噪声与振动控制—吸声.

合集下载

3噪声控制技术-吸声

3噪声控制技术-吸声

2013年11月26日
23
2013年11月26日
24
• 2.背后空腔的影响
当多孔吸声材料背后留有空气层时,与该空气层用同样的材料 填满的吸声效果近似,与多孔材料直接实贴在硬底面上相比, 中低频吸声性能都会有所提高,其吸声系数随空气层厚度的增 加而增加,但增加到一定厚度后,效果不再继续明显增加,如 图7—3所示。通常,空气层的厚度为l/4波长的奇数倍时,吸 声系数最大;而为1/2波长的整数倍时,吸声系数最小。
2013年11月26日
10
• 2.吸声量
吸声系数反映房间壁面单位面积的吸声能力,材料实际吸收声能的多少, 除了与材料的吸声系数有关外,还与材料表面积大小有关。吸声材料的实 际吸声量按下式计算:
吸声量的单位是m2。若房间中有敞开的窗,而且其边长远大于声波的波长 ,则入射到窗口上的声能几乎全部传到室外,不再有声能反射回来。这敞 开的窗.即相当于吸声系数为1的吸声材料。若某吸声材料的吸声量力1m2 ,则其所吸声能相当于1m2敞开的窗户所引起的吸声。房间中的其他物体如 家具、人等等,也会吸收声能,而这些物体井不是房间壁面的一部分。因 此,房间总的吸声量A可以表示为: 右式第一项为所有壁面吸声量的总和,第二项是室内各个物体吸声量的总 和
波腹:
Pmax = Pi + Pr
• 声强系数与声压系数之间为平方关系,即: • 由于 τ I = 1 − rI • α代替τI得到: α
2013年11月26日
驻波比 n
Pmax 1 + rp n= = Pmin 1 − rp
Pmin = Pi − Pr
波节:
n −1 rp = n +1
Pr rI = Pi
8
吸声系数和吸声量

机械工程中的振动与噪声控制

机械工程中的振动与噪声控制

机械工程中的振动与噪声控制机械工程领域中的振动与噪声控制是关乎工程质量和人员安全的重要问题。

振动与噪声的存在可能导致设备磨损、性能下降,甚至对工作人员产生不利影响。

因此,如何有效控制振动和噪声成为了机械工程师们关注的焦点。

1. 振动控制振动是机械工程中常见的现象,它是由于机械系统中的不平衡、不对称、共振等原因引起的。

为了减小或消除振动带来的负面影响,可以采取以下措施。

(1)动平衡技术:通过对旋转机械进行平衡调整,使其运行时振动减小到最低限度,避免不平衡引起的损伤。

(2)减振装置:在机械设备中增加减振器,如弹簧、减振垫等,吸收振动能量,降低机械的振动水平。

(3)精度控制:机械加工和装配过程中,提高加工精度和装配精度,减小各部件的不平衡或对称差异,从而减少振动。

2. 噪声控制噪声是机械设备运行中产生的不必要的声音,可能对周围环境和人员造成威胁和不适。

下面是一些减少噪声的方法。

(1)隔声措施:在机械设备周围建立隔音室,采用隔声材料进行隔音,减少噪声向周围环境传播。

(2)降噪设备:在噪声源附近设置降噪设备,如降噪耳塞、降噪耳机等,有效减少噪声对人员的影响。

(3)改进设计:在机械设备的设计过程中,注重噪声控制,采用吸声材料和隔声结构,减少噪声产生。

3. 振动与噪声控制的重要性振动和噪声的产生可能对机械系统的性能、寿命和可靠性造成不利影响。

同时,对于工作人员来说,长时间暴露在高噪声环境中会对健康产生负面影响,引发听力损伤、睡眠障碍以及心理疾病等问题。

因此,振动和噪声控制是机械工程中不可忽视的重要任务。

通过合理选择和优化机械设计,合理安装和使用机械设备,以及采取有效的振动和噪声控制措施,可以大大降低振动和噪声对机械系统和人体的危害。

机械工程师需要综合考虑各种因素,不断改进和创新,以实现振动和噪声控制的最佳效果。

总之,振动与噪声控制在机械工程中的重要性不言而喻。

了解振动和噪声产生的原因,并采取相应的控制措施,对于提高机械设备的性能和使用寿命,保护工作人员的健康至关重要。

噪声与振动控制基础知识及控制方法概述

噪声与振动控制基础知识及控制方法概述

三聚氢胺吸声泡 沫塑料
木丝吸声板
吸声无纺布
新型喷涂材料
噪声与振动控制方法 4.消声
概念:消声器是一种既允许气流顺利通过,又能有效地阻止 弱声能向外传播的装置。气流噪声是常见的噪声源之一,例如 气飞机、火箭、宇宙飞船、气动工具、通风设备、内燃发动机 压力容器、管道阀门的进排气等,都会产生声级很高的气流噪 (高达100~160dB)。消声器的设计、选用应注意四个因素 声量、阻力损失、气流再生噪声和高频失效频率。
③ 加大振动源和敏感点之间的距离,当距振源为4~20m时,一般距离加倍, 衰减3~6dB,当距离大于20m,距离加倍,振动衰减6dB以上;
④ 按振动设备的重量、频率、振幅或加速度的大小有针对性的选用隔振器。 器种类繁多,有橡胶隔振器、隔振垫、金属弹簧隔振器、橡胶挠性接管、 波纹管、弹性吊钩、空气弹簧等;
基本概念
基本概念 4.几个概念的说明(易混淆) 常用的几个数据: 睡眠<35dB(A) ,脑力劳动<60dB(A) ,体力劳动<85dB(A 最大不得超过115dB(A),脉冲(1s)噪声<140dB(C) 。 隔声10~40dB(A):全封闭40dB(A),一般封闭<20dB(A) 半封闭<10dB(A) 吸声3~12dB(A):不会超过15dB(A) 消声器定型产品:10~40dB(A),阻性片式消声器10dB(A) / 小孔喷注消声器最高35~40dB(A) 隔声吸声屏障:5~15dB(A),要求材料隔声20dB(A),吸声
④ 消声器高频失效频率 对于阻性消声器,其截面较大时,例如圆管直径或方管边长大 300(mm),片式消声器片间距大于250(mm)时,高频声波将呈 状直接通过消声器,而很少与管道内壁吸声层面接触,减少了 收,降低了消声效果,工程上将此现象称为“高频失效”。

5-环境噪声控制技术-吸声

5-环境噪声控制技术-吸声
声波 向外敞开 的微孔 衍射到 内部微孔 空气与筋络 发生振动
声能转化为热能
空气分子间的粘滞阻力
空气与筋络间的摩擦阻力
空气与筋络热交换
吸声材料与吸声结构
3、多孔吸声材料的吸声特性及影响因素
吸声材料与吸声结构
3、影响多孔吸声材料吸声的因素
A、材料的空气流阻
B、材料的密度或孔隙率
C、材料厚度的影响
D、材料后空气层的影响 E、材料装饰面的影响 F、温度、湿度的影响

与吸声材料的结构、性质、适用条件有关。 与入射角度、频率有关。
平均吸声系数(考虑到频率特性):
材料在不同频率(125、250、500、1000、2000和4000Hz)
吸声系数的算术平均值。
降噪系数:
是指250、500、1000、2000Hz下测得的吸声系数的 算术平均值。
一个房间的总吸声量:
吸声材料与吸声结构
3、穿孔板共振吸声结构
多孔穿孔板共振吸声结构
c f0 2 P L(t )
穿孔率(P) =穿孔面积/总面积
吸声材料与吸声结构
3、穿孔板共振吸声结构 多孔穿孔板共振吸声结构

吸声频带:低中频噪声的峰值 吸声系数:0.4~0.7
f 4
0
f0
L


车间工人多,噪声设备 10-40 少,用隔声罩,反之, 分贝 用隔声间,二者都不行, 用隔声屏 气动设备的空气动力性 噪声,各类放空排气 设备振动厉害,固体声 传播远,干扰居民,机 械设备外壳、管道振动 噪声严重 15-40 分贝 5-25 分贝
隔振 减振
环境噪声控制技术-概述
噪声控制的基本原则
科学性 控制技术的先进性 经济性

环境噪声控制工程(吸声降噪)

环境噪声控制工程(吸声降噪)

5.4 特殊吸声结构
5.4.1 空间吸声体 5.4.2 吸声尖劈
5.4.1 空间吸声体
特点: 悬空悬挂,吸声
性能好,节约吸 声材料; 便于安装,装拆 灵活。
5.4.2 吸声尖劈
尖劈长度无固定值,越长越好,尖劈 低频吸声性能好,其截止频率约 68.8~86Hz。宽度一般取0.3~ 0.4m,底座厚度为0.1m。一般3个
内部。
两个重要条件: 一是具有大量的、均匀的孔隙; 二是孔之间要连通,表面向外敞开。
➢.常见品种:玻璃棉、超细玻璃棉、岩棉、矿棉、 泡沫塑料、毛毡等。
➢.吸收频率:中频、高频,背后有空气层时能吸 收低频。
表5.3不同材质在不同密度、厚度时,吸声系数
5.2.3 多孔吸声材料的吸声特性
2.影响材料吸声的因素
环境噪声控制工程
第五章 吸声降噪
5.1 概述 5.2 多孔吸声材料 5.3 共振吸声结构 5.4 特殊吸声结构 5.5 吸声设计
5.1 概述
5.1.1 吸声与吸声材料的概念 5.1.2 吸声机理 5.1.3 吸声材料的基本类型 5.1.4 表示材料吸声性能的量
5.1.1 吸声与吸声材料的概念
吸声型泡沫玻璃 加气混凝土
吸声性能不稳定,吸声系数使用前需实 测
强度高 、防水、不燃、耐腐蚀
微孔不贯通,使用少
5.3 共振吸声结构
特点: 低频吸收性能好; 装饰性强; 强度足够; 声学性能易于控制。
5.3 共振吸声结构
5.3.1 共振吸声机理 5.3.2 常用共振吸声结构
5.3.1 共振吸声机理
表5.1垂直入射及无规则入射吸声系数关系
αo
0.1 0.20 0.30 0.40 0.50 0.60 0.70 0.80

噪声与振动控制实验报告

噪声与振动控制实验报告

噪声与振动控制实验报告一、实验目的本实验旨在通过对噪声与振动进行控制,达到降低环境噪声和减少振动影响的目的。

通过实验,掌握噪声与振动控制的基本原理和方法,提高工程人员在实际工作中的应用能力。

二、实验设备本次实验所用的设备包括噪声生成器、振动传感器、振动试验台等各种实验设备。

三、实验原理1. 噪声控制原理:噪声是一种具有不良影响的声音,通过对噪声的控制可以使其达到合理范围内,减少对人体的损害。

常用的噪声控制方法包括隔声、吸声、降噪等。

2. 振动控制原理:振动是物体在运动中产生的周期性的震动现象,对机械设备和人体健康均有不良影响。

振动控制的方法包括减振、隔振、吸振等。

四、实验步骤1. 在实验室内设置噪声生成器,并调节至适当的音量。

2. 将振动传感器安装在振动试验台上,并调节振动幅度至一定水平。

3. 开始记录噪音和振动的数据,包括频率、幅度、时长等参数。

4. 分析数据,根据噪声和振动的特点,制定相应的控制方案。

5. 进行控制实验,观察结果并记录数据。

6. 分析实验结果,总结控制效果并提出改进意见。

五、实验结果经过对噪声和振动的控制实验,得出以下结论:1. 通过合理的隔声和吸声措施,可以有效降低环境噪声。

2. 通过减振和隔振措施,可以降低机械设备的振动影响。

3. 对噪声和振动进行有效控制,可以提高工作环境的安静舒适度,减少对人体的不良影响。

六、实验总结本次实验通过对噪声与振动控制的探索,使我们更加深入地了解了噪声与振动的威胁以及控制方法。

掌握了噪声与振动控制的基本原理和技术,提高了我们的实践能力和应用水平。

希望通过今后的学习和实践,能够更好地应用噪声与振动控制技术,为工程实践提供更好的支持和保障。

噪声与振动控制工程手册

噪声与振动控制工程手册

噪声与振动控制工程手册噪声与振动控制工程手册引言:噪声和振动在我们的日常生活中无处不在,从喧嚣的城市交通到家庭电器的嗡嗡声,它们不仅影响我们的健康和舒适度,还可能对机械设备和结构的性能产生负面影响。

噪声与振动控制成为了一个重要的领域,目的是减少或消除这些不利影响,提高工作和生活环境的质量。

本文将深入探讨噪声与振动控制工程的各个方面,帮助读者了解其原理和应用。

目录:1. 什么是噪声与振动控制工程?1.1 噪声控制1.2 振动控制2. 噪声与振动的来源和特点2.1 噪声源的分类2.2 振动源的分类2.3 噪声与振动的特征参数3. 噪声与振动的危害与影响3.1 对人类健康的影响3.2 对机械设备的影响4. 噪声与振动控制的原理和方法 4.1 噪声控制原理和方法4.1.1 声源控制4.1.2 传播路径控制4.1.3 接受者控制4.2 振动控制原理和方法4.2.1 主动振动控制4.2.2 被动振动控制5. 常见的噪声与振动控制应用 5.1 建筑噪声与振动控制5.2 交通噪声与振动控制5.3 机械设备噪声与振动控制5.4 电子设备噪声与振动控制6. 未来发展趋势6.1 新技术的应用6.2 可持续发展与噪声振动控制7. 总结与展望1. 什么是噪声与振动控制工程?1.1 噪声控制噪声控制是指通过采取控制措施来降低噪声水平的工程实践。

它涉及到噪声的产生、传播和接收三个方面。

噪声控制技术可以从源头、传播路径或接收器入手,采取各种方法来降低噪声的影响。

常见的噪声控制方法包括隔音、消声、吸声和降噪技术等。

1.2 振动控制振动控制是指对结构、设备或系统进行控制以减少振动水平的工程实践。

振动控制可以通过减少振动源的激励力、改变结构的固有频率或使用吸振材料等方法来实现。

振动控制在航空航天、汽车工业、建筑工程等领域都有广泛应用。

2. 噪声与振动的来源和特点2.1 噪声源的分类噪声源可以分为环境噪声源和工业噪声源。

环境噪声源包括交通噪声、建筑噪声和社会噪声等,其特点是持续性较强,频率范围较广。

吸声

吸声

第五节噪声控制技术——吸声一、材料的声学分类和吸声特性(一)、吸声材料的分类吸声材料按其吸声机理来分类,可以分成多孔性吸声材料及共振吸声结构两大类。

1.多孔性吸声材料①无机纤维材料,如玻璃棉、岩棉及其制品。

②有机纤维材料,如棉麻植物纤维及木质纤维制品(软质纤维板、木丝板等)。

③泡沫材料,如泡沫塑料和泡沫玻璃、泡沫混凝土等。

④吸声建筑材料,如膨胀珍珠岩、微孔吸声砖等。

2.共振吸声结构由于共振作用,在系统共振频率附近对入射声能具有较大的吸收作用的结构,称为共振吸声结构。

穿孔板吸声结构微穿孔板吸声结构薄板和薄膜吸声结构等。

(二)、吸声系数和吸声量1.吸声系数吸声系数定义为材料吸收的声能与入射到材料上的总声能之比,可用吸声系数来描述吸声材料或吸声结构的吸声特性。

计算式为:式中:Ei—入射声能;Ea—被材料或结构吸收的声能;Er—被材料或结构反射的声能;r—反射系数。

a=0,表示无吸声作用;a=1,表示完全吸收。

一般的材料或结构的吸声系数在0-1之间,a值越大,表示吸声性能越好,它是目前表征吸声性能最常用的参数。

吸声系数是颇率的函数,同一种材料,对于不同的频率,具有不同的吸声系数。

平均吸声系数a:中心频率125,250,500,1 000,2 000,4 000六个倍频程的吸声系数的平均值,称为平均吸声系数a。

2.吸声量吸声材料的实际吸声量按下式计算:A=aS (7-2)吸声量的单位是m2。

房间总的吸声量A可以表示为:右式第一项为所有壁面吸声量的总和,第二项是室内各个物体吸声量的总和。

二、多孔吸声材料(一)、多孔吸声材料的吸声原理内部具有无数细微孔隙,孔隙间彼此贯通,且通过表面与外界相通,当声波入射到材料表面时,一部分在材料表面上反射,一部分则透入到材料内部向前传播。

在传播过程中,引起孔隙中的空气运动,与形成孔壁的固体筋络发生摩擦,由于粘滞性和热传导效应,将声能转变为热能而耗散掉。

声波在刚性璧面反射后,经过材料回到其表面时,一部分声波透回空气中,一部分又反射回材料内部,声波的这种反复传播过程,就是能量不断转换耗散的过程,如此反复,直到平衡,这样,材料就“吸收”了部分声能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档