江苏省无锡市2020届高三上学期期末考试数学试卷Word版
无锡市2014届高三上学期期末考试数学试题

无锡市2014届高三上学期期末考试数学试题2014.1一、填空题(70分)1、已知集合A={0,m},B={1,2},A∩B={1},则A∪B=____2、若为实数,则a等于_____3、已知,若p且q为真,则x的取值范围是___4、甲、乙两个学习小组各有10名同学,他们在一次数学测验中成绩的茎叶图(如图),则他们在这次测验中成绩较好的是____组。
5、已知一个算法(如图),则输出结果为____6、已知正六棱柱的侧面积为72cm2,高为6 cm,那么它的体积为__cm27、甲、乙两人玩数学游戏,先由甲心中任想一个数字记为a,再由乙猜甲刚才想的数学,把乙猜的数字记为b,且,则称甲乙“心有灵犀”,现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为____8、已知变量x,y满足条件,则的取值范围是____9、已知函数的图象C1向左平移个单位得到图象C2,则C2在上单调减区间是___10、已知向量,若点A,B,C能构成三角形,则实数m应满足条件_____11、双曲线右支上一点P到左焦点的距离是到右准线距离的6倍,则该双曲线离心率的范围为____12、已知数列的前n项和Sn,满足,则当时,n的最小值为____13、设函数,若存在,使成立,则实数a的取值范围为____14、若第一象限内的动点P(x,y)满足,则以P为圆心R为半径且面积最小的圆的方程为____15、(本题满分14分)在三棱柱ABC-A1B1C1中,已知平面BB1C1C⊥平面ABC,AB=AC,D是BC中点,且B1D⊥BC1。
(I)证明:A1C∥平面B1AD;(II)证明BC1⊥平面B1AD。
16、(本题满分14分)在△ABC中,角A,B,C的对边分别为a,b,c,cosC=3 10。
(I)若,求c的最小值;(II)设向量,求sin(B-A)的值。
17、(本题满分14分)如图,已知椭圆E的中心为O,长轴的两个端点为A,B,右焦点为F,且,椭圆E的右准线l的方程为(I)求椭圆E的标准方程;(II)若N为准线l上一点(在x轴上方),AN与椭圆交于点M,且18、(本题满分16分)如图所示,把一些长度均为4米(PA+PB=4米)的铁管折弯后当作骨架制作“人字形”帐蓬,根据人们的生活体验知道:人在帐蓬里“舒适感”k与三角形的底边长和底边上的高度有关,设AB为x,AB边上的高PH为y,则,若k越大,则“舒适感”越好。
江苏省南通、泰州市2020届高三第一次调研测试数学试题含附加题 Word版含答案

南通市、泰州市2020届高三上学期期末联考数学试卷2020.1.14一、填空题1.已知集合 A = {-1,0,2}, B = {-1,1,2}, 则 A ∩B =________.2.已知复数 z 满足(1+ i ) z = 2i , 其中i 是虚数单位,则 z 的模为_______.3.某校高三数学组有 5名党员教师,他们一天中在“学习强国”平台上的学习积分依次为 35,35,41,38,51,则这5 名党员教师学习积分的平均值为_______.4.根据如图所示的伪代码,输出的 a 的值为_______.5.已知等差数列{a n } 的公差 d 不为 0 ,且 a 1,a 2,a 4 成等比数列,则1a d的值为_____. 6.将一枚质地均匀的硬币先后抛掷 3 次,则恰好出现 2 次正面向上的概率为______.7.在正三棱柱 ABC - A 1B 1C 1 中, AA 1=AB =2 ,则三枝锥 A 1 - BB 1C 1 的体积为______.8.已如函数.若当 x =6π时,函数 f (x ) 取得最大值,则ω 的最小值为______.9. 已 知 函 数 f (x ) = (m - 2)x 2 + (m - 8)x (m ∈R ) 是 奇 函 数 . 若 对 于 任 意 的 x ∈ R , 关 于 x 的 不 等 式f ( x 2 +1) < f (a ) 恒成立,则实数 a 的取值范围是______.10.在平面直角坐标系 xOy 中, 已知点 A ,B 分别在双曲线C : x 2 - y 2 =1 的两条渐近线上, 且双曲线C 经过线段 AB 的中点.若点 A 的横坐标为 2 ,则点 B 的横坐标为______.11.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放出的能量 E (单位:焦耳)与地震里氏震级 M 之间的关系为 lgE = 4.8 +1.5M . 2008 年 5 月汶川发生里氏8.0 级地震,它释放出来的能量是 2019 年 6 月四川长宁发生里氏 6.0 级地震释放出来能量的______倍.12. 已知△ABC 的面积为 3 ,且 AB = AC .若2CD DA =,则 BD 的最小值为______.13.在平面直角坐标系 xOy 中, 已知圆C 1 : x 2 + y 2 = 8 与圆C 2 : x 2 + y 2 + 2x + y -a = 0 相交于 A ,B 两点.若圆C 1 上存在点 P ,使得△ABP 为等腰直角三角形,则实数 a 的值组成的集合为______. 14.已知函数若关于 x 的方程 f 2 ( x ) + 2af (x )+1- a 2 = 0 有五个不相等的实数根,则实数a 的取值范围是______.二、解答题15. (本小题满分14 分)如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,PC ⊥AB ,D,E 分别为BC,AC 的中点。
江苏省无锡市2024届高三上学期期终教学质量调研测试数学试题

32 19.如图,在四棱锥 A BCDE 中,平面 ABC 平面 BCDE ,CD DE 2BE ,BC CD ,
BE//CD , F 是线段 AD 的中点.
(1)若 BA BC ,求证: EF 平面 ACD ; (2)若 BE 1,ABC 60 ,且平面 ABC 与平面 ADE 夹角的正切值为 2 3 ,求线段 AC
排队方法数为
.(用数字作答)
15.已知函数
f
x
sin
3x
在区间,上的值域为
2 2
,1
,则
的值为
.
16.已知函数
f
x
ex , x x2 ,
0 x
0
,若函数
f
x
的图象在点
A
x1,
f
x1
x1
0
和点
B x2 , f x2 x2 0 处的两条切线相互平行且分别交 y 轴于 M 、 N 两点,则
分别是侧棱 CC1 ,BB1 上的点,且 MC 2 ,NB 1 ,则四棱锥 A BCMN 的体积为( )
A. 3
B.2
C. 3 3
D.6
7.已知 Sn 是等比数列an 的前 n 项和,且存在 k N ,使得 Sk3 , Sk9 , Sk6 成等差数
列.若对于任意的 m N ,满足 am2 am5 32 ,则 am8 ( )
p ,则当 k
取不小于
r
1 的最小正整数时,
p
PX
k 最大
三、填空题 13.已知直线 l : 3x y 6 0 与圆 C : x2 y 2 2x 4y 0 相交于 A, B 两点,则
| AB |
江苏无锡2024届高三上学期期终教学质量调研测试数学试题(解析版)

无锡市2023年秋学期高三期终教学质量调研测试数学2024.11. 已如集合{}1,0,1,2,3,4A 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.=−,集合{}2230B x xx =−−≤,则A B = ( )A. {}1,0,1,2,3−B. {}1,0,1−C. {}0,1,2D. {}1,0−【答案】A 【解析】【分析】根据一元二次不等式求得集合B ,结合交集运算,可得答案. 【详解】由题意集合()(){}{}31013B x x x x x =−+≤=−≤≤,{}1,0,1,2,3A B ∩=−.故选:A. 2. 复数12i3i−+在复平面内对应的点所在的象限为( ) A. 第一象限 B. 第二象限 C. 笵三象限 D. 第四象限【答案】D 【解析】【分析】利用复数的运算将12i3i−+化简,从而可求对应的点的位置. 【详解】因为()()()()12i 3i 12i17i 17i 3i3i 3i 101010−⋅−−−===−++⋅−, 所以复数12i 3i −+在复平面内对应的点为17,1010 −,易得该点在第四象限.故选:D3. 已知a ,b 是两个不共线的向量,命题甲:向量ta b + 与2a b − 共线;命题乙:12t =−,则甲是乙的.( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C 【解析】【分析】利用向量共线定理即可判断.【详解】向量ta b + 与2a b −共线等价于()2ta ba b λ+=− .因为a ,b 是两个不共线的非零向量,所以12t λλ= =− ,解得:12t =−.所以甲是乙的充要条件. 故选:C.4. 从甲地到乙地的距离约为240km ,经多次实验得到一辆汽车每小时托油量Q (单位:L )与速度v (单位:km/h (0120v ≤≤)的下列数据:v0 40 60 80 120 Q0.0006.6678.12510.00020.000为描述汽车每小时枆油量与速度的关系,则下列四个函数模型中,最符合实际情况的函数模型是( )A. Qav b =+ B. 32Q av bv cv =++C. 0.5v Q a =+D. log a Q k v b =+【答案】B 【解析】【分析】根据题意以及表中数据可知,函数在定义域[]0,120上单调递增,且函数的图象经过坐标原点,即可判断出最符合实际的函数模型.【详解】依题意可知,该函数必须满足三个条件:第一,定义域为[]0,120;第二,在定义域上单调递增;第三,函数经过坐标原点.对于A 选项: Qav b =+不经过坐标原点,故A 不符合; 对于B 选项: 32Q av bv cv =++满足以上三个条件,故B 符合; 对于C 选项: 0.5v Q a =+在定义域内单调递减,故C 不符合;对于D 选项:当0v =时,log a Q k v b =+无意义,故D 不符合; 故选:B.5. 已知0a b >>,设椭圆1C :22221x y a b +=与双曲线2C :22221x ya b−=的离心率分别为1e ,2e .若213e e =,则双曲线2C 的渐近线方程为( )A. y x =B. 45y x =±C. y x =D. y x = 【答案】A 【解析】【分析】根据题意及椭圆和双曲线的离心率公式求得ba的值,写出双曲线的渐近线即可. 【详解】因为213e e ==,解得b a =,所以双曲线2C的渐近线方程为y x =. 故选:A.6. 已知直四棱柱1111ABCD A B C D −底面是边长为2的菱形,且120DAB ∠=°.若M ,N 分别是侧棱1CC ,1BB 上的点,且2MC =,1NB =,则四棱锥A BCMN −的体积为( )A.B. 2C. D. 6【答案】A 【解析】【分析】通过分析得到AH 为四棱锥A BCMN −的高,计算体积即可. 【详解】取BC 的中点H ,连接AH ,由直四棱柱1111ABCD A B C D −的底面是边长为2的菱形,且120DAB ∠=°,所以60,ABC ∠=°易得AB BC AC ==,所以AH BC ⊥,又因为1BB ⊥面ABCD ,且AH ⊂面ABCD ,的所以1BB AH ⊥,又因为1,BB BC B ∩=且1,BB BC ⊂面11BB CC , 所以AH ⊥面11BB CC ,故AH 为四棱锥A BCMN −的高.易得到AH =,四边形BCMN 的面积为()112232S =×+×=,所以四棱锥A BCMN −的体积为11333V S AH =⋅=×=,故选:A.7. 已知n S 是等比数列{}n a 的前n 项和,且存在k ∈N ,使得3k S +,9k S +,6k S +成等差数列.若对于任意的N m ∈,满足2532m m a a +++=,则8m a +=( ) A. 32m + B. 16m + C. 32 D. 16【答案】D 【解析】【分析】借助等比数列知识,利用3k S +,9k S +,6k S +成等差数列,求出312q =−,再利用2532m m a a +++=,求出2m a ,再计算8m a +即可.【详解】因为3k S +,9k S +,6k S +成等差数列,所以9362k k k S S S +++=+ 即96930k k k k S S S S ++++−+−=, 即9879876540k k k k k k k k k a a a a a a a a a +++++++++++++++++=, 所以()98765420k k k k k k a a a a a a +++++++++++=, 因为数列{}n a 是等比数列,且0n a ≠,所以()543244444420k k k k k k a q a q a qaq a q a ++++++⋅+⋅+⋅+⋅+⋅+=, ()32242110k a q q q q q + +++++=,所以()3222110qqq q q +++++=,即()()322110q q q +++=, 所以210q q ++=(无解)或3210q +=,即312q =− 又因为2532m m a a +++=,所以()33222132m m m a a q a q ++++⋅=+=, 所以264m a +=,所以2682164162m m a a q ++ =⋅=×−=,故选:D.8. 已知函数()f x 的定义域为R ,且()2f x x +为奇函数,()2f x x −为偶函数.令函数()()(),0,,0.f x xg x f x x ≥ = −< 若存在唯一的整数0x ,使得不等式()()2000g x a g x +⋅<成立,则实数a 的取值范围为( ) A. [)(]8,31,3−− B. [)(]3,13,8−−∪ C. [)(]3,03,8− D. [)(]8,30,3−−【答案】B 【解析】【分析】先根据函数奇偶性定义求出()f x ,表示出()g x ,画出图象,分类讨论即可.【详解】令()()2h x f x x =+,()()2m x f x x =−,因为()2f x x +为奇函数,()2f x x −为偶函数.所以()()()2h x h x f x x −=−=−+,()()()2m x m x f x x −==−+, 所以()()()()22,h x f x x h x f x x =+ −=−+ 可得()()22f x f x x +−=− ①, 同理()()()()2,2mx f x x m x f x x =−=−+可得()()4f x f x x −−= ②, 由+①②得()22f x x x =−+,所以()222,02,0x x x g x x x x −+≥= −< ,要满足存在唯一的整数0x ,使得不等式()()2000g x a g x +⋅< 成立, 而()()()()200000g x a g x g x g x a +⋅=+< , 当0a =时,()200g x < ,显然不成立, 当a<0时,要使()()00,g x a ∈−只有一个整数解,因为()()111,3,g g =−= 所以13a <−≤,即31a −≤<−.当0a >时,要使()()0,0g x a ∈−只有一个整数解,因为()()()0,332,48g g g ==−=−, 所以83a −≤−<−,即38a <≤.综上所述:实数a 的取值范围为[)(]3,13,8−−∪. 故选: B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 第一组样本数据12,,,n x x x ,第二组样本数据1y ,2y ,…,n y ,其中21i i y x =−(1,2,,i n =⋅⋅⋅),则( )A. 第二组样本数据的样本平均数是第一组样本数据的样本平均数的2倍B. 第二组样本数据的中位数是第一组样本数据的中位数的2倍C. 第二组样本数据的样本标准差是第一组样本数据的样本标准差的2倍D. 第二组样本数据的样本极差是第一组样本数据的样本极差的2倍 【答案】CD 【解析】【分析】根据平均数和标准差的性质以及中位数和极差的概念可得答案.【详解】设样本数据12,,,n x x x ,的样本平均数为x ,样本中位数为m ,样本标准差为s ,极差为max min x x −,对于A,C 选项:由21i i y x =−,根据平均数和标准差的性质可知, 样本数据1y ,2y ,…,n y 的样本平均数为21x −,故A 错误;样本数据1y ,2y ,…,n y 的样本方差为2224a s s =,所以第二组数据的样本标准差2s ,故C 正确; 对于B 选项:根据中位数的概念可知,样本数据1y ,2y ,…,n y 的中位数为21m −,故B 错误; 对于D 选项:根据极差的概念可知, 样本数据1y ,2y ,…,n y 的极差为()()()max minmax min max min 21212y y x x x x −=−−−=−,故D 正确.故选:CD.10. 已知函数()πsin 23f x x=+,()πcos 26g x x=+,则下列说法正确的是( ) A. ()y f x =的图象关于点π,012对称 B. ()g x 在区间π5π,26上单调递增 C. 将()g x 图象上的所有点向右平移π6个单位长度即可得到()f x 的图象 D.函数()()()h x f x g x =+【答案】BCD 【解析】【分析】对于A 选项::将π12x =代入()f x 验证即可;对于B 选项:换元后结合三角函数图象与性质判断即可;对于C 选项:利用三角函数得图象变换化简整理即可;对于D 选项:借助和差角公式计算即可.【详解】对于A 选项:将π12x =代入()f x ,得ππππsin 2sin 1121232f=×+==,故()y f x =的图象不关于点π,012对称,故选项A 错误; 对于B 选项:在()πcos 26g x x =+,令π26t x =+,则cos y t =, 因为π5π,26x∈ ,所以π7π11π2,666t x =+∈, 根据余弦函数图象可知cos y t =在7π11π,66单调递增,故选项B 正确; 对于C 选项:将()g x 图象上的所有点向右平移π6个单位长度, 可得到πππππππcos 2cos 2cos 2sin 2(),6666233g x x x x x f x −−+−−+++故选项C 正确;对于D 选项:()()()ππsin 2cos 236h x f x g x x x=+=+++,()π11sin 2cos 2sin 222sin 22,322h x x x x x x x x∴=+++=+−结合余弦函数的性质可知:()2h x x =≤,故选项D 正确.故选:BCD.11. 已知过点()0,t 的直线1l 与抛物线C :24x y =相交于A 、B 两点,直线2l :4y kx =+是线段AB 的中垂线,且1l 与2l 的交点为(),Q m n ,则下列说法正确的是( ) A. m 为定值 B. n 为定值C. k −<<且0k ≠ D. 22t −<<【答案】BD 【解析】【分析】由两直线位置关系设出直线1l 的方程,联立直线与抛物线方程,求出点Q 的坐标,代入4y kx =+即可判断选项A 和B ,利用已知条件找出k 与t 的关系,结合0∆>即可判断选项C 和D.【详解】由题意可知,直线1l 的斜率存在且不为0,因为直线1l 过点()0,t 且与抛物线C :24x y =相交于A 、B 两点,直线2l :4y kx =+是线段AB 的中垂线,所以设直线1l :1,0y x t k k=−+≠, 联立方程214y x t kx y=−+ = ,可得2440x x t k +−=, 所以216160t k ∆=+>,121244x x k x x t+=−=− , 所以AB 的中点坐标222,t k k−+, 由题意可知,点(),Q m n 是AB 的中点,所以2m k =−,22n t k =+, 因为(),Q m n 在直线2l :4y kx =+上,所以4n km =+,因为2m k =−,所以242n k k=−×+=,所以n 为定值,故选项B 正确; 因为k 是变量,所以m 不是定值,故选项A 错误;因为22n t k =+,2n =,所以222t k +=,即222t k =−, 又因为216160t k ∆=+>,所以221621620k k+−>,即216320k −>,解得k >k <C 错误; 对选项D ,由选项C 可得212k >,222t k=−, 所以22122k t =>−,解得22t −<<,故选项D 正确. 故选:BD.12. 已知在伯努利试验中,事件A 发生的概率为()01p p <<,我们称将试验进行至事件A 发生r 次为止,试验进行的次数X 服从负二项分布,记作(),X NB r p ∼,则下列说法正确的是( )A. 若11,2X NB ∼ ,则()12kP X k ==,1,2,3,k =⋅⋅⋅ B. 若(),X NB r p ∼,则()()1k rr P X k p p −==−,,1,2,k r r r =++⋅⋅⋅ C 若(),X NB r p ∼,(),Y B n p ∼,则()()P X n P Y r ≤=≥ D. 若(),X NB r p ∼,则当k 取不小于1r p−的最小正整数时,()P X k =最大 【答案】ACD 【解析】【分析】利用负二项分布的概念可判断AB 选项;利用二项分布和负二项分布的概率公式可判断C 选项;分析可得()()()()11P X k P X k P X k P X k =≥≥− =≥≥+,结合负二项分布的概率公式可判断D 选项. 【详解】对于A 选项,因为11,2X NB ∼,则()11111111122222kk P X k − ==−−−⋅= 个,A对;对于B 选项,因为(),X NB r p ∼,则()()()11111C 1C 1k rk rr r r rk k P X k pp p p p −−−−−−−==−=−,,1,2,k r r r =++⋅⋅⋅,B 错; 对于C 选项,因为从{}1,2,,n 中取出()0r j j n r +≤≤−个数12r j a a a +<<< 的取法有C r jn +种,.这些取法可按r a 的值分类,即()0r a r i i n r j =+≤≤−−时的取法有11C C r ir i n r i −−+−−种,所以,110CC C n r jr i r jr i n r i n i −−−+−+−−==∑,因为(),X NB r p ∼,(),Y B n p ∼,设1q p =−,则1p q +=, 所以,()()111100C C n rn rn r ir r ir r ir ir i i i P X n p q p q p q −−−−−−−+−+==≤==+∑∑11110000CCC C n rn r i n r i n rr r ijj n r i jr j r j n r jr in r ir i n r i i j j i p q p qp q −−−−−−−−−−−+−−−+−−−+−−=====⋅=∑∑∑∑ ()0Cn rr jr j n r jnj p q P Y r −++−−==≥∑,C 对;对于D 选项,因为(),X NB r p ∼,()P X k =最大,则()()()()11P X k P X k P X k P X k =≥≥−=≥≥+, 所以,()()()()111121111C 1C 1C 1C 1k r k r r r r r k k k r k r r r r r k k p p p p p p p p −−−−−−−−−+−−− −≥− −≥− ,解得111k r k p p −−≤≤+, 所以,当k 取不小于1r p−的最小正整数时,()P X k =最大,D 对. 故选:ACD.【点睛】关键点点睛:本题考查负二项分布的问题,解决本题的关键在于正确理解负二项分布的定义,知晓负二项分布的概率公式,结合负二项分布的概率公式求解.三、填空题:本题共4小题,每小题5分,共20分.13. 已知直线6:30l x y −−=与圆222:40C x y x y +−−=相交于,A B 两点,则||AB =______.【解析】【分析】首先求出圆的圆心坐标和半径,计算圆心到直线的距离,再计算弦长即可. 【详解】圆222:40C x y x y +−−=,22(1)(2)5x y −+−=,圆心(1,2),半径r =.圆心到直线的距离dAB =【点睛】本题主要考查直线与圆的位置关系中的弦长问题,熟练掌握弦长公式为解题的关键,属于简单题. 14. 随着杭州亚运会的举办,吉祥物“琮琮”、“莲莲”、“宸宸”火遍全国.现有甲、乙、丙3位运动员要与“琮琮”、“莲莲”、“宸宸”站成一排拍照留念,则这3个吉祥物互不相邻的排队方法数为______.(用数字作答) 【答案】144 【解析】【分析】先将甲、乙、丙3位运动员排序,然后将“琮琮”、“莲莲”、“宸宸”三个吉祥物插入3位运动员形成的4个空位中,利用插空法可得出不同的排队方法种数. 【详解】先将甲、乙、丙3位运动员排序,然后将“琮琮”、“莲莲”、“宸宸”三个吉祥物插入3位运动员形成的4个空位的3个空位中,所以,不同的排队方法种数为3334A A 624144=×=种. 故答案为:144.15. 已知函数()()sin 3f x x ϕ=+在区间[],ϕϕ−上的值域为,则ϕ的值为______.【答案】π8【解析】【分析】先得到0ϕ>,根据[],x ϕϕ∈−得到[]32,4x ϕϕϕ+∈−,根据值域得到方程,检验后求出答案. 【详解】由题意得0ϕ>,当[],x ϕϕ∈−时,[]32,4x ϕϕϕ+∈−,由于()()sin 3f x x ϕ=+在区间[],ϕϕ−上的值域为, 故①π24π5π424ϕϕ −=− ≤≤ 或②5π44π204ϕϕ= −≤−< ,解①得π8ϕ=,满足π5π816ϕ≤≤解②得5π16ϕ=,不满足π08ϕ<≤,舍去, 综上,ϕ的值为π8. 故答案为:π816. 已知函数()2e ,0,0x x f x x x ≥= −< ,若函数()f x 的图象在点()()()111,0A x f x x <和点()()()222,0B x f x x >处的两条切线相互平行且分别交y 轴于M 、N 两点,则AM BN的取值范围为______.【答案】e,2 +∞【解析】【分析】由()()12f x f x =′′可得出21e 2x x =−,利用弦长公式得出22e 2x AM BN x =,利用导数求出函数()e 2xg x x=在()0,∞+上的值域,即可为所求. 【详解】当0x <时,()2f x x =−,()2f x x ′=−,则()112f x x =−′,当0x >时,()e xf x =,()e xf x ′=,则()22e xf x ′=,因为函数()f x 的图象在点()()()111,0A x f x x<和点()()()222,0B x f x x >处的两条切线相互平行,则()()12f x f x =′′,即212e x x −=,则21e2x x =−,AM =BN = 所以,2122e 2x AMx BN x x ==−=, 令()e 2xg x x =,其中0x >,则()()2e 12x x g x x′−=, 当01x <<时,()0g x ′<,此时函数()g x 在()0,1上单调递减, 当1x >时,()0g x ′>,此时函数()g x 在()1,∞+上单调递增,所以,()()e12g x g ≥=,因此,AM BN的取值范围是e ,2∞ +.故答案为:e ,2∞ +.【点睛】关键点点睛:解决本题的关键在于利用切线斜率相等得出2x 、1x 所满足的关系式,然后将AM BN转化为含2x 的函数,转化为函数的值域问题求解.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 设数列{}n a 满足11a =,22a =,214363n n n a a a n ++=−+−. (1)证明:数列{}13n n a a n +−+为等比数列; (2)求数列{}n a 通项公式. 【答案】(1)证明见解析 (2)()131232n n n n a −−=−−【解析】【分析】(1)整理题目中的等式,根据等比数列的定义,可得答案; (2. 【小问1详解】由214363n n n a a a n ++=−+−,则()21131339n n n n a a n a a n +++−++=−+, 所以()2113133n n n n a a n a a n+++−++=−+,由11a =,22a =,则21321340a a −+=−+=≠ 故数列{}13n n a a n +−+为等比数列. 【小问2详解】由(1)可知数列{}13n n a a n +−+是以4为首项,以3为公比,故11343n n n a a n −+−+=×,11433n n n a a n −+−=×−,的则0214331a a −=×−×;324332a a −=×−×;()214331n n n a a n −−−=×−×−.由累加法可得:()()()()1114133311312321322n n nn n n n a a −−×− +−×−−−=−=×−−−,由11a =,则()1312312n n n n a −−=×−−.18. 在ABC 中,角,,A B C 的对边分别为a ,b ,c ,已知ABC)222a b c +−. (1)求sin C ;(2)若()sin B A −,求tan A .【答案】(1(2. 【解析】【分析】(1.(2)借助三角函数的相关知识求出()()tan ,tan B A A B −+,利用配凑角及二倍角公式计算即可. 【小问1详解】结合题意:ABC的面积为)2221sin 2Sab C a b c ==+−, sin C =结合余弦定理可得:sin 0C C =>,所以22sin sin cos 1C C C C = +=,解得sin 1cos 8C C = =,所以sin C =【小问2详解】 因为()sin 0B A −=>,所以B A >,易得A 为锐角, 所以()31cos 32B A −==,所以()()()sin tan cos B A B A B A −−==−,由上问可知()sin sin C A B =+=,()1cos cos 8A B C +=−=−, 所以()()()sin tan cos A B A B A B ++=−+ ()()()()()()tan tan tan 2tan 1tan tan A B B A A A B B A A B B A +−−=+−−== ++−所以22tan tan 21tan AA A==−,整理得2tan 2tan 0A A +−=,即)(tan 33tan 0A A+=,解得tan A =,或tan A =19. 如图,在四棱锥A BCDE −中,平面ABC ⊥平面BCDE ,2CD DE BE ==,BC CD ⊥,//BE CD ,F 是线段AD 的中点.(1)若BA BC =,求证:EF ⊥平面ACD ;(2)若1BE =,60ABC ∠=°,且平面ABC 与平面ADE AC 的长. 【答案】(1)证明见详解 (2【解析】【分析】(1)首先证BG ⊥平面ACD ,通过证明四边形BGFE 是平行四边形,得EF BG ,进而得证; (2)利用空间向量法求解即可 【小问1详解】取AC 的中点G ,连接BG 、FG ,因为BA BC =,所以BG AC ⊥, 又因为 平面ABC⊥平面BCDE ,平面ABC 平面BCDE BC =,BC CD ⊥,所以CD ⊥平面ABC ,BG ⊂平面ABC ,所以CD BG ⊥,因为AC CD C = ,,AC CD ⊂平面ACD , 所以BG ⊥平面ACD ,又因为F 是线段AD 的中点, 所以FG CD ∥且12FG CD =,BE CD 且12BE CD =,所以FG BE 且FG BE =, 四边形BGFE 平行四边形,所以EF BG ,所以EF ⊥平面ACD 【小问2详解】 如图建系因为1BE =,又2CD DE BE ==,所以22CD DE BE ===, 又因为BC CD ⊥,//BE CD ,所以四边形BCDE 是直角梯形, 所以BC =设ABm =,所以),,0Am ,()2D ,()0,0,1E ,所以),,1EAm =−,()ED =,设平面ADE 的一个法向量()1,,n x y z=,是所以11my znz+−=⇒=+=,平面ABC的法向量()20,0,1n=,设平面ABC与平面ADE夹角为θ,所以tanθ=,cosθ,所以m=,所以32A,()C,所以AC=20. 为考察药物M对预防疾病A以及药物N对治疗疾病A的效果,科研团队进行了大量动物对照试验.根据100个简单随机样本的数据,得到如下列联表:(单位:只)(1)依据0.1α=的独立性检验,分析药物M对预防疾病A的有效性;(2)用频率估计概率,现从患病的动物中用随机抽样的方法每次选取1只,用药物N进行治疗.已知药物N的治愈率如下:对未服用过药物M的动物治愈率为12,对服用过药物M的动物治愈率为34.若共选取3次,每次选取的结果是相互独立的.记选取的3只动物中被治愈的动物个数为X,求X的分布列和数学期望.附:()()()()22()n ad bca b c d a c b dχ−=++++,n a b c d=+++α0.100 0.050 0.010 0.001xα2.7063.841 6.635 10.828【答案】20. 药物M对预防疾病A有效果. 21. 答案见解析.【解析】【分析】(1)根据公式算出卡方,与表格中的数据比较即可.(2)结合全概率公式先求概率,每名志愿者用药互不影响,且实验成功概率相同,X 服从二项分布求分布列和数学期望即可. 【小问1详解】零假设为0H :药物M 对预防疾病A 无效果, 根据列联表中的数据,经计算得到()()()()22()n ad bc a b c d a c b d χ−=++++2100(30101545)75254555××−×=×××100 3.030 2.70633=≈>, 根据小概率值0.1α=的独立性检验,我们推断零假设不成立, 即认为药物M 对预防疾病A 有效果. 【小问2详解】设A 表示药物N 的治愈率,1B 表示对未服用过药物M , 2B 表示服用过药物M 由题,()1150.625P B ==,()2100.425P B ==, 且()10.5P A B =,()20.75P A B =,()()()()()1122P A P B P A B P B P A B =×+×0.60.50.40.750.6=×+×=.药物N 的治愈率30.65P ==, 则3~3,5X B ,所以()303280C 5125P X === , ()121332361C 55125P X ===, ()212332542C 55125P X ===, ()3333273C 5125P X ===, X 的分布列如下表所示 X123()8365427901231251251251255E X =×+×+×+×=. 21. 在直角坐标系xOy 中,动点(),P x y 与定点()1,0F 的距离和P 到定直线l :4x =的距离的比是常数12,记动点P 的轨迹为W .(1)求W 的方程;(2)过动点()0,T t (0t <)的直线交x 轴于点H ,交W 于点,A M (点M 在第一象限),且2AT TH =.作点A 关于x 轴的对称点B ,连接BT 并延长交W 于点N .证明:直线MN .【答案】(1)22143x y +=;(2)证明见解析. 【解析】【分析】(1)根据题意列出关于动点P 的轨迹表达式,化简整理即可.(2)设直线AM 的方程为(),0y kx t k =+>,借助2AT TH =及韦达定理,求出,M N 的坐标,表示并化简直线MN 斜率,利用基本不等式计算即可. 【小问1详解】结合题意:设点P 到定直线l :4x =的距离为d ,则12PF d =,12=,化简得22143xy +=. 故W 的方程为22143x y +=.【小问2详解】由题意可知:直线AM 的斜率存在,故可设直线AM 的方程为(),0y kx t k =+>, 设()()1122,,,,A x y M x y ,所以()11,B x y −,,0t H k− ,因为2AT TH =,所以()11,2,t x t y t k−−=−−,且()0,T t 在椭圆内部.所以22,3,,3,t t A t B t k k −联立2234120y kx t x y =+ +−=,()2223484120k x ktx t +++−=, 所以122228,34t kt x x x k k −+=+=+所以()22216634k t t x k k −−=+,22212334k t t y k−−=+, 即点()2222166123,3434k t t k t t M k k k −−−− ++ , 因为2,3t B t k − ,()0,T t ,所以422BT t k k t k−==−, 所以直线BT 的方程可设为2y kx t =−+,设()33,,N x y 联立22234120y kx t x y =−+ +−=,()222316164120k x ktx t +−+−=, 所以()2133322216166,316316t kt k t t x x x x k k k k −−+=+==++, ()223322166481522316316k t t k t t y kx t k t k k k −−+=−+=−+=++, 故()22221664815,316316k t t k t t N k k k −−+ ++, 所以直线MN 斜率为 ()()224222232224242322248151233842885414454316342,166166192721927231634MN k t t k t t y y k k k k k k k k k t t k t t x x k k k k k k k k+−−− −+++++===×=+ −−−−−++ −++ 结合题意可知0k >,即()2223833224483MN k k k k k k k + +×+≥+当且仅当324k k =,即k =时,直线MN . 故直线MN .22. 已知函数()4ln f x x ax x =+(R a ∈),()f x ′为()f x 的导函数,()()g x f x ′=. (1)若12a =−,求()y f x =在 上的最大值;(2)设()()11,P x g x ,()()22,Q x g x ,其中211x x ≤<.若直线PQ 的斜率为k ,且()()122g x g x k ′′+<,求实数a 的取值范围. 【答案】(1)1(2)[12,)−+∞【解析】【分析】(1)若12a =−,求得()3412ln 12f x x x =−′−,得到()2(1)(1)12x x x g x x ′−++=×,结合()g x ′的符号,得到()0g x <,即()0f x ′<,进而求得函数()f x 的最大值;(2)根据题意,转化为任意12,[1,)x x ∈+∞,都有()()121212()()2g x g x g x g x x x +−<−′′,令12x t x =,得出314(1)(2ln )0t a t t t−+−−>对于(1,)t ∀∈+∞恒成立,记()314(1)(2ln )t t a t t t ϕ=−+−−,求得()22212(1)t a t t t ϕ+=−⋅′,分类讨论,求得函数的函数()t ϕ与最值,即可求解. 【小问1详解】解:若12a =−,可得()412ln f x x x x =−,则()3412ln 12f x x x =−′−, 即()()3412ln 12g x f x x x ==−−′,可得()2212(1)(1)1212x x x g x x x x −++=−=×′,当x ∈ 时,()0g x ′>,所以()y g x =在 上单调递增,又由4e 160g −=<,所以()0g x <,即()0f x ′<,所以函数()y f x =在 上单调递减,所以()()max11f x f ==,即函数()f x 的最大值为1.【小问2详解】 解:由()()()()1122,,,P x g x Q x g x ,可得1212()()g x g x k x x −=−, 因为()()122g x g x k +′′<,所以对任意12,[1,)x x ∈+∞且21x x <,都有()()121212()()2g x g x g x g x x x +−<−′′, 因为()4ln f x x ax x =+,可得()()34ln g x f x x a x a =+′=+,则()212a g x x x=′+, 对任意12,[1,)x x ∈+∞且21x x <,令12(1)xt t x =>, 则()()()()()()1212122x x g x g x g x g x −+−⋅−′′ ()()2233121211221121224ln 4ln a x x x x x a x x a x x =−++−+−− 3322121121212212441212()2ln x x x x x x x x x a a x x x =−−++−− 332214(331)(2ln )0x t t t a t t t−+−+−−>对于2[1,),(1,)x t ∀∈+∞∀∈+∞恒成立, 由332332224(331)(1)(1)x t t t x t t −+−=−≥−则314(1)(2ln )0t a t t t −+−−>对于(1,)t ∀∈+∞恒成立,记()314(1)(2ln )t t a t t tϕ=−+−−, 可得()222222(1)1212(1)(1)t t a t t a t t t ϕ−+−+⋅′⋅=−, ①若12a ≥−,则()0t ϕ′>,()t ϕ在(1,)+∞单调递增,所以()()10t ϕϕ>=,符合题意;②若12a <−,则()212(1)t t ϕ′−,当t ∈时,()0t ϕ′<,()t ϕ在(1,)+∞单调递减;当)t ∈+∞时,()0t ϕ′>,()t ϕ在(1,)+∞单调递增,所以,当t ∈时,()()10t ϕϕ<=,不符合题意(舍去), 综上可得,12a ≥−,即实数a 的取值范围为[12,)−+∞【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.。
江苏省镇江市镇江一中2020届高三上学期期初考试数学试题 Word版含解析

江苏省镇江市镇江一中2020届高三期初考试数学试卷2019.9一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上.) 1.已知集合A ={}2x x <,B ={﹣2,0,1,2},则A I B = . 答案:{0,1}考点:集合的运算 解析:∵2x <, ∴22x -<< ∴A ={}22x x -<< ∵B ={﹣2,0,1,2} ∴A I B ={0,1}2.已知i 是虚数单位,则复数212i(2i)2i++-对应的点在第 象限. 答案:二 考点:复数 解析:∵212i (12i)(2i)(2i)44i 2i (2i)(2i)++++=-+=-+--+, ∴该复数对应点在第二象限3.一种水稻品种连续5年的平均单位面积产量(单位:t/hm 2)分别为:9.4,9.2,10.0,10.6,10.8,则这组样本数据的方差为 . 答案:0.4考点:方差与标准差解析:这组样本数据的平均数为:x =15×(9.4+9.2+10+10.6+10.8)=10 ∴这组样本数据的方差为:S 2=15×[(9.4﹣10)2+(9.2﹣10)2+(10﹣10)2+(10.6﹣10)2+(10.8﹣10)2]=0.44.根据如图所示的伪代码,可知输出的结果为 .答案:10考点:伪代码(算法语句)解析:模拟程序的运行过程,得:s=1,i=1,满足条件i ≤5,执行循环s=1+1=2,i=3满足条件i ≤5,执行循环s=2+3=5,i=5满足条件i ≤5,执行循环s=5+5=10,i=7此时不满足条件i ≤5,退出循环,输出s=10.故答案为:10.5.在区间[﹣1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x ﹣5)2+y 2=9相交”发生的概率为 . 答案:34考点:几何概型解析:∵直线y =kx 与圆(x ﹣5)2+y 2=9相交 2531k k <+解得3344k -<< 则事件“直线y =kx 与圆(x ﹣5)2+y 2=9相交”发生的概率P =322=34.6.已知函数ln 20()0x x f x x a x ->⎧=⎨+≤⎩,,,若(())f f e =2a ,则实数a = .答案:﹣1考点:分段函数,函数求值解析:2(())(1)1a f f e f a ==-=-+,求得a =﹣1.7.若实数x ,y ∈R ,则命题p :69x y xy +>⎧⎨>⎩是命题q :33x y >⎧⎨>⎩的 条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)答案:必要不充分条件 考点:简易逻辑,充要条件解析:本题p 推不出q ,但q ⇒p ,所以p 是q 的必要不充分条件.8.已知函数1(12)31()21x a x a x f x x --+<⎧=⎨≥⎩,,的值域为R ,则实数a 的取值范围是 .答案:[0,12) 考点:函数的值域解析:要使原函数值域为R ,则1201231a a a ->⎧⎨-+≥⎩,解得0≤a <12.9.若a =21.4,b =80.2,c =2log 41()2-,则a ,b ,c 的大小关系是 (用“>”连接).答案:c >a >b考点:指数函数解析:a =21.4,b =80.2=20.6,c =2log 41()2-=24,因为4>1.4>0.6,所以c >a >b .10.已知函数()f x 是定义在[2﹣a ,3]上的偶函数,在[0,3]上单调递减,且2()5a f m -->2(22)f m m -+-,则实数m 的取值范围是 .答案:1122m ≤<考点:单调性与奇偶性相结合解析:由函数()f x 是定义在[2﹣a ,3]上的偶函数,得2﹣a +3=0,所以a =5. 所以2()5a f m -->2(22)f m m -+-,即2(1)f m -->2(22)f m m -+- 由偶函数()f x 在[﹣3,0]上单调递增,而21m --<0,222m m -+-<0∴22223103220122m m m m m m ⎧-≤--≤⎪-≤-+-≤⎨⎪-->-+-⎩,解得1122m ≤<.11.已知P 是曲线211ln 42y x x =-上的动点,Q 是直线324y x =-上的动点,则PQ 的最小值为 . 答案:62ln 25- 考点:导数与切线 解析:当曲线211ln 42y x x =-在点P 处的切线的斜率为34,且PQ ⊥直线324y x =-时,PQ 最小,由21324x y x -'==,解得x =2(负值已舍),此时切点P(2,1﹣ln 22),求得点P 到直线324y x =-的距离为62ln 25-,所以PQ 的最小值为62ln 25-. 12.若正实数m ,n ,满足226m n m n+++=,则mn 的取值范围为 .答案:[1,4]考点:基本不等式解析:设mn =t ,则222(2)62t t t m t m t++++=≥,解得1≤t ≤4,其中当m =n t 时取“=”.13.若关于x 的方程222(1)1+40x x x ax ---=恰有4个不同的正根,则实数a 的取值范围是 .答案:(0,132) 考点:函数与方程解析:思路一:原方程可转化为223211452301x x x a x x x-⎧-≥⎪⎪=⎨-⎪-<<⎪⎩, , 恰有4个不同的正根,根据数形结合画图后即可求得0<a <132. 思路二:原方程可转化为2112()40x x a x x---+=恰有4个不同的正根,从而转化为方程2240t t a -+=在(0,1)有两个不等的根,则有132040140a a a ->⎧⎪>⎨⎪+>⎩,解得0<a <132. 14.设()f x '和()g x '分别是()f x 和()g x 的导函数,若()f x '·()g x '<0在区间I 上恒成立,则称()f x 和()g x 在区间I 上单调性相反.若函数31()2(0)3f x x ax a =->与()g x =2x 2bx +在区间(a ,b )上单调性相反,则b ﹣a 的最大值为 .答案:12考点:利用导数研究函数的性质,不等式 解析:∵31()2(0)3f x x ax a =->,()g x =2x 2bx +, ∴2()2f x x a '=-,()22g x x b '=+;由题意得()f x '·()g x '<0在(a ,b )上恒成立,∵a >0,∴b >a >0,∴22x b +>0恒成立,∴22x a -≤0恒成立,即2a -x2a 0<a <x <b ,∴b 2a 0<a 2a 0<a ≤2;则b ﹣a2a a =221(22a -+,当a =12取最大值12. 二、解答题(本大题共6小题,共计90分,请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)己知集合A ={}2320x x x -+≤,集合B 为函数22y x x a =-+的值域,集合C ={x }240x ax --≤.命题p :A I B ≠∅,命题q :A ⊆C .(1)若命题p 为假命题,求实数a 的取值范围;(2)若命题p 且q 为真命题,求实数a 的取值范围. 15.16.(本小题满分14分)已知函数2()(0)1xf x x x =>+. (1)求证:函数()f x 在(0,+∞)上为增函数; (2)设2()log ()g x f x =,求函数()g x 的值域;(3)若奇函数()h x 满足x >0时()()h x f x =,当x ∈[2,3]时,(log )a h x -的最小值为43-,求实数a 的值. 16.(3)实数a 3327. 17.(本小题满分14分)已知函数1()212xx f x =+-. (1)解关于x 的不等式()(2)f x f x ≥;(2)若对任意x ∈R ,不等式[()1](2)12k f x f x +<+恒成立,求实数k 的取值范围. 17.解:(1)∵()(2)f x f x ≥∴2211212122xxx x+-≥+- 化简得:211(2)(2)2022x xx x +-+-≤即11(22)(21)022x xx x +-++≤∵1212xx ++>0∴1222xx +-<0即2(21)0x -≤,又2(21)0x -≥,∴2(21)0x -=,∴x =0 ∴不等式()(2)f x f x ≥的解集为{1}. (2)要使不等式[()1](2)12k f x f x +<+恒成立,则222112112(2)922112222x xx x x x x xk +-+++<=++恒成立, 令122xx t =+,t ≥2,则min 9()6k t t<+=(当且仅当t =3时取“=”)∴实数k 的取值范围是k <6.18.(本小题满分16分)设函数()(1)()f x x x x a =--(a ∈R),()f x 的取得极值时两个对应点为A(α,()f α),B(β,()f β),线段AB 的中点为M .(1)如果函数()f x 为奇函数,求实数a 的值,并求此时()f α·()f β的值; (2)如果M 点在第四象限,求实数a 的取值范围. 18.(1)所以3()f x x x =-,则2()31f x x '=-,令()0f x '=求得3α=,33β=- ∴()f α·3333334()[()][()]333327f β=--+=-. (2)19.(本小题满分16分)下图1是一座斜拉桥的航拍图,为了分析大桥的承重情况,研究小组将其抽象成图2所示的数学模型.索塔AB ,CD 与桥面AC 均垂直,通过测量知两索塔的高度均为60 m ,桥面AC 上一点P 到索塔AB ,CD 距离之比为21:4,且点P 对两塔顶的视角为135°.(1)求两索塔之间桥面AC 的长度;(2)研究表明索塔对桥面上某处的“承重强度”与多种因素有关,可简单抽象为:某索塔对桥面上某处的“承重强度”与索塔的高度成正比(比例系数为正数a ),且与该处到索塔的距离的平方成反比(比例系数为正数b ).问:两索塔对桥面何处的“承重强度”之和最小?并求出最小值.19.20.(本小题满分16分)已知函数()xf x e =,()g x ax b =+,a ,b ∈R .(1)若(1)0g -=,且函数()g x 的图象是函数()f x 图象的一条切线,求实数a 的值; (2)若不等式2()f x x m >+对任意x ∈(0,+∞)恒成立,求实数m 的取值范围; (3)若对任意实数a ,函数()()()F x f x g x =-在(0,+∞)上总有零点,求实数b 的取值范围. 20.。
江苏省无锡市锡东高级中学2024届高三下学期4月月考数学试题

å ( ) ( ) å ( ) 2n
(2) Tn = éë ak4 + ak2 k =1
(-1)k ùû n Î N*
n
,求
1
T k =1 k
n Î N*
.
18.已知椭圆 C
:
x2 a2
+
y2 b2
= 1(a
>b
>
0) 的上顶点为 D (0, 2) ,直线 l :
y
=
kx 与椭圆 C
交于
A, B
两点,且直线
试卷第61 页,共33 页
1.D
参考答案:
【分析】化简出 z1 = 3 - i ,则可计算出 z - z1 = -3 - i ,再由模长公式计算出答案.
【详解】 z1 = (1+ i)(1- 2i) = 1- 2i + i - 2i2 = 3 - i ,
z - z1 = -2i - 3 + i = -3 - i = (-3)2 + (-1)2 = 10 .
ex f ( x +1) > e4 f (2x - 3) ”的( )
A.充分不必要条件 C.既不充分又不必要条件
B.必要不充分条件 D.充要条件
二、多选题
9.已知函数 f ( x) = Asin (wx + j )(w > 0) 是偶函数,将 y = f ( x) 的图象向左平移 π 个单位长
6
度,再将图象上各点的横坐标变为原来的 2 倍(纵坐标不变),得到 y = g ( x) 的图象.若
+
y02
=
x02
+
(
x02 a2
-1)b2
山东省济南市2024届高三下学期高考针对性训练(5月模拟)数学试题含答案

绝密★启用并使用完毕前高考针对性训练数学试题本试卷共4页,19题,全卷满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设12i2iz -=+,则z =()A .iB .i-C .4i 5+D .4i 5-2.若sin cos αα-=,则tan α=()A .1B .1-C .2D .2-3.()6111x x ⎛⎫+- ⎪⎝⎭展开式中2x 的系数为()A .5-B .5C .15D .354.已知{}n a 是等比数列,且27844a a a a =-=-,则3a =()A .B .C .2-D .2±5.某单位设置了a ,b ,c 三档工资,已知甲、乙、丙三人工资各不相同,且甲的工资比c 档高,乙的工资比b 档高,丙领取的不是b 档工资,则甲、乙、丙领取的工资档次依次为()A .a ,b ,cB .b ,a ,cC .a ,c ,bD .b ,c ,a6.三棱锥S ABC -中,SA ⊥平面ABC ,AB BC ⊥.若该三棱锥的最长的棱长为9,最短的棱长为3,则该三棱锥的最大体积为()A B C .18D .367.在平面直角坐标系xOy 中,已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P在C 上,且2122PF PF a ⋅= ,PO = ,则C 的离心率为()A B C .3D .28.已知函数()f x 的定义域为R ,且()()()yf x xf y xy x y -=-,则下列结论一定成立的是()A .()11f =B .()f x 为偶函数C .()f x 有最小值D .()f x 在[]0,1上单调递增二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某同学投篮两次,第一次命中率为23.若第一次命中,则第二次命中率为34;若第一次未命中,则第二次命中率为12.记()1,2i A i =为第i 次命中,X 为命中次数,则()A .22()3P A =B .4()3E X =C .4()9D X =D .123(|)4P A A =10.已知ABC △内角A ,B ,C 的对边分别为a ,b ,c ,外接圆半径为R .若1a =,且()sin sin sin A b B c b C -=+,则()A .3sin 2A =B .ABC △面积的最大值为34C .3R =D .BC 边上的高的最大值为611.已知函数()sin ln f x x x =⋅,则()A .曲线()y f x =在πx =处的切线斜率为ln πB .方程()2024f x =有无数个实数根C .曲线()y f x =上任意一点与坐标原点连线的斜率均小于1eD .2()2x y f x =-在()1,+∞上单调递减三、填空题:本题共3小题,每小题5分,共15分.12.数列{}n a 满足22n n a a +-=,若11a =,44a =,则数列{}n a 的前20项的和为______.13.在正四棱柱1111ABCD A B C D -中,4AB =,16AA =,M ,N 分别是AB ,AD 的中点,则平面1MNC 截该四棱柱所得截面的周长为______.14.已知抛物线22x y =与圆()()22240x y rr +-=>相交于四个不同的点A ,B ,C ,D ,则r 的取值范围为______,四边形ABCD 面积的最大值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)近年来,我国众多新能源汽车制造企业迅速崛起.某企业着力推进技术革新,利润稳步提高.统计该企业2019年至2023年的利润(单位:亿元),得到如图所示的散点图.其中2019年至2023年对应的年份代码依次为1,2,3,4,5.(1)根据散点图判断,y a bx =+和2y c dx =+哪一个适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)中的判断结果,建立y 关于x 的回归方程;(3)根据(2)的结果,估计2024年的企业利润.参考公式及数据;1221ˆni ii ni i x ynx ybx nx==-=-∑∑,ˆˆay bx =-,52155i i x ==∑,541979ii x ==∑,51390i i y ==∑,511221i i i x y ==∑,5214607.9i i i x y ==∑16.(本小题满分15分)如图,在三棱台ABC DEF -中,平面ABC ⊥平面BCFE ,AF DE ⊥,45ABC CBF ∠=∠=︒,1AC AB >=.(1)求三棱台ABC DEF -的高;(2)若直线AC 与平面ABF 所成角的正弦值为155,求BC .17.(本小题满分15分)已知函数()22xxf x a =+-,其中0a >且1a ≠.(1)若()f x 是偶函数,求a 的值;(2)若0x >时,()0f x >,求a 的取值范围.18.(本小题满分17分)已知点21,2A ⎛⎫ ⎪ ⎪⎝⎭在椭圆2222:1(0)x y E a b a b +=>>上,A 到E的两焦点的距离之和为.(1)求E 的方程;(2)过抛物线()2:1C y x m m =->上一动点P ,作E 的两条切线分别交C 于另外两点Q ,R .(ⅰ)当P 为C 的顶点时,求直线QR 在y 轴上的截距(结果用含有m 的式子表示);(ⅱ)是否存在m ,使得直线QR 总与E 相切.若存在,求m 的值;若不存在,说明理由.19.(本小题满分17分)高斯二项式定理广泛应用于数学物理交叉领域.设,y q ∈R ,*n ∈N ,记[]11n n q q-=++⋅⋅⋅+,[][][][]!11n n n =⨯-⨯⋅⋅⋅⨯,并规定[]0!1=.记1(,)()()()()n n q F x n x y x y x qy x q y -=+=++⋅⋅⋅+,并规定()0,0()1q F x x y =+=.定义[][][](,),0(,)11(),1,2,,kqn kq F x n k D F x n n n n k x y k n-=⎧⎪=⎨-⋅⋅⋅-++=⋅⋅⋅⎪⎩(1)若1y q ==,求(),2F x 和1(,2)q D F x ;(2)求[][]!(0,)!k qn k D F n n -;(3)证明:[]0(0,)(,)!k nq k k D F n F x n x k ==∑.2024年5月济南市高三模拟考试数学试题参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号12345678答案ABACBCDC二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号91011答案ABDADBCD三、填空题:本题共3小题,每小题5分,共15分.12.21013.14.4);四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)2y c dx =+适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型.(2)由题意得:52211()115i i x x ===∑,511785i i y y ===∑,52215222221553905()4607.95317.9550.8537455()5()9795ˆ5i ii ii xy x ydx x ==-⨯-⨯⨯====⎛⎫-⨯-⨯ ⎪⎝⎭∑∑,239055()0.8568.655ˆ5ˆcy d x =-⨯=-⨯=,所以,268.65ˆ0.85y x =+.(3)令6x =,268.650.85699.25ˆy=+⨯=,估计2024年的企业利润为99.25亿元.另解(此种解法酌情给分):(1)y a bx =+适宜作为企业利润y (单位:亿元)关于年份代码x 的回归方程类型.(2)由题意得:1234535x ++++==,511785i i y y ===∑,()()515222151221537851 5.13ˆ555105i ii i i x yx ybx x==-⨯-⨯⨯====-⨯-⨯∑∑,()78 5.1362.7ˆˆa y b x =-⨯=-⨯=,所以,7ˆ62. 5.1yx =+.(3)令6x =,62.7 5.1693.3ˆy=+⨯=,估计2024年的企业利润为93.3亿元.16.【解析】解:(1)作FO BC ⊥于点O ,因为平面ABC ⊥平面BCFE ,所以FO ⊥平面ABC ,FO 即为三棱台ABC DEF -的高.又因为AB ⊂平面ABC ,所以FO AB ⊥.连接AO ,因为AB DE ∥,AF DE ⊥,所以AB AF ⊥,FO AF F = ,所以AB ⊥平面AFO ,又AO ⊂平面AFO ,所以AB AO ⊥.45ABC CBF ∠=∠=︒,1AB =.所以1AO =,BO FO ==ABC DEF -.(2)以O 为原点,在面ABC 内,作OG BC ⊥,以OG ,OB ,OF 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系O xyz -,则,22A ⎛⎫ ⎪ ⎪⎝⎭,B,F,,,022AB ⎛⎫=- ⎪ ⎪⎝⎭,FB =,设平面ABF 的法向量为(),,n x y z =则022n FB n AB x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,可取()1,1,1n = ,设BC BO λ=,则22,022AC ⎛⎫=-- ⎪ ⎪⎝⎭,设直线AC 与平面ABF 所成角为α,15sin cos ,5AC n α===,化简得281890λλ-+=,解得32λ=或34λ=(舍去,因为AC AB >,所以1λ>),所以BC =.17.【解析】(1)由题意,()()11f f -=,即112222a a +-=+-,解得,12a =或2a =-(舍)又经检验,12a =时,()f x 是偶函数.所以,a 的值为12.(2)当12a =时,0x ∀>,1()22202x xf x ⎛⎫=+->= ⎪⎝⎭成立;当12a >且1a ≠时,0x ∀>,1()22222xx x xf x a ⎛⎫=+->+- ⎪⎝⎭,又12202xx⎛⎫+-> ⎪⎝⎭已证,故此时符合题意;当102a <<时,()ln 2ln 2x xf x a a '=+,易知,此时()f x '在R 上单调递增,且(0)ln(2)0f a =<'.故存在00x >,使得当0(0,)x x ∈时,()0f x '<,从而()f x 单调递减,所以,存在02x >,使得0(0)02x f f ⎛⎫<= ⎪⎝⎭,故此时不合题意.综上所述,12a ≥且1a ≠.18.【解析】(1)由题意2a =,得a =又21,2A ⎛⎫ ⎪ ⎪⎝⎭在E 上,得221112a b +=,从而1b =.故E 的方程为2212x y +=.(2)(ⅰ)当P 为C 的顶点时,()0,P m ,不妨设R 在第一象限,直线PR 的方程为y kx m =-,联立E 的方程为2212x y +=可得222(21)4220k x kmx m +-+-=.由22222Δ(4)4(21)(22)8(21)0km k m k m =-+-=-+=可得2221k m +=.联立直线PR 的方程y kx m =-与抛物线2:C y x m =-的方程可得x k =,则R 点的纵坐标为22212122R m m m y k m m ---=-=-=,由对称性知2212Q m m y --=,故直线QR 在y 轴上的截距为2212m m --.(ⅱ)要使(2)中的直线QR 与E 相切,必有22112m m b --==,即2230m m --=,解得3m =或1-(舍去).设()11,P x y ,()22,Q x y ,()33,R x y ,则2113y x =-,2223y x =-,2333y x =-.直线PQ 的方程为211121()y y y y x x x x --=--,即1212()3y x x x x x =+--.联立椭圆方程2212x y +=可得222121212122()14()(3)2(3)20x x x x x x x x x x ⎡⎤++-++++-=⎣⎦.由[]22212121212Δ4()(3)42()12(3)2x x x x x x x x ⎡⎤⎡⎤=++-+++-⎣⎦⎣⎦22221212128(2228)0x x x x x x =+---=可得222212*********x x x x x x +---=,即121212250x x y y y y ++++=.同理可得131313250x x y y y y ++++=.因为直线1112(1)50x x y y y ++++=同时经过点QR ,所以QR 的直线方程为1112(1)50x x y y y ++++=.联立椭圆方程2212x y +=可得222111118(1)8(5)16480x y x x y x y ⎡⎤++++++=⎣⎦,于是[]2222211111111Δ8(5)48(1)(1648)64(1)(3)0x y x y y y x y ⎡⎤=+-+++=+--=⎣⎦.故直线QR 与椭圆相切,因此3m =符合题意.19.【解析】(1)若1y q ==,222(,2)()()(1)(1)F x x y x qy x q xy y x =++=+++=+,而[]11(,2)2()(1)()2(1)q q D F x x y q x y x =+=++=+.(2)当0k =时,[][](1)2!(0,)(0,)(0,)!n n k n q q n k D F n D F n F n q y n --===.当0k ≠时,由[][][](0,)11(0)kn kq qD F n n n k y -=-⋅⋅⋅++[][][][][]()(1)()(1)/22!11!n k n k n k n k n kn k n n n n k qyqy n k --------=-⋅⋅⋅-+=-,可得[][]()(1)2!(0,)!n k n k k n k q n k D F n q y n -----=.因此[][]()(1)2!(0,)!n k n k k n k q n k D F n q y n -----=,0,1,2,,k n = .(3)要证[]0(0,)(,)!k nq k k D F n F x n x k ==∑,只需证[][][][][]1()(1)/2(1)/200!!()()()![]!!!nnn n k n k n k kk k n k k k k n n x y x qy x qy q y x q x y n k k n k k -------==++⋅⋅⋅+==--∑∑.令1()()()()nn k k k G y x y x qy x q y a y -==++⋅⋅⋅+=∑,一方面,110101()()()()n nkkk k k n n k k k n k k x y G qy x y a q y xa xq a q a y a q y -+-==+=+=+++∑∑,另一方面,10101()()()()n nnnkn k n n k k k n k k x q y G y x q y a y xa xa q a y a q y +-==+=+=+++∑∑,当1q ≠且0x ≠时,由于()()()()nx y G qy x q y G y +=+,比较两式中ky 的系数可得111k k n k k k k xq a q a xa q a ---+=+,则[]1111(1)[]k n k k kk q n k a q q a x q x k ----+-==-⋅,由0na x =可知[][][](1)1120120!!!k k n k k k k k k n a a a a a q x a a a n k k -----=⋅⋅⋅⋅⋅=-.当1q =时,由[]11n n q qn -=++⋅⋅⋅+=,[]!!n n =可知()[][]00!C ![]!nn nn k k k n k kn k k n x y y x yx n k k --==+==-∑∑,此时命题也成立.当0x =时,[](1)/2(0,)(,)(0,)!k nq n n nk qk D F n F x n qy D F n x k -====∑也成立.综上所述,()()[]00,,!knq k k D F n F x n x k ==∑.。
江苏省无锡市2013届高三上学期期末考试数学试题(WORD解析版)

2012-2013学年江苏省无锡市高三(上)期末数学试卷参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上.)1.(5分)设全集U=R,集合A={x|x2﹣2x<0},B={x|x>1},则集A∩∁U B={x|0<x≤1}.考点:交、并、补集的混合运算.专题:不等式的解法及应用.分析:由二次不等式的解法,容易解得A,进而可得C U B,对其求交集可得答案.解答:解:由不等式的解法,容易解得A={x|0<x<2},又B={x|x>1}.则C U B={x|x≤1},于是A∩(∁U B)={x|0<x≤1},故答案为:{x|0<x≤1}.点评:本题考查集合间的交、并、补的混合运算,这类题目一般与不等式、方程联系,难度不大,注意正确求解与分析集合间的关系即可.2.(5分)已知i是虚数单位,则等于﹣i.考点:复数代数形式的乘除运算.专题:计算题.分析:直接把给出的复数分子分母同时乘以2﹣i,然后采用多项式乘以多项式整理即可.解答:解:=.故答案为﹣i.点评:本题考查了复数代数形式的乘除运算,复数的除法,采用分子分母同时乘以分母的共轭复数,是基础题.3.(5分)某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,现从中抽取一个容量为200人的样本,则高中二年级被抽取的人数为64.考点:分层抽样方法.专题:概率与统计.分析:先求出每个个体被抽到的概率,再用高二年级的总人数乘以此概率,即得所求.解答:解:每个个体被抽到的概率等于=,高中二年级有320人,故应从高二年级中抽取的人数为320×=64,故答案为64.点评:本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.4.(5分)右边的程序语句运行后,输出的S为17.考点:伪代码.专题:图表型.分析:先读懂程序的算法,再据算法规则依次算出结果.可以看出这是一个循环结构,依其特点求解即可.解答:解:程序是一个循环结构,步长是2,每循环一次S就乘i加3,初始i=1,可循环四次,故S=2×7+3=17,i=7+2=9输出的结果为S=17.故答案为:17点评:考查算法语言的结构,此类题的做法通常是把值代入,根据其运算过程求出值.5.(5分)在△ABC中,∠A=45°,∠C=105°,BC=,则AC的长度为1.考点:正弦定理.专题:解三角形.分析:由A与C的度数,利用三角形内角和定理求出B的度数,再由sinA,sinB及BC的长,利用正弦定理即可求出AC的长.解答:解:∵∠A=45°,∠C=105°,∴∠B=30°,∵BC=,∴由正弦定理=得:AC===1.故答案为:1点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.6.(5分)(2005•湖北)已知向量不超过5,则k的取值范围是[﹣6,2].考向量的模.点:分析:根据向量模的计算公式,列出一个关于K不等式,解不等式,即可求出K的取值范围.解答:解:∵≤5∴﹣6≤k≤2故答案为:[﹣6,2]点评:求常用的方法有:①若已知,则=;②若已知表示的有向线段的两端点A、B坐标,则=|AB|=③构造关于的方程,解方程求.7.(5分)已知P:|x﹣a|<4;q:(x﹣2)(3﹣x)>0,若¬p是¬q的充分不必要条件,则a的取值范围为﹣1≤a≤6.考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:根据题意,由p、q,可得¬p为x≤a﹣4或x≥a+4,¬q为x≤2或x≥3;进而由¬p是¬q的充分不必要条件,可得集合{x|x≤a﹣4或a≥a+4}是集合{x|x≤2或x≥3}的真子集,由集合间的包含关系可得答案.解答:解:根据题意,P:|x﹣a|<4,则¬p为:|x﹣a|≥4,解|x﹣a|≥4可得,x≤a﹣4或x≥a+4,则¬p为:x≤a﹣4或x≥a+4,条件q:(x﹣2)(3﹣x)>0,则¬q为:(x﹣2)(3﹣x)≤0,即x≤2或x≥3.若¬p是¬q的充分不必要条件,则有集合{x|x≤a﹣4或x≥a+4}是集合{x|x≤2或x≥3}的真子集,必有a﹣4≤2,且a+4≥3,解得﹣1≤a≤6;故答案为:﹣1≤a≤6.点评:本题考查充分必要条件的判断及运用,注意充分必要条件与集合间关系的转化.8.(5分)已知变量x,y满足约束条件,表示平面区域M,若﹣4≤a≤t时,动直线x+y=a所经过的平面区域M的面积为7.则t=2.考点:简单线性规划.专题:不等式的解法及应用.分析:先根据约束条件及动直线x+y=a所经过的平面区域,分别画出区域,然后求出区域的面积即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试题(满分160分,考试时间120分钟)一、填空题:本大题共14小题,每小题5分,共70分.1. 集合A={x|x=2k-1,k∈Z},B={1,2,3,4},则A∩B=________.2. 已知复数z=a+bi(a,b∈R),且满足iz=9+i(其中i为虚数单位),则a+b=________.3. 某校高二(4)班统计全班同学中午在食堂用餐时间,有7人用时为6分钟,有14人用时为7分钟,有15人用时为8分钟,还有4 人用时为10分钟,则高二(4)班全体同学中午用餐平均用时为________分钟.4. 函数f(x)=(a-1)x-3(a>1,a≠2)过定点________.5. 已知等差数列{a n}(公差不为0),其中a1,a2,a6成等比数列,则这个等比数列的公比为________.6. 小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道做答,小李会做其中的3道题,则抽到的2道题小李都会的概率为________.7. 在长方体ABCDA1B1C1D1中,AB=1,AD=2,AA1=1,点E为BC的中点,则点A到平面A1DE的距离是________.(第7题)(第8题)8. 如图所示的流程图中,输出n的值为________.9. 圆C:(x+1)2+(y-2)2=4关于直线y=2x-1对称的圆的方程为________________.10. 已知正方形ABCD 的边长为2,圆O 内切于正方形ABCD ,MN 为圆O 的一条动直径,点P 为正方形ABCD 边界上任一点, 则PM →·PN →的取值范围是________.11. 双曲线C :x 24-y23=1的左右顶点为A ,B ,以AB 为直径作圆O ,P 为双曲线右支上不同于顶点B 的任一点,连结PA 交圆O 于点Q ,设直线PB ,QB 的斜率分别为k 1,k 2.若k 1=λk 2,则λ=________.12. 若对于任意的正数a ,b ,不等式(2ab +a 2)k≤4b 2+4ab +3a 2恒成立,则k 的最大值为________.13. 在直角三角形ABC 中,∠C 为直角,∠BAC >45°,点D 在线段BC 上,且CD =13 CB.若tan ∠DAB =12,则∠BAC 的正切值为________.14. 已知函数f(x)=|x 2-1|+x 2+kx +9在区间(0,3)内有且仅有两个零点,则实数k 的取值范围是________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(2a -3b ,3c),向量n =(cos B ,cos C),且m∥n .(1) 求角C 的大小;(2) 求y =sin A +3sin(B -π3)的最大值.16. (本小题满分14分)在四棱锥PABCD 中,底面ABCD 是平行四边形,O 为其中心,△PAD 为锐角三角形,且平面PAD⊥底面ABCD ,点E 为PD 的中点,CD ⊥DP.求证:(1) OE∥平面PAB;(2) CD⊥PA.17. (本小题满分14分)已知椭圆C :x 2a 2+y2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,焦距为4,且椭圆过点(2,53),过点F 2且不平行于坐标轴的直线l 交椭圆于P ,Q 两点,点Q 关于x 轴的对称点为R ,直线PR 交x 轴于点M.(1) 求△PF 1Q 的周长; (2) 求△PF 1M 面积的最大值.18. (本小题满分16分)一酒企为扩大生产规模,决定新建一个底面为长方形MNPQ 的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形ABCD(如图所示),其中AD≥AB.结合现有的生产规模,设定修建的发酵池容积为450 m 3,深2 m .若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65 400元.(1) 求发酵池AD 边长的范围;(2) 在建发酵馆时,发酵池的四周要分别留出两条宽为4 m 和b m 的走道(b 为常数).问:发酵池的边长如何设计,可使得发酵馆占地面积最小.19. (本小题满分16分)已知{a n },{b n }均为正项数列,其前n 项和分别为S n ,T n ,且a 1=12,b 1=1,b 2=2,当n≥2,n ∈N *时,S n -1=1-2a n ,b n =2(T 2n -T 2n -1)b n +1+b n -1-2T n -1.(1) 求数列{a n },{b n }的通项公式;(2) 设c n =(b n +2)a nb 2n +b n ,求数列{c n }的前n 项和P n . 20. (本小题满分16分)设函数f(x)=ln x -ax ,a ∈R ,a ≠0. (1) 求函数f(x)的单调区间;(2) 若函数f(x)=0有两个零点x 1,x 2(x 1<x 2). (Ⅰ) 求a 的取值范围;(Ⅱ) 求证:x 1·x 2随着x 2x 1的增大而增大.数学附加题(满分40分,考试时间30分钟)21. (本小题满分10分)已知a ,b ∈R ,矩阵A =⎣⎢⎡⎦⎥⎤ab cd .若矩阵A 属于特征值5的一个特征向量为⎣⎢⎡⎦⎥⎤11,点P(-2,1)在A 对应的变换作用下得到点P′(-1,2),求矩阵A .22.(本小题满分10分)已知曲线C 1:⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(其中θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos(θ-π3)=2 3.设曲线C 1与曲线C 2交于A ,B 两点,求AB 的长.23. (本小题满分10分)如图,矩形ABCD所在的平面垂直于平面AEB,点O为AB的中点,∠AEB=90°,∠EAB =30°,AB=23,AD=3.(1) 求异面直线OC与DE所成角的余弦值;(2) 求二面角ADEC的正弦值.24.(本小题满分10分)对于任意的x>1,n∈N*,用数学归纳法证明:e x-1>x nn!.数学参考答案及评分标准1. {1,3}2. -83. 1524. (0,-2)5. 46. 127. 638. 49. (x -3)2+y 2=4 10. [0,1]11. -34 12. 2 2 13. 3 14. (-263,-8)15. 解:(1) ∵ m∥n ,∴ (2a -3b)cos C -3ccos B =0.(2分)由正弦定理可得2sin Acos C -3sin Bcos C -3sin Ccos B =0,(4分) 即2sin Acos C =3sin(B +C)=3sin A .(6分) 又A 为△ABC 的内角,∴ sin A ≠0,∴ cos C =32. 又C 为△ABC 的内角,故C =π6.(8分) (2) y =sin A +3sin(B -π3)=sin(B +π6)+3sin(B -π3)(10分)=12cos B +32sin B +32sin B -32cos B =3sin B -cos B =2sin(B -π6),(12分) 当B =2π3时,y 的最大值为2.(14分)16. 证明:(1) 连结BD ,因为底面是平行四边形,故BD 经过O 点,且点O 为BD 的中点.又点E 为PD 的中点,所以OE∥PB.(4分) 因为OE ⊄平面PAB ,PB ⊂平面PAB , 所以OE∥平面PAB.(6分)(2) 在平面PAD 内作PH⊥AD,由于△PAD 为锐角三角形, 设PH∩AD=H.因为平面PAD⊥底面ABCD ,平面PAD∩底面ABCD =AD ,PH ⊥AD ,PH ⊂平面PAD , 所以PH⊥平面ABCD.(8分)又CD ⊂平面ABCD ,所以PH⊥CD.(10分)而CD⊥DP,PH ∩PD =P ,PH ,PD ⊂平面PAD ,所以CD⊥平面PAD.(12分) 而PA ⊂平面PAD ,则CD ⊥PA.(14分)17. 解:(1) 由椭圆的焦距为4,则c =2,从而a 2-b 2=4. 又椭圆过点(2,53),所以4a 2+259b 2=1,即36b 2+25a 2=9a 2b 2,消去b ,得9a 4-97a 2+144=0,解得a 2=9或a 2=169(舍去),所以a =3.(4分)则△PF 1Q 的周长为4a =12.(6分)(2) 由(1)得椭圆方程为x 29+y25=1,F 2(2,0).设直线l 的方程为y =k(x -2),P(x 1,y 1),Q(x 2,y 2),M(m ,0),则R(x 2,-y 2), 直线PR 的方程为y -y 1=y 1+y 2x 1-x 2(x -x 1),令y =0,则-y 1=y 1+y 2x 1-x 2(x -x 1),x =y 1(x 2-x 1)y 1+y 2+x 1,所以m =y 1(x 2-x 1)y 1+y 2+x 1=y 1x 2+y 2x 1y 1+y 2=2x 1x 2-2(x 1+x 2)x 1+x 2-4.(8分)将直线l 的方程与椭圆方程联立,并消去y ,得(5+9k 2)x 2-36k 2x +36k 2-45=0, 则x 1+x 2=36k 25+9k 2,x 1x 2=36k 2-455+9k 2,(10分)从而m =2×36k 2-455+9k 2-2×36k 25+9k 236k 25+9k 2-4=-90-20=92,(12分) S △PF 1M =12F 1M ·|y 1|=12×⎪⎪⎪⎪⎪⎪92+2·|y 1|=134|y 1|≤1354,所以△PF 1M 面积的最大值为1354.(14分) 18. 解:设发酵池AD 边长为x m ,则另一边长为225x m ,且x≥225x ,即x≥15.(2分)(1) 225×200+4(x +225x )×150≤65 400,(4分)化简得x 2-34x +225≤0,解得9≤x≤25,(6分) 所以发酵池AD 边长的范围是[15,25].(8分)(2) 发酵馆占地面积S =(x +8)(225x +2b)=225+16b +2bx +1 800x ,15≤x ≤25,(10分)令S′=2b -1 800x 2=2bx 2-1 800x 2=0,解得x =30b ,当30b<15,即b >4时,AD 边为15 m ,S 最小;(12分)当15≤30b ≤25,即3625≤b ≤4时,AD 边长为30b m ,S 最小;(14分)当30b>25时,即0<b <3625时,AD 边长为25 m ,S 最小.(16分)答:(1) 发酵池AD 边长的范围是[15,25].(2) 当b >4时,AD 边长为15 m ,S 最小;当3625≤b ≤4时,AD 边长为30b m ,S 最小;当0<b <3625时,AD 边长为25 m ,S 最小.(注:答不写扣2分)19. 解:(1) 因为当n≥2,n ∈N *时S n -1=1-2a n ,所以S n =1-2a n +1, 两式相减得a n =2a n -2a n +1,即a n =2a n +1,所以a n +1a n =12.(2分)当n =2时,a 1=1-2a 2,所以a 2=14,所以a 2a 1=12,所以数列{a n }为等比数列,其通项公式为a n =12n .(4分)当n≥2,n ∈N *,b n =2(T 2n -T 2n -1)b n +1+b n -1-2T n -1,所以(b n +2T n -1)(b n +1+b n -1)=2(T 2n -T 2n -1),所以(T n +T n -1)(b n +1+b n -1)=2(T 2n -T 2n -1).因为T n +T n -1>0,所以b n +1+b n -1=2(T n -T n -1)=2b n ,(6分)所以数列{b n }为等差数列,且b 1=1,b 2=2,所以数列{b n }的通项公式为b n =n.(8分) (2) 因为c n =b n +2b 2n +b n a n =n +2(n 2+n )·2n =1n·2n -1-1(n +1)·2n ,(12分)所以P n =(11×1-12×2)+(12×2-13×22)+…+⎣⎢⎡⎦⎥⎤1n·2n -1-1(n +1)·2n =1-1(n +1)·2n ,即P n =1-1(n +1)·2n .(16分)20. (1) 解:因为f′(x)=1x -a =1-axx,x >0,当a <0时,f ′(x)>0,所以f(x)在(0,+∞)上单调递增;(2分) 当a >0时,x ∈(0,1a ),f ′(x)>0,x ∈(1a ,+∞),f ′(x)<0,所以f(x)在(0,1a )上单调递增,在(1a ,+∞)上单调递减.综上,当a <0时,f(x)的单调递增区间为(0,+∞),无减区间;当a >0时,f(x)的单调递增区间为(0,1a ),单调递减区间为(1a ,+∞).(4分)(2) (Ⅰ) 解:由(1)可知:当a <0时,f(x)在(0,+∞)上单调递增,函数f(x)至多有一个零点,不符合;(5分) 当a >0时,f(1a)=-ln a -1,① 若f(1a )=-ln a -1<0,即a >1e 时,f(x)<0恒成立,所以函数f(x)无零点,不符合;② 若f(1a )=-ln a -1=0,即a =1e 时,f(x)只有一个零点,不符合;③ 若f(1a )=-ln a -1>0,即0<a <1e 时,此时1a >e.f(1)=-a <0,所以f(x)在(0,1a )上只有一个零点,(8分)f(1a 2)=2ln 1a -1a ,设1a=t >e ,则g(t)=2ln t -t , 因为g′(t)=2t -1=2-t t <0,g(t)在(e ,+∞)上单调递减,g(t)<g(e)=2-e <0,即f(1a2)<0,所以f(x)在(1a ,1a 2)上只有一个零点,(9分)即0<a <1e 时,f(x)有两个零点,函数有两个零点.综上,0<a <1e 时,函数有两个零点.(10分)(Ⅱ) 证明: 因为函数f(x)有两个零点x 1,x 2,所以⎩⎪⎨⎪⎧ln x 1=ax 1,ln x 2=ax 2⇒⎩⎪⎨⎪⎧ln (x 1x 2)=a (x 1+x 2),ln x 2x 1=a (x 2-x 1),两式相比可得ln(x 1x 2)=(x 2+x 1)lnx 2x 1(x 2-x 1).(12分)令x 2x 1=t(t >1),则设ln(x 1x 2)=(t +1)ln t(t -1)=m(t),m ′(t)=t -1t -2ln t (t -1)2. 设φ(t)=t -1t -2ln t ,φ′(t)=1+1t 2-2t =t 2-2t +1t 2>0, 所以φ(t)在(1,+∞)上单调递增,φ(t)>φ(1)=0,(14分) 即m ′(t)>0,m(t)随着t 的增大而增大, 所以ln(x 1x 2)随着x 2x 1的增大而增大.又e >1,即x 1·x 2随着x 2x 1的增大而增大.(16分)数学附加题参考答案及评分标准21. 解:由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=5⎣⎢⎡⎦⎥⎤11,可得⎩⎪⎨⎪⎧a +b =5,c +d =5.(2分) 又⎣⎢⎡⎦⎥⎤ab c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤-1 2,可得⎩⎪⎨⎪⎧-2a +b =-1,-2c +d =2,(4分) 解得a =2,b =3,c =1,d =4,(8分) ∴ A =⎣⎢⎡⎦⎥⎤2314.(10分)22. 解:由ρcos (θ-π3)=23可得ρ(cos θcos π3+sin θsin π3)=23,即曲线C 2的直角坐标方程为x +3y -43=0;(4分) 曲线C 1的直角坐标方程为x 2+y 2=16,(6分) 所以圆心到直线的距离为d =432=23,(8分)所以AB =216-12=4.(10分)23. 解:∵ AB=23,∠EAB =30°,∠AEB =90°, ∴ EB =3,AE =3.以点E 为坐标原点,EB 所在直线为x 轴,EA 所在直线为y 轴,建立空间直角坐标系, 则E(0,0,0),A(0,3,0),B(3,0,0),C(3,0,3),D(0,3,3),O(32,32,0),(1) OC →=(32,-32,3),DE →=(0,-3,-3),∴ |OC →|=23,|DE →|=32,∴ OC →·DE →=92-9=-92,∴ cos 〈OC →,DE →〉=OC →·DE →|OC →||DE →|=-9223×32=-68,(2分)∴ 异面直线OC 与DE 所成角的余弦值68.(4分) (2) 设平面DCE 的一个法向量为m =(x ,y ,z),CE →=(-3,0,-3), 则⎩⎪⎨⎪⎧m ·DC →=3x -3y =0,m ·CE →=-3x -3z =0,取x =3,得m =(3,1,-1).(6分) 平面EAD 的一个法向量n =(1,0,0),(8分) ∴ cos 〈m ,n 〉=m·n |m||n|=35×1=155,∴ sin 〈m ,n 〉=105, ∴ 二面角ADEC 的正弦值为105.(10分) 24. 证明:① 当n =1时,只需证e x -1>x ,设f(x)=ex -1-x(x >1),则f(1)=0.而x >1时,f ′(x)=ex -1-1>0,故f(x)在(1,+∞)上单调递增.(2分)因此x >1时,f(x)>0,即e x -1>x.(4分)② 假设n =k 时不等式成立,即e x -1>xkk !, 则当n =k +1时,设h(x)=e x -1-x k +1(k +1)!,(6分) 所以h′(x)=e x -1-(k +1)x k(k +1)!=e x -1-x kk !>0, 故h(x)=ex -1-x k +1(k +1)!在(1,+∞)上单调递增. 又h(1)=1-1(k +1)!>0,则h(x)=ex -1-x k +1(k +1)!>0,即e x -1>x k +1(k +1)!,n =k +1时也成立. 综上,对任意的x >1,n ∈N *,都有ex -1>xnn !.(10分)。