常微分 用万有引力定律推导开普勒三定律
开普勒三定律与万有引力定律

第四讲 开普勒三定律与万有引力定律【知识梳理】一、开普勒行星运动三定律1. 开普勒第一定律:2. 开普勒第二定律:3. 开普勒第三定律:二、万有引力定律1. 万有引力定律内容:2. 万有引力定律表达式:3. 万有引力常量:⑴ 开普勒第一定律中不同行星绕太阳运行时的椭圆轨道是不同的。
⑵ 开普勒第二定律中行星在近日点的速率大于在远日点的速率,从近日点向远日点运动时速率变小,从远日点向近日点运动时速率变大。
⑶ 开普勒第三定律的表达式k Tr =23中,k 是与太阳有关而与行星无关的常量,如果认为行星的轨道是圆的,式中半长轴r 代表圆的半径。
⑷开普勒三定律不仅适用于行星,也适用于卫星。
适用于卫星时,23k Tr =,常量k ’是由行星决定的另一常量,与卫星无关。
【例题1】太阳系中有一颗绕太阳公转的行星,距太阳的平均距离是地球到太阳平均距离的4倍,则该行星绕太阳公转的周期是多少年?【变式训练1】、已知地球半径约为R=6.4⨯106m,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地球的距离约 m.(结果只保留一位有效数字)。
图4-1(1)地球对物体的吸引力就是万有引力,重力只是万有引力的一个分力,万有引力的另一个分力是物体随地球自转所需的向心力。
如图4-1所示。
(2)物体在地球上不同的纬度处随地球自转所需的向心力的大小不同,重力大小也不同: 两极处:物体所受重力最大,大小等于万有引力,即2RMmGmg =。
赤道上:物体所受重力最小,22自ωmR R Mm Gmg -= 自赤道向两极,同一物体的重力逐渐增大,即g 逐渐增大。
(3)一般情况下,由于地球自转的角速度不大,可以不考虑地球的自转影响,近似的认为2RMmGmg = 【例题2】已知火星的半径为地球半径的一半,火星表面的重力加速度是地球表面重力加速度的4/9倍,则火星的质量约为地球质量的多少倍?【变式训练2】经测定,太阳光到达地球需要经过500s 的时间,已知地球的半径为6.4×106m ,试估算太阳质量与地球质量之比。
万有引力定律和开普勒三定律的互相推导

用万有引力定律推导开普勒三定律
⃗ = − ������������������ 万有引力定律数学表达式: ������ ������0 (G 为引力常数, m 是行星的质量, 2 ⃗⃗⃗⃗
������
′
⃗=− m’是太阳质量),设������ = ������������������′,则������
̇) (������ 2 ������ ������ 2
2
∙ =−
������
1
4������2 ������2 ������2 ������ 2
∙
������ ������2
∙
1 ������ 2
= −4������ 2 ∙
������3 ������ 2
∙
1 ������ 2
(4)
开普勒第三定律: 行星轨迹椭圆的半长轴的三次方和运动周期的平方成正比。 即
������ ������
2
+ ������������������������������
解积分可得:������ = ������������������������������������
������⁄������−������������ ⁄������
2 2 √2������������+������ ������ ⁄ 2 ������
从开普勒三定律推导万有引力定律
开普勒第一定律:行星围绕太阳的运动轨迹是一个椭圆,太阳在椭圆的一个 焦点上。 ������ = ������ 1 + ������������������������������
������2 ������
上式为椭圆的极坐标方程。 这里������ =
万有引力公式推导

万有引力公式推导
万有引力定律的推导以开普勒第三定律作为已知条件,开普勒第三定律r/T=C(C是常数),推导得F=GMm/r,引力大小与它们质量的乘积成正比与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。
万有引力的科学意义
万有引力定律的辨认出,就是17世纪自然科学最了不起的成果之一。
它把地面上物体运动的规律和天体运动的规律统一了出来,对以后物理学和天文学的发展具备深刻的影响。
它第一次表述了(自然界中四种相互作用之一)一种基本相互作用的规律,在人类重新认识自然的历史上践行了一座里程碑。
万有引力定律揭示了天体运动的规律,在天文学上和宇宙航行计算方面有着广泛的应用。
它为实际的天文观测提供了一套计算方法,可以只凭少数观测资料,就能算出长周期运行的天体运动轨道,科学史上哈雷彗星、海王星、冥王星的发现,都是应用万有引力定律取得重大成就的例子。
利用万有引力公式,开普勒第三定律等还可以计算太阳、地球等无法直接测量的天体的质量。
牛顿还解释了月亮和太阳的万有引力引起的潮汐现象。
他依据万有引力定律和其他力学定律,对地球两极呈扁平形状的'原因和地轴复杂的运动,也成功的做了说明。
推翻了古代人类认为的神之引力。
对文化发展存有重大意义:并使人们创建了用能力认知天地间的各种事物的信心,革命了人们的思想,在科学文化的发展史上出了积极主动的促进促进作用。
由万有引力定律推导开普列三定律

由万有引力定律推导开普列三定律——————《牛顿定律及万有引力》1,牛顿定律定义牛顿运动定律包含以下三个定律:牛顿第一运动定律:孤立质点保持静止或做匀速直线运动;用公式表示为:,式中为合力,为速度,为时间。
牛顿第二运动定律:动量为的质点,在外力的作用下,其动量随时间的变化率同该质点所受的外力成正比,并与外力的方向相同;用公式表达为:。
根据动量的定义,。
若质点的质量不随时间变化(即),则质点运动的加速度的大小同作用在该质点上的外力的大小成正比,加速度的方向和外力的方向相同;用公式表达为:。
牛顿第三运动定律:相互作用的两个质点之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上;用公式表达为:(式中表示质点受到的质点的作用力,表示质受到的质点的反作用力)。
开普列定律定义开普勒在《宇宙谐和论》上的原始表述:绕以太阳为焦点的椭圆轨道运行的所有行星,其各自椭圆轨道半长轴的立方与周期的平方之比是一个常量。
常见表述:绕同一中心天体的所有行星的轨道的半长轴的三次方( )跟它的公转周期的二次方( )的比值都相等,即,(其中M 为中心天体质量,k 为开普勒常数,这是一个只与被绕星体有关的常量[2] ,G 为引力常量,其2006年国际推荐数值为)不确定度为。
2,推导过程万有引力定律是用开普勒第三定律导出的,因此不能再用万有引力定律来推导开普勒第三定律,循环论证是不严谨的。
开普勒第三定律是开普勒根据第谷的观测数据来计算出来的,没有见过推导,推导过程只能是与万有引力定律的联系,不能叫推导。
所以由万有引力定律推导开普勒第三定律 推导过程是逆历史发展顺序的。
首先由万有引力=向心力r m Mm2r 22⎪⎭⎫ ⎝⎛=T G π 瞬间得出()onst 232r 2C GMT ==π此即开普勒第三定律行星公转周期的平方和轨道半长轴的立方成正比然后由角动量对时间的导数等于力矩F L ⨯=r dtd 中心力场,力臂 r 总与力 F 垂直,上式导数为零,得角动量 L 守恒 r ×dr 为平行四边形面积,得dt dA m dt dr mr C L 2.onst =⨯==推开普勒第一定律,在平方反比的有心引力作用下物体的轨道必为椭圆 证明这个需要在极坐标系下解微分方程.()⎪⎪⎭⎫ ⎝⎛+=u u -m u d d u h 2222θF。
从万有引力定律推导开普勒第三定律

从万有引力定律推导开普勒第三定律
在“万有引力与航天”这章中,第一节介绍了行星的运动的规律,即著名的开普勒三大定律,其中第三条是这样的表述的:“所有行星的半长轴的三次方跟它的公转周期的二次方比值都相等”。
写成等式:
其中k是一个对所有行星都相同的常量,并且只与中心天体有关,也就是与太阳有关。
在中学阶段,我们把行星的轨道按圆轨道处理,定律中的“半长轴”也就修改为“半径r”。
在之后的万有引力定律的学习过程中,如在第四节“万有引力理论的成就”中,计算天体质量这一部分内容里面,有关于对太阳的质量的求解,具体过程是:
设M是太阳的质量,m是绕太阳做匀速圆周运动的的某个行星的质量,r是行星到太阳中心的距离,T是行星绕太阳的公转周期,那么由于行星做匀速圆周运动,那么它需要的向心力由太阳对它的万有引力提供。
写成等式:
从而得出太阳的质量:
如果测出行星公转周期T和它到太阳的距离r,就可以算出太阳的质量了。
现在,我们把上面的式子整理得:
令常量等于k,于是有:
证毕。
开普勒三大定律的内容及意义

开普勒三大定律的内容及意义开普勒三大定律是什么,有什么重要的意义?想知道的小伙伴看过来,下面由小编为你精心准备了“开普勒三大定律的内容及意义”仅供参考,持续关注本站将可以持续获取更多的内容!开普勒三大定律的内容开普勒在1609年发表了关于行星运动的两条定律,一条是开普勒第一定律,也叫轨道定律,内容是所有的行星绕太阳运动的轨道都是椭圆的,太阳处在椭圆的一个焦点上。
开普勒第二定律,也叫面积定律,对于任何一个行星来说,它与太阳的连线在相等的时间扫过相等的面积。
用公式表示为:SAB=SCD=SEK到了1619年时,开普勒又发现了第三条定律,也就是开普勒第三定律,也称为周期定律,内容为所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
开普勒不仅为哥白尼的日心说找到了数量关系,更找到了物理上的依存关系,使天文学假说更加的符合自然界本身的真实。
行星运动三大定律的发现为经典天文学奠定了基石,并导致数十年后万有引力定律的发现。
开普勒全名约翰尼斯开普勒,出生于1571年,死于1630年,开普勒是德国近代著名的天文学家,数学家,物理学家和哲学家。
开普勒以数学的和谐性探索宇宙,在天文学方面作出了巨大的贡献,开普勒是继哥白尼之后第一个站出来捍卫太阳中心说,并在天文学方面有突破性的成就的人物,被后世的科学家称为天上的立法者。
开普勒是哥白尼日心说的忠实信徒,为此开普勒做了不少天文测量,并在天文学方面作出了许多积极的贡献,1604年他观察到了银河系内的一颗超新星,历史上称它为开普勒新星,1607年,开普勒观测了一颗大慧星,就是后来的哈雷慧星,到了1609年,开普勒发表了多项有关行星运动的理论,当中包括了开普勒第一定律和开普勒第二定律,1618年,开普勒再次发表了有关行星运动的开普勒第三定律的论文。
开普勒三大定律的意义开普勒的三定律是天文学的又一次革命,它彻底摧毁了托勒密繁杂的本轮宇宙体系,完善和简化了哥白尼的日心宇宙体系。
万有引力定律推导开普勒三定律

万有引力定律推导开普勒三定律万有引力定律是指两个物体之间的引力大小与它们质量的乘积成正比,与它们之间距离的平方成反比。
而开普勒三定律描述了行星围绕太阳运动的规律。
那么,如何用万有引力定律推导出开普勒三定律呢?首先,考虑一个行星绕太阳运动的情况。
根据万有引力定律,太阳和行星之间的引力为:F =G * M1 * M2 / r^2其中,G是万有引力常数,M1是太阳的质量,M2是行星的质量,r是太阳和行星之间的距离。
由于行星绕太阳运动是一个圆形轨道,因此,我们可以将行星的运动分解为两个正交方向的分量:径向分量和切向分量。
径向分量指的是行星运动方向与太阳之间的连线方向,切向分量指的是行星运动方向的垂线方向。
根据牛顿第二定律,行星的运动加速度可以表示为:a = F / M2将上式代入万有引力定律中,得到:a = G * M1 / r^2其中,M2已经被消去了。
根据圆形运动的几何关系,我们可以发现,行星的加速度大小就等于它所受到的向心加速度大小,即:a = v^2 / r其中,v是行星的运动速度。
将上式代入上面得到的等式中,解得:v^2 = G * M1 / r这就是开普勒第一定律,也就是说,行星绕太阳运动的轨道是一个椭圆,太阳位于椭圆的一个焦点上。
接下来,我们考虑开普勒第二定律,即行星在椭圆轨道上的运动速度与它距离太阳的距离的平方成反比。
根据万有引力定律,行星所受到的引力大小为:F =G * M1 * M2 / r^2根据牛顿第二定律,行星的运动加速度为:a = F / M2将上式代入上面得到的等式中,解得:a = G * M1 / r^2同时,由于行星在椭圆轨道上的运动速度是恒定的,因此,我们可以用它的速度v表示出它在不同位置所受到的向心加速度a,即: a = v^2 / r将上面两个等式联立,得到:v^2 = G * M1 / r这就是开普勒第二定律,即反比例定律。
最后,我们考虑开普勒第三定律,即行星公转周期的平方与它距离太阳的距离的立方成正比。
开普勒三大定律公式的推导

开普勒三大定律公式的推导全文共四篇示例,供读者参考第一篇示例:开普勒三大定律是描述行星运动规律的重要定律,它们为现代天文学的发展奠定了基础。
这三大定律分别是第一定律:行星运动轨道为椭圆,太阳位于椭圆的一个焦点上;第二定律:行星在它们的轨道上等面积运动,即行星与太阳连线在相等的时间内扫过相等的面积;第三定律:行星轨道的平方周期与它们轨道长半轴的立方成正比。
本文将对开普勒三大定律的推导过程进行详细描述。
我们从第一定律开始推导。
根据椭圆的定义,椭圆是一个平面上的点到两个定点(焦点)的距离之和等于常数的点的轨迹。
假设行星在太阳周围运动,我们取太阳为椭圆的一个焦点。
设椭圆的长轴为2a,短轴为2b,根据椭圆的定义可知,行星到太阳的距离之和为常数。
即可得椭圆方程:r = \frac{p}{1+e\cos\theta}这里,r为行星到太阳的距离,p为焦点到行星的距离,e为椭圆的离心率,\theta为行星与近日点的角度。
接下来,我们来推导第二定律。
根据第二定律的描述,行星在它们的轨道上等面积运动,即行星与太阳连线在相等的时间内扫过相等的面积。
这意味着在相等的时间间隔内,等面积扫过的弧长相等。
我们知道,扫过的面积等于扇形的面积减去三角形的面积。
假设在时间t 内,太阳至行星的连线扫过了角度\Delta\theta。
根据三角形求面积的公式可得:扫过的面积为:A = \frac{1}{2}p^2\int_0^t \sin(\frac{2\pi}{T}t')dt'这里T为行星的轨道周期。
根据积分的性质,可知这是一个等面积扫描的过程。
根据等面积扫描的性质,我们可以证明第二定律的成立。
我们来推导第三定律。
第三定律描述了行星轨道的周期与长半轴的关系。
根据牛顿万有引力定律,太阳与行星之间的引力为:F = \frac{GMm}{r^2}根据牛顿第二定律,可得:整理可得:v^2r = GM而行星绕太阳运动的圆周速度为:代入可得:由于GM为常数,因此可得第三定律:这里k为一个常数,与行星的质量无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力推导开普勒定律
万有引力定律的阐明:
任意两个质点由通过连心线方向上的力相互吸引。
该引力大小与它们质量的乘积成正比,与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。
开普勒定律的阐明:
①椭圆定律:所有行星绕太阳的轨道都是椭圆,太阳在椭圆的一个焦点上。
②面积定律:行星和太阳的连线在相等的时间间隔内扫过相等的面积。
③所有行星绕太阳一周的恒星时间()的平方与它们轨道长半轴(ai)的立
方成比例,即
一、开普勒第二定律导引:
由于太阳超重于行星,我们可以假设太阳是固定的。
用方程式表示为:
;
其中,是太阳作用于行星的万有引力、是行星的质量、是太阳的质量、是行星相对于太阳的位移向量、是的单位向量。
牛顿第二定律声明:物体受力后所产生的加速度,和其所受的浮力成正比,
和其质量成反比。
用方程式表示:。
合并这两个方程式:
(1)
思考位置向量,随时间微分一次可得到速度向量,再微分一次则可得到加速度向量:
在这里,我们用到了单位向量微分方程式:
,。
(2)
合并方程式 (1) 与 (2) ,可以得到向量运动方程式:
取各个分量,我们得到两个常微分方程式,一个是关于径向加速度,另一个是关于切向加速度:
,(3)。
(4)
导引开普勒第二定律只需切向加速度方程式。
试想行星的角动量。
由于行星的质量是常数,角动量随时间的导数为:。
角动量也是一个运动常数,即使距离与角速度都可能会随时间变化。
从时间到时间扫过的区域:。
行星太阳连线扫过的区域面积相依于间隔时间。
所以,开普勒第二定律是正确的。
二、开普勒第一定律导引:
设定。
这样,角速度是:。
随时间微分与随角度微分的关系为:。
随时间微分径向距离:。
再微分一次:。
代入径向运动方程式 (3) 得:
,。
将此方程式除以,则可得到一个简单的常系数非齐次线性全微分方程式来描述行星轨道:。
特征方程式为:。
求解剩余的常系数齐次线性全微分方程式,。
其特解方程式为
;
这里,与都是任意积分常数。
综合特征方程式与特解方程式得:。
选择坐标轴,让。
代回得:。
假若,则所描述的是椭圆轨道。
所以,开普勒第一定律是正确的。
三、开普勒第三定律导引:
在建立牛顿万有引力定律的概念与数学架构上,开普勒第三定律是牛顿依据的重要线索之一。
假若我们接受牛顿运动定律。
试想一个虚拟行星环绕着太阳公转,行星的移动轨道恰巧呈圆形,轨道半径为。
那么,太阳作用于行星的万有引力
为。
行星移动速度为。
依照开普勒第三定律,这速度
与半径的平方根成反比。
所以,万有引力。
猜想这大概是牛顿
发现万有引力定律的思路,虽然我们并不能完全确定,因为我们无法在他的计算本裡,找到任何关于这方面的证据。
行星环绕太阳(焦点 F1 )的椭圆轨道。
开普勒第一定律阐明,行星环绕太阳的轨道是椭圆形的。
椭圆的面积是;这里,与分别为椭圆的半长轴与半短轴。
在开普勒第二定律导引里,行星
-太阳连线扫过区域速度为:。
所以,行星公转周期为:。
(5)
关于此行星环绕太阳,椭圆的半长轴,半短轴与近拱距(近拱点 A 与引力中心之间的距离),远拱距(远拱点 B 与引力中心之间的距离)的关系分别为:
,(6)。
(7)
如果想要知道半长轴与半短轴,必须先求得近拱距与远拱距。
依据能量守恒定律:。
在近拱点 A 与远拱点 B,径向速度都等于零:。
所以:。
稍为加以编排,可以得到的一元二次方程式:。
其两个根分别为椭圆轨道的近拱距与远拱距
;。
代入方程式 (6) 与 (7) ,。
代入方程式 (5) ,周期的方程式为。