BCD-7段数码管显示译码器电路设计(PPT 35张)

合集下载

七段数码管显示数字电路

七段数码管显示数字电路

七段数码管显示数字电路学习 2008—11—02 15:15:18 阅读2837 评论0 字号:大中小CD4511是一个用于驱动共阴极 LED (数码管)显示器的 BCD 码—七段码译码器,特点如下:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS电路能提供较大的拉电流.可直接驱动LED显示器.CD4511 是一片 CMOS BCD-锁存/7 段译码/驱动器,引脚排列如图 2 所示。

其中a b c d 为 BCD 码输入,a为最低位。

LT为灯测试端,加高电平时,显示器正常显示,加低电平时,显示器一直显示数码“8”,各笔段都被点亮,以检查显示器是否有故障。

BI为消隐功能端,低电平时使所有笔段均消隐,正常显示时, B1端应加高电平.另外 CD4511有拒绝伪码的特点,当输入数据越过十进制数9(1001)时,显示字形也自行消隐。

LE是锁存控制端,高电平时锁存,低电平时传输数据。

a~g是 7 段输出,可驱动共阴LED数码管。

另外,CD4511显示数“6”时,a段消隐;显示数“9”时,d段消隐,所以显示6、9这两个数时,字形不太美观图3是 CD4511和CD4518配合而成一位计数显示电路,若要多位计数,只需将计数器级联,每级输出接一只 CD4511 和 LED 数码管即可。

所谓共阴 LED 数码管是指 7 段 LED 的阴极是连在一起的,在应用中应接地。

限流电阻要根据电源电压来选取,电源电压5V时可使用300Ω的限流电阻。

用CD4511实现LED与单片机的并行接口方法如下图: (略)CD4511 引脚图其功能介绍如下:BI:4脚是消隐输入控制端,当BI=0 时,不管其它输入端状态如何,七段数码管均处于熄灭(消隐)状态,不显示数字.LT:3脚是测试输入端,当BI=1,LT=0 时,译码输出全为1,不管输入 DCBA 状态如何,七段均发亮,显示“8"。

它主要用来检测数码管是否损坏。

LE:锁定控制端,当LE=0时,允许译码输出. LE=1时译码器是锁定保持状态,译码器输出被保持在LE=0时的数值。

七段数码管显示实验报告

七段数码管显示实验报告

七段数码管显示实验报告实验目的:本实验的目的是通过控制7段数码管的亮灭状态来显示不同的数字和字母。

实验原理:7段数码管常用于显示数字和字母,每个数码管由7个LED灯组成,分别表示A、B、C、D、E、F、G等7个段。

通过控制这些LED灯的亮灭状态,就可以显示不同的数字和字母。

在实际应用中,通常需要使用一个译码器来根据输入的数字或字母输出相应的控制信号。

常用的译码器有7447、DM9368等。

这些译码器通常都是BCD码到7段数码管的译码器。

在本实验中,我们将使用7447译码器来控制7段数码管的亮灭状态。

7447译码器具有4个输入线和7个输出线,每个输入线上的BCD码可以转换成相应的控制信号,用于控制数码管的7个LED 灯。

实验材料:1.7段数码管2.7447译码器3.电路板4.电压源5.连接线实验步骤:1.将7447译码器插入电路板上相应的插槽中,并将数码管连接到电路板上。

2.将电压源连接到电路板上,并调节电压和电流值。

3.根据所需显示的数字或字母,设置相应的BCD码输入信号。

4.打开电源,观察数码管是否能够正确显示。

实验结果:通过本实验,我们可以成功控制7段数码管的亮灭状态,实现了数字和字母的显示。

同时,我们也了解了7447译码器的原理和使用方法。

实验小结:本实验是电子技术的基础实验之一,通过实验我们深入了解了7段数码管和7447译码器的原理和应用,同时也锻炼了我们的动手能力和实验技能。

在实际应用中,7段数码管和译码器常常被用于数字显示、计数器、时钟、温度计等电子设备中,具有广泛的应用前景。

数字电路译码器PPT课件

数字电路译码器PPT课件
解:(1) 根据逻辑函数选择译码器。 A、B、C三变量,选3线—8线译码器 CT74LS138。该译码器输出低电平有效。
(2) 写出标准与—或表达式→与
S1
非表达式。
S2
Y1 ABC ABC C
S3
= ABC ABC ABC ABC ABC
74LS138
= m1 m3 m5 m6 m7
Y 9 A3 A2 A1A0 …
Y 15 A3 A2 A1A0
第27页/共45页
A
S1
S2
S3
D
C B
(4) 画连线图
令A3=A、A2=B、A1=C、A0=D
S1 S2 S3
& Y
第28页/共45页
6.2.3 显示译码器
能够显示数字的器件称为数字显示器。 显示译码器----将与数字对应的二进制代码翻译成数字 显示器所能识别的信号的译码器。
Y3 A2 A1A0 m3
Y4 A2 A1 A0 m4
Y5 A2 A1A0 m5
令A2=A、A1=B、A0=C
Y6 A2 A1 A0 m6 Y7 A2 A1A0 m7
Y m1m3 m5 m6 m7 Y1Y 3Y 5Y 6Y 7
Y2 m0 m7 Y 0Y 7
第24页/共45页
第26页/共45页
(3) 将逻辑函数式和4-16译码器输出表达式比较
Y 0 A3 A2 A1A0
Y 1 A3 A2 A1A0 Y 2 A3 A2A1A0 … Y 7 A3A2 A1A0
Y 8 A3 A2 A1A0
令A3=A、A2=B、A1=C、A0=D
F m0 m1m3 m14 m15 Y 0Y 1Y 3Y 14Y 15
S1

十六进制7段数码显示译码器设计实验报告

十六进制7段数码显示译码器设计实验报告

实验名称:十六进制7段数码显示译码器设计实验目的:1.设计七段显示译码器2.学习Verilog HDL文本文件进行逻辑设计输入;3.学习设计仿真工具的使用方法;工作原理:7段数码是纯组合电路,通常的小规模专用IC,如74或4000系列的器件只能作十进制BCD码译码,然而数字系统中的数据处理和运算都是二进制的,所以输出表达都是十六进制的,为了满足十六进制数的译码显示,最方便的方法就是利用译码程序在FPGA/CPLD中来实现。

例如6-18作为7段译码器,输出信号LED7S 的7位分别接图6-17数码管的7个段,高位在左,低位在右。

例如当LED7S输出为“1101101”时,数码管的7个段g,f,e,d,c,b,a分别接1,1,0,1,1,0,1;接有高电平的段发亮,于是数码管显示“5”。

注意,这里没有考虑表示小数点的发光管,如果要考虑,需要增加段h,例6-18中的LED7S:OUT STD_LOGIC_VECTOR(6 DOWNTO 0)应改为…(7 DOWNTO 0)。

实验内容1:将设计好的VHDL译码器程序在Quartus II上进行编辑、编译、综合、适配、仿真,给出其所有信号的时序仿真波形。

实验步骤:步骤1:新建一个文件夹击打开vhdl文件;步骤2:编写源程序并保存步骤3:新建一个工程及进行工程设置步骤4:调试程序至无误;步骤5:接着新建一个VECTOR WAVEFOM文件及展出仿真波形设置步骤6:输入数据并输出结果(时序仿真图)步骤7:设置好这个模式步骤8:生成RTL原理图步骤9:引脚锁定及源代码LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY DECL7S ISPORT(A :IN STD_LOGIC_VECTOR(3 DOWNTO 0);LED7S:OUT STD_LOGIC_VECTOR(6 DOWNTO 0)); END;ARCHITECTURE one OF DECL7S ISBEGINPROCESS(A)BEGINCASE A ISWHEN"0000"=> LED7S<="0111111";WHEN"0001"=> LED7S<="0000110";WHEN"0010"=> LED7S<="1011011";WHEN"0011"=> LED7S<="1001111";WHEN"0100"=> LED7S<="1100110";WHEN"0101"=> LED7S<="1101101";WHEN"0110"=> LED7S<="1111101";WHEN"0111"=> LED7S<="0000111";WHEN"1000"=> LED7S<="1111111";WHEN"1001"=> LED7S<="1101111";WHEN"1010"=> LED7S<="1110111";WHEN"1011"=> LED7S<="1111100";WHEN"1100"=> LED7S<="0111001";WHEN"1101"=> LED7S<="1011110";WHEN"1110"=> LED7S<="1111001";WHEN"1111"=> LED7S<="1110001";WHEN OTHERS =>NULL;END CASE;END PROCESS;END;实验内容二:1、硬件测试。

十六进制7段数码显示译码器设计实验报告

十六进制7段数码显示译码器设计实验报告

十六进制7段数码显示译码器设计实验报告实验报告:十六进制7段数码显示译码器设计一、实验目的本实验的主要目的是设计一种用于将十六进制数码转化为七段显示的译码器电路。

通过这个实验,我们可以学习和了解数字电路的工作原理、数码管的控制方式以及七段数码的译码方法。

二、实验原理本实验所用到的数码管为共阳数码管,它由7个发光二极管组成,其中的每一个发光二极管称为一个段。

这七个段依次为a、b、c、d、e、f和g,它们分别对应数码管上的abcdefg七个引脚。

当一些引脚输出高电平时,相应的段就会被点亮,从而显示出特定的字符。

为了实现将十六进制数码转化为七段显示的功能,我们需要设计一个译码器电路。

译码器电路的输入为十六进制数码,输出为七段信号,用于控制数码管的每个段的亮灭情况。

为了简化设计,我们可以采用CMOS数字集成电路74LS47来实现译码器电路。

该集成电路内部集成了BCD转七段译码器,可以将二进制代码转化为七段数码显示所需要的信号。

它的输入为四个二进制输入端口A、B、C和D,输出为七个段芯片(a、b、c、d、e、f和g)的控制信号。

三、实验步骤1.首先,根据74LS47的真值表,确定译码器的输入和输出。

2.根据真值表,画出逻辑图,确定硬件电路的连接方式。

3.按照逻辑图和电路连接方式,进行硬件电路的布线。

4.按照实验仪器的操作说明,对电路进行调试和测试。

5.将输入端口连接至外部的十六进制信号源,观察输出端口的数据是否正确。

6.验证电路的正确性和稳定性,如果出现问题,进行排除和修复。

四、实验结果经过实验,我们成功地设计并实现了一个十六进制7段数码显示译码器电路。

当输入端口接收到一个十六进制信号时,通过电路的处理和转换,将其转化为了相应的七段信号,用于控制数码管的每个段的亮灭情况。

通过实验观察,我们发现电路的输出结果与预期一致,且工作稳定。

五、实验总结通过这个实验,我们对于数字电路的工作原理和数码管的控制方式有了更深的了解。

显示译码电路实验报告

显示译码电路实验报告

显示译码电路实验报告显示译码电路实验报告引言:在现代电子技术领域,显示译码电路扮演着重要的角色。

它们可以将数字信号转换为人们可以理解的可视化信息,广泛应用于计算机、电视、手机等设备中。

本实验旨在通过搭建一个显示译码电路,探索其原理和应用。

一、实验目的本实验的目的是了解显示译码电路的工作原理,掌握其基本应用。

通过实践操作,学生们可以更好地理解数字电路的运行机制,提高实际动手能力。

二、实验材料和器件1. 74LS47芯片:这是一种BCD-7段译码器,用于将4位二进制输入转换为7段数码管的输出。

2. 7段数码管:用于显示数字和字母等字符。

3. 连接线、电源等辅助器件。

三、实验步骤1. 连接电路:将74LS47芯片与7段数码管通过连接线连接起来,确保电路连接正确无误。

2. 施加电源:将电路连接到适当的电源上,确保电压和电流符合芯片的工作要求。

3. 输入信号:通过开关或其他输入设备提供4位二进制输入信号。

4. 观察结果:观察7段数码管上显示的字符是否与输入信号对应,验证译码电路的正确性。

四、实验结果与分析经过实验操作,我们成功搭建了显示译码电路,并进行了测试。

在输入4位二进制数的情况下,数码管正确显示了对应的字符。

这表明译码电路能够准确地将二进制信号转换为可视化的字符信息。

通过进一步的观察和分析,我们发现译码电路的工作原理是将输入的二进制数映射到对应的数码管段上。

每个数码管段代表一个二进制位,通过控制该段的通断状态,可以显示不同的字符。

而74LS47芯片则起到了译码的作用,将二进制输入转换为对应的数码管段控制信号。

这种显示译码电路广泛应用于各种计算机和电子设备中。

它使得数字信息可以以更加直观和易读的方式展示给用户,提高了人机交互的效率和便利性。

例如,在计算机屏幕上显示的字符、数字时钟、电子秤等设备都使用了类似的译码电路。

五、实验总结通过本次实验,我们深入了解了显示译码电路的工作原理和应用。

通过实际操作,我们掌握了搭建和测试译码电路的方法,提高了动手实践能力。

实验二 7 段数码管静态显示译码器

实验二 7 段数码管静态显示译码器

实验二7 段数码管静态显示译码器1.实验目的学习quartusii 和modelsim的使用方法;学习原理图和veriloghdl混合输入设计方法;掌握7 段数码管静态显示译码器的设计及仿真方法。

2.实验原理根据下面电路图,设计7 段数码管静态显示译码器电路,在kx3c10F+开发板上实现该电路,并作仿真。

3.实验设备kx3c10F+开发板,电脑。

4.实验步骤4.1编译4.1.1七段数码管代码module segled(out1,a); //定义模块名和输入输出端口input [3:0]a; //输入一个3位矢量output [6:0]out1; //输出一个6位矢量reg [6:0]out1; //reg型变量用于always语句always@(a) //敏感信号啊begincase(a) //case语句用于选择输出4'b0000:out1<=7'b1000000;4'b0001:out1<=7'b1001111;4'b0010:out1<=7'b0100100;4'b0011:out1<=7'b0110000;4'b0100:out1<=7'b0011001;4'b0101:out1<=7'b0010010;4'b0110:out1<=7'b0000011;4'b0111:out1<=7'b1111000;4'b1000:out1<=7'b0000000;4'b1001:out1<=7'b0011000;4'b1010:out1<=7'b0001000;4'b1011:out1<=7'b0011100;4'b1100:out1<=7'b1000111;4'b1101:out1<=7'b0100011;4'b1110:out1<=7'b0000110;4'b1111:out1<=7'b0001110;endcaseendendmodule //模块结束效果图:4.1.2综合模块代码// Copyright (C) 1991-2013 Altera Corporation// Your use of Altera Corporation's design tools, logic functions // and other software and tools, and its AMPP partner logic// functions, and any output files from any of the foregoing// (including device programming or simulation files), and any// associated documentation or information are expressly subject // to the terms and conditions of the Altera Program License// Subscription Agreement, Altera MegaCore Function License// Agreement, or other applicable license agreement, including,// without limitation, that your use is for the sole purpose of// programming logic devices manufactured by Altera and sold by// Altera or its authorized distributors. Please refer to the// applicable agreement for further details.// PROGRAM "Quartus II 64-Bit"// VERSION "Version 13.1.0 Build 162 10/23/2013 SJ Web Edition" // CREATED "Mon Mar 27 15:23:18 2017"module Blok(a,out1);input wire [3:0] a;output wire [6:0] out1;segled b2v_inst(.a(a),.out1(out1));endmodule效果图:4.1.3编辑结果截图编译解释:在这个报告中,我们可以看到如下信息:Total logic elements 7/5136(<1%): 该芯片中共有5136个LE资源,其中的7个在这个工程的这次编译中得到了使用。

BCD七段显示译码器电路图

BCD七段显示译码器电路图

BCD七段显示译码器电路图发布:2011-08-30 | 作者: | 来源: tangyaohua | 查看:3641次| 用户关注:BCD七段显示译码器发光二极管(LED)由特殊的半导体材料砷化镓、磷砷化镓等制成,可以单独使用,也可以组装成分段式或点阵式LED显示器件(半导体显示器)。

分段式显示器(LED数码管)由7条线段围成字型,每一段包含一个发光二极管。

外加正向电压时二极管导通,发出清晰的光,有红、黄、绿等色。

只要按规律控制各发光段的亮、灭,就可以显示各种字形或符号。

LED数码管有共阳、共阴之分。

图4-17(a)是共阴式LED数码管的原理图,图4-17(b)是BCD七段显示译码器发光二极管(LED)由特殊的半导体材料砷化镓、磷砷化镓等制成,可以单独使用,也可以组装成分段式或点阵式LED显示器件(半导体显示器)。

分段式显示器(LED数码管)由7条线段围成字型,每一段包含一个发光二极管。

外加正向电压时二极管导通,发出清晰的光,有红、黄、绿等色。

只要按规律控制各发光段的亮、灭,就可以显示各种字形或符号。

LED数码管有共阳、共阴之分。

图4 - 17(a)是共阴式LED数码管的原理图,图4-17(b)是其表示符号。

使用时,公共阴极接地,7个阳极a~g由相应的BCD七段译码器来驱动(控制),如图 4 - 17(c)所示。

BCD七段译码器的输入是一位BCD码(以D、C、B、A表示),输出是数码管各段的驱动信号(以F a~F g表示),也称4—7译码器。

若用它驱动共阴LED数码管,则输出应为高有效,即输出为高(1)时,相应显示段发光。

例如,当输入8421码DCBA=0100时,应显示,即要求同时点亮b、c、f、g段,熄灭a、d、e段,故译码器的输出应为F a~F g=0110011,这也是一组代码,常称为段码。

同理,根据组成0~9这10个字形的要求可以列出8421BCD 七段译码器的真值表,见表4 - 12(未用码组省略)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ARCHITECTURE {SIGNAL Declarations} label1: PROCESS {VARIABLE Declarations}

label2: PROCESS {VARIABLE Declarations}
4)赋值行为的不同: 信号赋值延迟更新数值、时序电路;
变量赋值立即更新数值、组合电路。 5)信号的多次赋值
顺序描述语句: 执行顺序与书写顺序一致,与传统软件设计 语言的特点相似。顺序语句只能用在进程与子程 序中。 可描述组合逻辑、时序逻辑。
常用的顺序描述语句:
赋值语句; if语句;case语句;loop语句; next语句;exit语句;子程序;return语句; wait语句;null语句。
1、变量赋值与信号赋值
例:根据输入确定输出值
library ieee; use ieee.std_logic_1164.all; entity mux41 is port(s4,s3,s2,s1: in std_logic; z4,z3,z2,z1: out std_logic); end mux41; architecture art of mux41 is begin process(s4, s3, s2, s1) variable sel: integer range 0to15; begin sel:=0;
常用的并行描述语句有:
进程(process)语句、
块(block)语用语句、 元件例化语句、 生成语句。
进程(process)语句
进程(process)语句最具VHDL语言特色。提 供了一种用算法描述硬件行为的方法。
特点:
1、进程与进程,或其它并发语句之间的并发性; 2、进程内部的顺序性; 3、进程的启动与挂起; 4、进程与进程,或其它并发语句之间的通信。
以上三种方式的混合;
when others => 顺序处理语句;
Case 语句使用注意:
1)分支条件的值必须在表达式的取值范围内。 2)两个分支条件不能重叠。 3)CASE语句执行时必须选中,且只能选中一 个分支条件。
4)如果没有others分支条件存在,则分支条
件必须覆盖表达式所有可能的值。
对std_logc, std_logic_vector数据类型要特 别注意使用others分支条件。
变量赋值: architecture rtl of var is begin process variable a,b:std_logic; -- 定义变量 begin a := b ; b := a ; end process ; end rtl; -- 结果是a和b的值都等于b的初值
例:变量赋值实现循环语句功能 process(indicator, sig) variable temp : std_logic; begin temp := ‘0’ ; for i in 0 to 3 loop
if s1=‘1’ then sel:=sel+1; end if; if s2=‘1’ then sel:=sel+2; end if; if s3=‘1’ then sel:=sel+4; end if; if s4=‘1’ then sel:=sel+8; end if; z1<=‘0’; z2<=‘0’; z3<=‘0’; z4<=‘0’; case sel is when 0 =>z1<=‘1’; when 1|3 =>z2<=‘1’; when 4 to 7|2 =>z3<=‘1’; when others =>z4<=‘1’; end case; end process; end art;
BCD-7段数码管显示译码器电路设计
• 一、项目资讯 • • 请根据要求在EDA实验箱上设计BCD-7段数 码管显示译码器电路,要求: • • ⑴使用EDA实验箱上开关设置模块的K4、 K3、K2、K1开关作为BCD码输入; • • ⑵使用EDA实验箱上键盘显示模块中最右边
一、项目资讯
1、BCD-7段数码管显示译码器电路的工作原 理。 2、基于FPGA与VHDL的数字电路与数字系 统设计方法与工作流程。 3、WITH-SELECT 语句与WHEN-ELSE语句 及其应用。 4、进程语句、CASE语句、IF语句及其应用。
例:用case 语句描述四选一电路
例:case 语句的误用 signal value:integer range 0 to 15; signal out_1 : bit ; case value is end case ; -- 缺少 when条件语句
case value is -- 分支条件不包含2到15 when 0 => out_1 <= ‘1’ ; when 1 => out_1 <=‘0’ ; end case ; case value is -- 在5到10上发生重叠 when 0 to 10 => out_1 <= ‘1’ ; when 5 to 15 => out_1 <= ‘0’ ; end case ;
ENTITY
ARCHITECTURE Process Process
ports
Sequential Process Combinational Process
ports
component
硬件执行:并行执行(VHDL本质) 仿真执行:顺序执行、并行执行 分为两大类:顺序(Sequential)描述语句 并行(Concurrent)描述语句
BCD-7段显示译码器译码原理
• BCD-7段译码器的输入是4位BCD码(以D、C、B、A 表示),输出是数码管各段的驱动信号(以a~g表 示),也称4—7译码器。若用它驱动共阴LED数码 管,则输出应为高有效,即输出为高(1)时,相应 显示段发光。例如,当输入8421码DCBA=0100时, 应显示 ,即要求同时点亮b、c、f、g段,熄灭 a、d、e段,故译码器的输出应为a~g=0110011, 这也是一组代码,常称为段码。同理,根据组成 0~9这10个字形的要求可以列出8421BCD-7段译码 器的真值表,见表5.1。
例:信号赋值与变量赋值的比较 信号赋值: architecture rtl of sig is signal a,b : std_logic; -- 定义信号 begin process(a, b) begin a <= b ; b <= a ; end process ; end rtl ; -- 结果是 a 和 b 的值互换
如改为信号,则无法实现原功能: …… signal temp : std_logic; …… process(indicator, sig, temp) begin temp<= ‘0’ ; temp<=temp xor (sig(0) and indicator(0)); temp<=temp xor (sig(1) and indicator(1)); temp<=temp xor (sig(2) and indicator(2)); temp<=temp xor (sig(3) and indicator(3)); output <= temp ; end process ;
a. 一个进程:最后一次赋值有效 b. 多个进程:多源驱动 线与、线或、三态
例:信号的多次赋值
architecture rtl of ex is signal a : std_logic; begin process(…) begin a <= b; … a <= c; end process; end rtl; architecture rtl of ex is signal a : std_logic; begin process(…) begin a <= b; … end process; process(…) begin a <= c; ... end process; end ex;
信号名称 {,信号名称 }
3、如果有 wait 语句,则不允许有敏感信号表。 PROCESS (a,b) BEGIN --sequential statements END PROCESS;
PROCESS BEGIN -- sequential statements WAIT ON (a,b) ; END PROCESS;
进程语句 process
信号
信号
进程语句 process 信号
进程语句 process
[标记:] process [( 敏感信号表)]
{ 进程说明项} begin { 顺序描述语句} end process [标记]; 敏感信号表:进程内要读取的所有敏感信号 (包括端口)的列表。每一个敏感 信号的变化,都将启动进程。 格式:
变量与信号的差异:
1)赋值方式的不同: 变量:= 表达式; 信号 < = 表达式; 2)硬件实现的功能不同: 信号代表电路单元、功能模块间的互联, 代表实际的硬件连线; 变量代表电路单元内部的操作,代表暂 存的临时数据。
3)有效范围的不同: 信号:程序包、实体、结构体;全局量。 变量:进程、子程序;局部量。
temp:=temp xor (sig(i) and indicator(i));
end loop ; output <= temp; end process;
以上语句等效为: process(indicator, sig) variable temp : std_logic ; begin temp := ‘0’ ; temp :=temp xor (sig(0) and indicator(0)); temp :=temp xor (sig(1) and indicator(1)); temp :=temp xor (sig(2) and indicator(2)); temp :=temp xor (sig(3) and indicator(3)); output <= temp ; end process ;
相关文档
最新文档