模型 (53)1.9.3 分析设置 (55)1.9.4 保存工程 (56)1.9.5 分析 (56)1.9.6 生成报告 (57)1.10 HFSS设计实例7——同轴线的设计 (64)1.10.1 初始设置 (64)1.10.2 建立三维模型 (65)1.10.3 分析设置 (68)1.10.4 保存工程 (69)1.10.5 分析 (69)1.10.6 生成报告 (70)1.11 HFSS设计实例8——微带线的设计 (77)1.11.1 初始设置 (77)1.11.2 建立三维模型 (78)1.11.3 建立波导端口激励 (79)1.11.4 分析设置 (80)1.11.5 保存工程 (80)1.11.6 分析 (81)1.11.7 生成报告 (82)1.11.8 产生场覆盖图 (82)1.12 HFSS设计实例9——单极子天线的设计 (85)1.12.1 创建工程 (85)1.12.2 创建模型 (85)1.12.3 设置变量 (89)1.12.4 设置模型材料和边界参数 (90)1.12.5 设置求解频率和扫描范围 (93)1.12.6 设置辐射场 (93)1.12.7 确认设置并分析 (93)1.12.8 显示结果 (94)1.13 HFSS设计实例10——方形切角圆极化贴片天线的设计 (98)1.13.1 设计原理及基本公式 (99)1.13.2 创建工程和运行环境设定 (99)1.13.3 创建模型 (99)1.13.4 求解设置 (100)1.13.5 有效性验证和仿真 (100)1.13.6 输出结果 (100)1.13.7 设置变量与参数建模 (102)1.13.8 创建参数分析并求解 (102)1.13.9 优化求解 (104)1.13.10 输出优化后的结果 (105)1.14 参考文献 (108)第一章用HFSS仿真微波传输线和元件1.1 Ansoft HFSS概述1.1.1 HFSS简介Ansoft HFSS (全称High Frequency Structure Simulator, 高频结构仿真器)是Ansoft公司推出的基于电磁场有限元方法(FEM)的分析微波工程问题的三维电磁仿真软件,可以对任意的三维模型进行全波分析求解,先进的材料类型,边界条件及求解技术,使其以无以伦比的仿真精度和可靠性,快捷的仿真速度,方便易用的操作界面,稳定成熟的自适应网格剖分技术使其成为高频结构设计的首选工具和行业标准,已经广泛地应用于航空、航天、电子、半导体、计算机、通信等多个领域,帮助工程师们高效地设计各种高频结构,包括:射频和微波部件、天线和天线阵及天线罩,高速互连结构、电真空器件,研究目标特性和系统/部件的电磁兼容/电磁干扰特性,从而降低设计成本,减少设计周期,增强竞争力。

微波技术与天线实验报告

微波技术与天线实验报告

�����
=
2.65代入式子,可以计算出微带天线矩形
贴片的宽度,即
w = 46.26mm
(2)、有效介电常数ε������ 把h = 3mm w = 46.26mm ε������ = 2.65代入,可计算出有效介电常数,即
ε������ = 2.444 (3)、辐射缝隙的长度∆L
把h = 3mm w = 46.26mm ε������ = 2.444代入式子,可以计算出微带天线辐射 缝隙的长度,即
五、HFSS 的实验结果 根据之前的参数设计得出的 HFSS 模型如图.2,进行仿真后的结果如图.3。查
看天线信号端口回波损耗(即 S11)的扫频分析结果,给出天线的谐振点。生成 如图所示的 S11 在 1.8~3.2GHz 频段内的扫频曲线报告。从图中可以看出,当 S11 最小时,频率是 2.36GHz。
������
=
0.412ℎ
(������������ (������������
+ −
0.3)(���ℎ��� + 0.264) 0.258)(���ℎ��� + 0.8)
对于同轴线馈电的微带贴片天线,在确定了贴片长度L和宽度������之后,还需要确
定同轴线馈电点的位置,馈电点的位置会影响天线的输入阻抗,在微波应用中通
算结果就可以达到足够的准确,因此设计中参考地的长度������������������������和宽度������������������������只需 满足以下两式即可
������������������������ > L + 6h ������������������������ > w + 6h
标(������������, ������������),即

HFSS天线仿真实验报告

HFSS天线仿真实验报告

HFSS天线仿真实验报告半波偶极子天线设计通信0905杨巨U2009138922012-3-7半波偶极子天线仿真实验报告一、实验目的1、学会简单搭建天线仿真环境的方法,主要是熟悉HFSS软件的使用方法2、了解利用HFSS仿真软件设计和仿真天线的原理、过程和方法3、通过天线的仿真,了解天线的主要性能参数,如驻波比特性、smith圆图特性、方向图特性等4、通过对半波偶极子天线的仿真,学会对其他类型天线仿真的方法二、实验仪器1、装有windows系统的PC一台2、HFSS13.0软件3、截图软件三、实验原理1、首先明白一点:半波偶极子天线就是对称阵子天线。

2、对称振子是中间馈电,其两臂由两段等长导线构成的振子天线。

一臂的导线半径为a,长度为l。

两臂之间的间隙很小,理论上可以忽略不计,所以振子的总长度L=2l。

对称振子的长度与波长相比拟,本身已可以构成实用天线。

3、在计算天线的辐射场时,经过实践证实天线上的电流可以近似认为是按正弦律分布。

取图1的坐标,并忽略振子损耗,则其电流分布可以表示为:式中,Im为天线上波腹点的电流;k=w/c为相移常数、根据正弦分布的特点,对称振子的末端为电流的波节点;电流分布关于振子的中心店对称;超过半波长就会出现反相电流。

4、在分析计算对称振子的辐射场时,可以把对称振子看成是由无数个电流I(z)、长度为dz的电流元件串联而成。

利用线性媒介中电磁场的叠加原理,对称振子的辐射场是这些电流元辐射场之矢量和。

电流元I(z)dz所产生的辐射场为图2 对称振子辐射场的计算如图2 所示,电流元I(z)所产生的辐射场为其中5、方向函数四、实验步骤1、设计变量设置求解类型为Driven Model 类型,并设置长度单位为毫米。

提前定义对称阵子天线的基本参数并初始化2、创建偶极子天线模型,即圆柱形的天线模型。

其中偶极子天线的另外一个臂是通过坐标轴复制来实现的。

3、设置端口激励半波偶极子天线由中心位置馈电,在偶极子天线中心位置创建一个平行于YZ面的矩形面作为激励端口平面。

微波技术与天线实验81利用HFSS仿真UWB天线

微波技术与天线实验81利用HFSS仿真UWB天线

微波技术与天线实验报告
实验名称:采用HFSS仿真UWB天线
学生班级:
学生姓名:
学生学号:
一、实验目的
学会使用HFSS仿真图1所示的超宽带天线,理解天线的工作带宽。

z
r0
图1天线结构图
二、实验步骤
1 画模型
表1 天线三维体模型
中心频率为7.5GHz,对应波长lbd=40mm。

z
r0
ycir=s-r0,zcir=zgnd2+h/2
剪切操作:选择gnd1,gnd2,gnd3,点击Modeler>Boolean>subtract ,将blank 下设置为
gnd1,tool 下设置为gnd2,gnd3
(a)剪切前 (b)剪切后
z
r0
xpatch=xsub+dxsub,ypatch=ycir-wf/2, wf=1.5mm,b=1mm,d=8mm,
2 设置源与边界条件
(1)将gnd的边界条件设置为PerfectE。

(2)将patch设置为PerfectE。

(3)将feed设置为lumped port。

(4)将airbox设置为radiation边界条件。

3 设置求解频率及扫频
(1)analysis>add soultion setup中frequency设置为7.5GHz。

(2)在analysis>setup1>add frequency sweep中频率范围为2-13GHz。

HFSS微波仿真实验,实验报告六合一

HFSS微波仿真实验,实验报告六合一

肇庆学院 12通信2班杨桐烁 2实验一 T形波导的内场分析和优化设计实验目的1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。

2、掌握T型波导功分器的设计方法、优化设计方法和工作原理。

实验仪器1、装有windows 系统的PC 一台2、 HFSS13.0 或更高版本软件3、截图软件T形波导的内场分析实验原理本实验所要分析的器件是下图所示的一个带有隔片的T形波导。

其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。

正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。

通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。

实验步骤1、新建工程设置:运行HFSS并新建工程、选择求解类型、设置长度单位2、创建T形波导模型:创建长方形模型、设置波端口源励、复制长方体、合并长方体、创建隔片3、分析求解设置:添加求解设置、添加扫频设置、设计检查4、运行仿真分析5、查看仿真分析计算结果内场分析结果1、图形化显示S参数计算结果8.008.258.508.759.009.259.509.7510.00Freq [GHz]0.130.250.380.500.630.75Y1TeeModalXY Plot 1ANSOFTCurve Infomag(S(P ort1,P ort1))Setup1 : Sw eep1mag(S(P ort1,P ort2))Setup1 : Sw eep1mag(S(P ort1,P ort3))Setup1 : Sw eep1图形化显示S参数幅度随频率变化的曲线2、查看表面电场分布表面场分布图3、动态演示场分布图T 形波导的优化设计实验原理利用参数扫描分析功能。

分析在工作频率为10GHz 时,T 形波导3个端口的信号能量大小随着隔片位置变量Offset 的变化关系。

利用HFSS 的优化设计功能,找出隔片的准确位置,使得在10GHz 工作频点,T 形波导商品3的输出功率是端口2输出功率的两倍。

HFSS天线仿真操作步骤(GAO)

HFSS天线仿真操作步骤(GAO)

HFSS天线仿真操作步骤画激励面点选矩形框1 设置边界条件1 选择某个需要设成地的面,然后2 设为地平面(打钩)注:辐射单元也需要设置,但不需要在无线地的选项中打钩。

2 设介质选择好某个体,Box1.在下面的菜单中有“Material”项目。

点““Material”,弹出一个菜单。

选“Add Material”,又弹出一个菜单将原介电常数数值1修改为4.5后点“OK”则该处改为2.65点“确定”3 设置金属化孔重新选择某个面:“Edit”“Select”“By Nane”弹出菜单选择金属化通孔,点“OK”点框图中的“vacuum”(真空)弹出一个菜单移动滑动条到出现“copper”双击,确定。

4设置激励端口选“Wave Port”,弹出一个菜单。

选“下一步”点“None”,弹出下拉菜单,选“New Line”出现下面菜单设电场方向从下底板拉到上底板,但方向必须是垂直的为保证是垂直的,dx必须为0. 回车后弹出菜单点“下一步”出现下面菜单选择选完成。

5 创建辐射边界1 选2 输入合适数值3 输入合适数值4 回车确定5 辐射边界的一个面必须和激励面是一个面。

选“HFSS”“Boundaries(边界)”“Assign(分配)”“Radiation(辐射)”弹出一个菜单点“OK”。

让辐射边界不显示出来。

点右键,选“View”“Hide Selection”6 选择步进值点“放大镜”符号弹出一个菜单设置步进值点,弹出下面菜单:点“确定”,弹出下面菜单:修改几个数值:8 运行中心频率选“4G”打开“Setup1”下面的“Sweep1”修改步进值为“0.01”10输出曲线1 用左键点击“Results”弹出下拉菜单:选第一个“Create Report”(创建报告)弹出一个菜单点“OK”,弹出一个菜单:选“Done”即可输出曲线12 表面电流分布的输出1 选择要分析电流的那个面点右键,选“Fields”,“E”“Mag_E”,弹出一个菜单选“Done”,即可显示结果。

微波技术与天线实验9利用HFSS仿真对称振子天线

微波技术与天线实验9利用HFSS仿真对称振子天线

关于HFSS使用说明:1、按照实际器件的几何结构画图。

画完后三维体在solidsl列表下,二维面在sheets列表下。

2、对solids列表下的三维体进行设置:(1)设置内部材料(material),默认材料为vaccum,如果不是vaccum需要更改材料。

(2)设置外表面三维体的外表面默认为boundary >perfect E,如果不是perfect E则需要设置为源(excitation)或者边界条件(boundary)。

(比如波导的两个端口设置为waveport)。

(3)多个三维体之间的交界面不需要设置,软件自行设置。

3、sheets列表下的二维面要设置为excitation或者boundary,不能为Unassigned。

(1)一个面只设置一次;(2)集总类型的源excitation>lumped port或者集总边界Boundary>Lumped RLC需要先画一个面(这个面在实际器件中并不存在,而是为了设置集总源或者集总元件而需要画),然后在面上设置;(3)为设置集总源或者集总元件而画的面需要连接两个导体,否则在设置时会出错。

4、对于放置于无限大空间的天线,需要画airbox,软件只对airbox内部区域进行数值方法计算,外部区域不需计算。

(1)airbox的外表面距离天线的边界为λ/4~λ/2(airbox尺寸越大计算区域越大需要内存越大);(2)airbox的表面设置为boundary>radiation。

5、对于excitation与boundary的设置顺序需遵循:(1)如果有peferct E类型的boundary,应在assign excitation前设置;(2)radiation边界条件要在所有的excitation与boundary设置完毕之后进行。

6、扫频计算如果要计算一个频段范围(f1-f2),需要设置frequency sweep,在frequency sweep设置之前需要先设置一个点频f0=(f1+f2)/2,然后通过fast或interpolating方式进行扫频计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一实验目的
1 学会使用Ansoft软件hfss工具包分析阵列天线的基本步骤。

2 计算四元阵的方向图,并观察馈电电压相位改变时方向图的变化。

图0 对称振子四元阵
二实验原理及步骤
1、建立天线模型
按照教材P199图5.2-17给出的四元阵的示意图,计算出天线各单元的尺寸和坐标位置,建立模型进行仿真(如图0)。

工作频率为3GHz,波长lbd=100mm。

四分之一波长振子单臂长度l0=lbd/4=25mm, 阵列单元间距d=lbd/250mm,各振子臂为以z轴各为轴的圆柱体,模型如表1。

其中r0=1mm,l0= 25mm,d=50mm。

表1 振子模型
各振子的激励加在矩形平面上(平行于yz面),模型如表2。

表2 激励源模型
Airbox为立方体,顶点坐标为(-lbd/4-r0, -lbd/4-r0, -lbd/4- l0-0.5mm),尺寸为xsize=2*(lbd/4+r0), ysize=2*lbd/4+4*r0+3*d,zsize=2*(lbd/4+l0+0.5mm)。

其中lbd=100 mm,材料为vaccum,边界条件为radiation。

2、设置频率3GHz,运行计算。

3、设置立体角度
在Project Manager窗口中,选择dipole>HFSSDesign1>Radiation,点击鼠标右键,选择Inser Farm Field Setup>Infinite Sphere,出现远场辐射球设置界面“Far Field Radiation Sphere”,设置如图1,点击确定。

图1 远场辐射球设置界面
4、仿真结果
(1)等幅同相激励
选择project manger窗口中的Field Overlays,点击鼠标右键Edit Source,按照图2所示设置各端口的激励源,等幅同相激励。

此时H面方向图如图3,立体方向图如图4。

图3 α=0时的H面方向图(theta=90deg)
图4 α=0的立体方向图
(2)等幅α=90。

激励
三试验报告要求
1、写出阵元为半波振子、单元间距为λ/2的均匀四元阵的仿真步骤。

2、给出α=0、90。

、180。

、270。

的H面方向图。

相关文档
最新文档