2020年高考数学 考点42 曲线与方程、圆锥曲线的综合应用
圆锥曲线的综合课件

PPT学习交流
15
课堂互动讲练
【思路点拨】 由已知易得动点 Q的轨迹方程,然后找出P点与Q点的 坐标关系,代入即可.
【解】 法一:设 Q(x,y),
则Q→A=(-1-x,-y), Q→B=(1-x,4-y),
→→
故 由QA·QB= 4⇒ (- 1- x)(1- x) +(-y)(4-y)=4,
PPT学习交流
D.9π
答案:B
PPT学习交流
8
三基能力强化
3.直线
y=kx-k+1
与椭圆x2+y2 94
=1 的位置关系为( )
A.相交 C.相离 答案:A
B.相切 D.不确定
PPT学习交流
9
三基能力强化
4.(2009 年高考上海卷)过点 A(1,0)
作倾斜角为π的直线,与抛物线 4
y2=2x
交于 M、N 两点,则|MN|=________.
PPT学习交流
4
基础知识梳理
(1)若a≠0,Δ=b2-4ac,则 ①Δ>0,直线l与圆锥曲线有 两交点. ②Δ=0,直线l与圆锥曲线有一 公共点. ③(2)Δ若<a0=,0直,线当l与圆圆锥锥曲曲线线为无双曲公线共时点,.l与双 曲 与抛线物的线渐的近对线称平轴行;平当行圆.锥曲线为抛物线时,l
PPT学习交流
5
基础知识梳理
3.弦长公式
直线 l:y=kx+b,与圆锥曲线 C:F(x,y)=0
交于 A(x1,y1),B(x2,y2)两点,则|AB|= 1+k2 |x1- x2|= 1+k2· (x1+x2)2-4x1x2或 |AB|=
1+k12|y1-y2|=
1+k12 (y1+y2)2-4y1y2.
2020年高考“圆锥曲线与方程”专题命题分析

圆锥曲线是广泛应用于科学研究及生产和生活中的曲线,是高中数学中几何与代数知识的重要组成部分,是高中学生运用平面直角坐标系将曲线与方程、几何与代数融会贯通的重要载体,更是让学生体验和领悟数与形相互转化过程的重要途径,在高考数学中占有较大的比重.2020年高考数学试卷中圆锥曲线与方程专题部分的试题,着重考查圆锥曲线的定义、方程,以及简单的几何性质,立足“四基”,凸显基础性;注重对数形结合、代数方法与几何问题化归的考查,立意能力,在数与形之间彰显综合性、应用性;重视对数学运算、逻辑推理、直观想象等数学学科核心素养的考查,立旨素养,引导数学教学,实现数学学科的育人价值.同时,与往年相比,试题结构和难度保持稳定,既体现对主线内容、核心概念、数学本质考查的连贯性,也体现了对学生的人文关怀.一、考查内容分析2020年全国各地高考数学试卷共10套13份,具体为全国Ⅰ卷(文、理)、全国Ⅱ卷(文、理)、全国Ⅲ卷(文、理)、全国新高考Ⅰ卷、全国新高考Ⅱ卷、北京卷、上海卷、天津卷、江苏卷、浙江卷.有的试卷由国家统一命题,也有的由各省市自主命题,无论是延续2019年模式的全国卷和地方卷高考试题,还是2020年首次亮相的立足《普通高中数学课程标准(2017年版)》(以下简称《标准》)的全国新高考卷试题,都是重视基础,突出能力,并围绕学生的数学学科核心素养展开全方位考查.1.布局合理,考点紧扣标准2020年高考数学试卷,以圆锥曲线的定义、基本量、标准方程、简单几何性质、位置关系等核心内容为载体,重点考查学生对平面解析几何问题基本解决过程的掌握情况:用代数语言把几何问题转化为代数问题,根据对几何问题(图形)的分析,探索解决问题的思路,运用代数方法得到结论并给出代数结论合理的几何解释解决几何问题.突出考查学生运用代数方法研究上述曲线之间的基本关系、运用平面解析几何的思想解决一些简单的实际问题的能力,旨在考查学生的直观想象、数学运算、逻辑推理等数学学科核心素养.试题紧扣《标准》,以基础题、中档题为主,在总共的26道(相同试题算1道)试题中:基础题有10道、中档题有12道,占比约85%;难题4道,其中2020年高考“圆锥曲线与方程”专题命题分析段喜玲1摘要:2020年高考数学试题中的圆锥曲线与方程部分考查内容紧扣高中数学课程标准,分值、结构稳定,试题突出对“四基”的考查,注重圆锥曲线与其他知识的结合,注重对数学思维和数学学科核心素养的考查.试题体现基础性、应用性、综合性等特点,以基础知识的考查为载体,将对学生分析问题、解决问题能力的考查蕴含在解题过程之中,以实现对学生数学学科核心素养的考查.基于2020年高考试题的命题分析,给出高考复习建议,有效引导高三复习.关键词:圆锥曲线;命题分析;数形结合;数学运算收稿日期:2020-08-01基金项目:重庆市教育科学“十三五”规划2017年度规划课题——课堂教学中自主学习实施途径与策略的研究(2017-MS-13).作者简介:段喜玲(1979—),女,中学高级教师,主要从事高中数学课堂教学研究.全国新高考Ⅰ卷第22题、全国Ⅰ卷文科第21题(同理科第20题)、全国Ⅲ卷文科第21题(同理科第20题)为压轴题,布局合理.2.分值稳定,多选双填增新彩高考试题对本专题内容的考查一般是两道客观题和一道主观题,共22分,占全卷分值的14.7%,其中北京卷24分,占全卷分值的16%,而全国Ⅰ卷文科、全国Ⅱ卷文(理)科、天津卷、江苏卷、上海卷中是一道客观题和一道主观题,共17分,占全卷分值的11.3%.考查形式、题型分布及分值比例与往年基本持平,有很高的稳定性.在全国新高考Ⅰ卷、全国新高考Ⅱ卷中出现多选题,北京卷中出现两个空的填空题,使试题形式更丰富.这是新高考题型的示范,为教学指引方向.3.文、理略异,趋同铺垫新高考2020年高考数学试卷中只有全国卷分别命制了文、理科试题.由于新高考将不再区分文科和理科,因此2020年全国卷的文、理科试题从内容到难度,差异较往年减小,姊妹题数量增加.在对圆锥曲线与方程的考查中:全国Ⅰ卷文科第21题与理科第20题相同,第11题不同,文科比理科少一道填空题;全国Ⅱ卷文科第9题与全国Ⅱ卷理科第8题相同,全国Ⅱ卷文、理科试卷第19题第(1)小题相同,第(2)小题的已知条件不同,但求解相同,方法相同;全国Ⅲ卷文科第7题、第21题与全国Ⅲ卷理科第5题、第20题相同,文科第14题不同.由此可以看出,文、理科试题虽有不同之处,但同根同源,体现趋同性,明确导向新高考.4.层次分明,数形结合思想贯穿始终《标准》对圆锥曲线与方程的要求有了解和掌握两个层次:圆锥曲线的实际背景、圆锥曲线在刻画现实世界和解决实际问题中的作用、抛物线与双曲线的定义、几何图形和标准方程,以及它们的简单几何性质、椭圆与抛物线的简单应用为了解;椭圆的定义、标准方程及简单几何性质为掌握.2020年高考数学试题对圆锥曲线与方程部分的考查层次分明,基础题和中档题均以抛物线和双曲线的定义、简单几何性质、位置关系为考查内容,部分较难的中档题和难题考查椭圆定义、标准方程、几何性质、简单应用,唯独上海卷的解答题考查圆和双曲线的组合,意在打破常规、力求创新,以考查学生的创新应用意识.同时,在试题中,数形结合思想这条主线贯穿始终,方程与曲线的表述与理解、代数与几何的转化与化归在数形结合中体现得淋漓尽致.5.综合性强,凸显思想育素养圆锥曲线与方程知识是平面几何、平面向量、直线与圆的知识的延续,可以将很多知识、方法(如三角形、直线位置关系、圆、向量、角度、长度、面积、坐标、方程、不等式及函数等)有机结合起来进行考查,体现在知识的交会处命题的基本原则.例如,全国Ⅰ卷理科第20题、全国Ⅲ卷理科第20题、全国新高考Ⅰ卷第22题、北京卷第20题、江苏卷第18题、浙江卷第21题,上海卷第20题综合性都较强,对学生要求较高.同时,试题凸显了数形结合、转化与化归、函数与方程等重要思想,为培育学生的数学抽象、直观想象、数学运算、逻辑推理等数学学科核心素养做好了指挥引领作用.二、命题思路分析1.注重对基础知识和基本方法的考查圆锥曲线的定义、方程、基本量、性质、位置关系是这部分知识的常规考查内容,要求学生既要对椭圆、双曲线、抛物线的共性建构良好的知识网络,又要对每种曲线的自身特点掌握得清楚准确,特别是区分不同曲线的定义、方程、基本量关系、性质、离心率的异同,这些知识容易混淆出错.借助平面直角坐标系将几何问题坐标化、用代数方法解决几何问题是解析几何的灵魂所在,因此建立方程或方程组、整体求解、设而不求等基本方法,通性、通法也是高频考点.命题围绕这些设置试题,突出考查学生对基本概念、基础知识、基本方法的掌握.例1(全国Ⅰ卷·理15)已知F为双曲线C:x2a2-y2b2=1()a>0,b>0的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C 的离心率为.【评析】该题主要考查对双曲线的离心率、直线斜率、双曲线的几何性质的应用,属于基础题.可以用方程组求出||BF,或者联立方程求得点B的坐标,再或者直接用公式求得||BF,然后用斜率公式求得离心率.该题解法常规,在运算处理上较灵活,能够对学生数学思维、数学运算进行多角度考查.例2(全国Ⅱ卷·理19)已知椭圆C1:x 2a2+y2b2=1()a>b>0的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且||CD=43||AB.(1)求C1的离心率;(2)设M是C1与C2的公共点,若||MF=5,求C1与C2的标准方程.【评析】考查椭圆、抛物线的基本量a,b,c,p 之间的关系,相交弦长(通径),椭圆离心率,抛物线定义及方程,椭圆方程.注重学生对基本量、关系式、离心率、弦长等基础知识的掌握,要求学生弄清知识之间的区别与联系.该题求解方法简单,整体法求离心率亦常见,第(2)小题利用离心率得a,c的关系,化简方程是解答关键,很好地考查了学生的数学运算素养.除了联立方程求解外,还可以用圆锥曲线的统一定义表示焦半径,简化了运算,提高了解题速度和准确率.类似试题还有全国Ⅰ卷理科第4题、第15题,全国Ⅱ卷文科第19题,全国Ⅲ文科第14题,全国新高考Ⅰ卷第9题、第13题,全国新高考Ⅱ卷第9题,北京卷第7题、第12题、第20题,天津卷第7题,江苏卷第6题,浙江卷第8题,上海卷第10题.2.注重对圆锥曲线与其他知识的综合应用的考查在知识的交会处命题一直是高考数学命题的一大特点,圆锥曲线不仅是知识交会的高频考点,更是代数与几何的完美结合体,因此将圆锥曲线内容与章节内、章节间、学段间、学科间的知识综合,既体现知识的连贯性,又体现知识的交叉性,既考查学生学习的延续性,也考查学生的综合能力.2020年高考数学试题中综合考查了圆锥曲线的方程、离心率、渐近线、弦长、交点,以及三角形的面积、周长等,综合考查圆锥曲线与向量、不等式、函数、解三角形的交会,其中不乏对特殊三角形、圆、线段中垂线等初中平面几何知识的考查,以及几何性质与代数表达式之间互相转化的考查,能有效检测学生的思维能力与水平.例3(全国Ⅲ卷·理11)设双曲线C:x2a2-y2b2=1 ()a>0,b>0的左、右焦点分别为F1,F2,离心率为5.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a的值为().(A)1(B)2(C)4(D)8【评析】该题综合考查双曲线的定义、离心率、焦点直角三角形、三角形面积,要求学生不仅熟练掌握知识,还要熟悉求解方程组的方法,是一道题型常见、思路常规的综合性试题.例4(江苏卷·18)如图1,在平面直角坐标系xOy 中,已知椭圆E:x24+y23=1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求OP⋅QP的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.【评析】考查椭圆的定义、直线与椭圆相交、向量数量积和点到直线的距离.第(2)小题中数量积的最值问题考查函数与方程思想,将最值问题转化为函数问题求解的关键点是选取变量,明晰点P,Q的主、被动关系,特别是OP的纵坐标为0,即点Q的纵坐标对数量积没有影响,从而可以不求点Q的纵坐标,这是降低该题难度的关键点,需要学生有极强的数学运算素养.第(3)小题考查三角形的面积关系,实质是考查点到直线的距离,需要学生看到问题的本质,即当三角形的一边为定值时,面积取决于这一边上的高,进一步将高的值转化为椭圆上的点到直线的距离,即直线和椭圆的位置关系.这一系列问题将圆锥曲线与三角形、向量、函数、直线,以及距离流畅地结合起来,在综合考查学生基础知识的同时,考查学生灵活运用转化与化归思想以及数形结合思想解决问题的能力.例5(全国Ⅲ卷·理20)已知椭圆C :x 225+y 2m 2=1()0<m <5的离心率为,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且||BP =||BQ ,BP ⊥BQ ,求△APQ 的面积.【评析】该题是以直线与椭圆相交成图,考查三角形面积的综合问题,试题表述简洁,脉络清晰,是常规题型,但是试题却不易找到解题突破口.利用垂直关系证得三角形全等,然后用三角形全等求得关键点P ,Q 的坐标是求解该题的切入点,要求学生认识知识的联系性,将圆锥曲线与初中三角形知识自然地糅合在一起,考查学生对初中所学知识的延伸及初高中知识的融合应用,对学生的跨学段知识综合应用能力要求较高.此类型的试题还有全国Ⅰ卷文科第11题、全国Ⅱ卷理科第8题、全国Ⅲ卷文科第21题、全国新高考Ⅱ卷第21题、天津卷第18题、上海卷第10题.3.注重对数学思维、核心素养的考查《标准》对高考数学命题提出明确要求:注重对学生数学学科核心素养的考查,处理好数学学科核心素养与知识技能的关系,充分考虑对教学的积极引导作用;要适度增加试题的思维量,应特别关注数学学习过程中思维品质的形成.“一核”“四层”“四翼”的新高考评价体系也明确核心素养、关键能力等考查内容和要求.2020年高考圆锥曲线与方程的相关试题,以此为依据,注重考查数学思想方法、理性思维和学科核心素养,考查学生通过平面直角坐标系将图形定位、量化,利用代数(方程、方程组)研究平面图形的几何性质,将对数形结合思想、转化与化归思想、函数与方程思想、分类讨论思想的考查不动声色地浸润在试题里,使学生在解题中充分展示分析问题、解决问题的能力,同时注重对数学抽象、逻辑推理、数学运算、直观想象等数学学科核心素养的考查,对数学教学起到很好的引导作用.例6(全国新高考Ⅰ卷·22)已知椭圆C :x 2a2+y 2b2=1()a >b >0的离心率为,且过点A ()2,1.(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得||DQ 为定值.【评析】该题为全国新高考Ⅰ卷的压轴题,第(2)小题是圆锥曲线中的定点、定值问题,特别之处是并不知道定点Q 的具体位置,需要学生自己寻找,增加了试题的难度.首先,学生要分析点M ,N 在椭圆上运动的过程中的变量和不变量,找出直线MN 过定点E ;其次,求得定点E 的坐标,并能在由点A ,D ,E 构成的直角三角形中找到定长.该题不仅在思维上起点高、难度大,在运算上亦是如此,设点、设线还需分类讨论验证,需要学生具有超强的运算功底.在解答过程中,充分体现对通性、通法的重视,对技巧的弱化,完整展现学生分析问题、解决问题的能力,对学生数学抽象、直观想象、逻辑推理、数学运算等数学学科核心素养有充分的检验作用.由于知识和思维跨度较大,数学运算繁杂,对学生综合能力要求较高,真正考查学生用数学眼光观察世界、用数学思维思考世界、用数学语言表达世界的能力.例7(上海卷·20)如图2,双曲线C 1:x 24-y 2b2=1,圆C 2:x 2+y 2=4+b 2()b >0在第一象限交点为A ,A ()x A ,y A ,曲线Γ:ìíîïïx 24-y 2b 2=1,x 2+y 2=4+b2()||x >x A .图2(1)若x A =6,求b ;(2)若b =5,C 2与x 轴交点记为F 1,F 2,P 是曲线Γ上一点,且在第一象限,并满足||PF 1=8,求∠F1PF2;(3)过点Sæèçöø÷0,2+b22且斜率为-b2的直线l交曲线Γ于M,N两点,用b的代数式表示OM⋅ON,并求出OM⋅ON的取值范围.【评析】该题是以双曲线系、圆系的交点为动点的轨迹问题,打破常规命题背景,有创新意识和应用意识.考查学生对曲线与方程的定义、双曲线的定义、直线与圆的位置关系、直线与直线的位置关系、向量数量积、函数最值的理解和综合应用.因为含有参数b使得轨迹不为学生所熟悉,所以要求学生对曲线方程的定义有较深的理解.第(3)小题中的直线l 与圆始终相切,切点为M是关键点,并观察直线l与一条渐近线平行,对学生的直观想象、逻辑推理素养要求较高,是一道以能力立意、考查素养、有创新意识的好题.此类型试题还有全国Ⅰ卷理科第20题、文科第21题,浙江卷第21题.三、复习建议通过对2020年高考圆锥曲线与方程试题的分析,可以看到试题对从基础知识、基本方法到运用基本数学思想解决数学问题的思维过程的考查,都体现了注重“四基”、能力立意、突出思维、落实素养的特点.因此,在高三复习过程中,要通过教学注重数学思想的渗透和学生思维能力的培养,让数学学科核心素养在课堂教学中生根发芽、开花结果.1.掌握知识,明辨异同,构建网络基础知识不仅是高考考查的重点,也是教学重点.高三复习首当其冲就是要把知识点弄清、理透、掌握牢.圆锥曲线部分的基本知识点有圆锥曲线的定义、标准方程、几何性质、位置关系,每个知识点所包含的内容很丰富.例如,圆锥曲线的定义,既有各自的定义,又有统一定义,还有其他方式的定义.又如,标准方程有焦点在x轴和焦点在y轴等.这些知识虽然靠记忆,但是学生容易混淆,因此复习时要让学生明晰同一知识点之间的联系与区别、圆锥曲线与圆锥曲线之间的联系与区别,牢固掌握基础知识.同时,复习不是知识点的简单重复与堆砌,复习是立足章节对所学知识的横向再认识,是站在数学学科角度对所学知识的纵向再认识,要高站位地建构横纵知识结构网络.2.注重通法,提升运算,渗透思想做题是复习课上必不可少的教学活动,《标准》在命题原则中明确提出:注重数学本质、通性和通法、淡化解题技巧.复习的例题、习题、试题要多选用通性、通法求解的题目,让学生熟练掌握通性、通法.圆锥曲线部分的内容特点决定了解题需要学生具有超强的运算能力,常用的运算方法、运算技巧、运算素养都需要在做题中提升.高中的运算不仅仅是简单的数的运算,更多的是式的运算,需要在理解运算对象的基础上,探究运算思路、选择运算方法、求得运算结果,即数学运算素养.这需要依赖教师在教学中加强对学生运算能力的培养,不能只靠学生自己算,要重视学生在求解运算中的过程设计,如整体解法、方程思想、设而不求、点差法、同理法等.运算的速度、准确度在很大程度上决定解析几何试题的得分情况,提升运算能力、培养数学运算素养是圆锥曲线部分复习的重点和难点.教学中要有意识渗透数学思想,方程与函数思想、数形结合思想、转化与化归思想、分类讨论思想等在解题中贯穿始终,能很好地体现理性思维.3.提高能力,增强思维,培育素养能力立意,关注思维,培育核心素养是新高考命题的宗旨,也是高三复习的风向标.能力、思维、素养的培养都“润物细无声”地存在于教学过程之中,因此教学要从培育核心素养的角度思考复习方案和教学设计,并深入了解学生学习的困难,关注一题多解和多题一解的内容与题目,体现灵活性,放手让学生大胆尝试、引导学生有效反思,有助于强化学生思维,培养学生在面对新的问题情境时运用数学概念对问题进行抽象,用数学符号表达,用逻辑推理分析问题、解决问题的能力,让学生真正做到用数学眼光观察世界、用数学思维思考世界、用数学语言表达世界,以达到提炼学生思维品质,培养学生学科核心素养的课程目标.4.克服畏惧,锻炼意志,增强信心在高考数学试卷中,本专题试题繁冗的运算、大容量的思维使得学生有畏惧心理,很多学生给自己的定位是只做解答题第(1)小题,因此纵使有些试卷的解答题不难,考查结果却差强人意.例如,全国Ⅱ卷理科第19题,仍有很多学生没有做第(2)小题.高考不仅是对知识能力的检测,也是对心理素质的检测,复习中不能根据经验或规律,让学生将圆锥曲线与方程问题定性为难题而轻易舍弃,而要以此为契机培养学生面对较繁杂问题时耐心分析、善于转化的能力与勇气,要有意识选择一些基础题和中档题,引导学生在求解的过程中磨炼意志和耐心,克服畏惧心理,以平常心对待,增强“只要有足够的时间,我一定会做出来”的信念和信心.四、模拟题欣赏1.已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左、右焦点,点M 在E 上,若△MF 1F 2是直角三角形,且sin ∠MF 1F 2=12,则双曲线E 的离心率为().(A )3-1(B )3(C )3+1(D )3或3+1答案:D.2.设F 为抛物线C :y 2=3x 的焦点,过焦点F 的动直线交C 于A ,B 两点,则 OA ⋅OB 的值为.答案:-2716.3.若F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1()a >b >0的左、右焦点,且离心率为12,若过右焦点F 2的直线与曲线C 交于A ,B 两点,求当△ABF 1面积的最大值为12时的椭圆标准方程.答案:x 216+y 212=1. 4.已知过椭圆x 24+y 2=1左顶点A 的直线l 交椭圆于另一点B ,以AB 为直径的圆过椭圆的上顶点,求直线l 的方程.答案:3x +10y +6=0.5.在平面直角坐标系xOy 中,已知1是椭圆C :x 2a 2+y 2b2=1()a >b >0的右焦点,离心率为,过点F 1且垂直于x 轴的直线交椭圆C 于P ,Q 两点,||PQ =(1)求椭圆C 的标准方程;(2)若过椭圆左焦点F 2且斜率为k ()k >0的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点M ,交直线x =-3于点N .求证:||OE ,||OM ,||ON 构成等比数列.答案:(1)x 23+y 22=1;(2)略.参考文献:[1]中华人民共和国教育部制定.普通高中数学课程标准(2017年版)[M ].北京:人民教育出版社,2018.[2]吴彤,徐明悦.2019年高考“圆锥曲线与方程”专题命题分析[J ].中国数学教育(高中版),2019(9):24-27.[3]任佩文,张强,霍文明.2018年高考“圆锥曲线与方程”专题命题分析[J ].中国数学教育(高中版),2018(7/8):122-128.[4]范美卿,张晓斌.2016年高考“直线和圆”专题命题分析[J ].中国数学教育(高中版),2016(9):2-8.。
2020年高考圆锥曲线常见综合题型(整理)

uuur 足 OP
则弦长公式为:
| AB | 1 k 2 | x2 x1 | 1 k 2 (x1 x2 )2 4x1 x2 。
三、用点差法处理弦中点问题
设直线与圆锥曲线的交点(弦的端点)坐标为 A(x1, y1) 、 B(x2 , y2 ) ,将这两点代入圆锥曲线的
方程并对所得两式作差,得到一个与弦 AB 的中点和斜率有关的式子,可以大大减少运算量。我们
3
,求△AOB 面积的最大值.
2
变式 1:过椭圆
的焦点的直线交椭圆 A,B 两点 ,求
面积的最大值 .
变式2. 已知动点 P 到定点 F
2, 0 的距离与点 P 到定直线 l : x 2 2 的距离之比为
2
.
2
(1)求动点 P 的轨迹 C 的方程; uuuur uuur
(2)设 M 、 N 是直线 l 上的两个点,点 E 与点 F 关于原点 O 对称,若 EM gFN 0 ,求 MN
x2 a2
y2 b2
1 a
b
0 ,直线 l1 :
x a
y b
1被椭圆
C
截得的弦长为 2
2 ,且
e
6
,过椭圆 C 的右焦点且斜率为
3
3 的直线 l2 被椭圆 C 截的弦长 AB,
⑴求椭圆的方程;⑵弦 AB 的长度.
题型三 运用点差法处理中点弦问题
例 5. 过椭圆 x2 y2 1内一点 M (2,1) 引一条弦,使弦被 M 点平分,求这条弦所在直线的方程。 16 4
K OM
2m
,则 的值为
2
n
题型四 直线与圆锥曲线有关的最值问题
例 8. 若点 P 在椭圆 7x 2 4 y 2 28 上,则点 P 到直线 3x-2y-16=0 的距离的最大值为
圆锥曲线的综合应用(PPT)

第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
• ∴k=-b,此时Δ>0, • ∴直线l的方程为y=k(x-1), • 即直线l过定点(1,0).
第12课时
圆锥曲线的综合应用
第12课时
• • • • •
第12课时
圆锥曲线的综合应用
• (4)利用代数基本不等式,代数基本不等式的应 用,往往需要创造条件,并进行巧妙的构思. • (5)结合参数方程,利用三角函数的有界性.直线、 圆、椭圆的参数方程,它们的一个共同特点是 均含有三角式.因此,它们的应用价值在于: • ①通过参数θ简明地表示曲线上点的坐标; • ②利用三角函数的有界性及其变形公式来帮助 求解诸如最值或范围等问题. • (6)构造一个一元二次方程,利用判别式Δ≥0求 解.
第12课时
圆锥曲线的综合应用
第12课时
圆锥曲线的综合应用
• 预学2:圆锥曲线的定点、定值问题 • 定点、定值问题多以直线与圆锥曲线为背景, 常与函数与方程、向量等知识交汇,形成了 过定点、定值等问题的证明.解决问题的关键 是引进参变量表示所求问题,根据等式的恒 成立、数式变换等寻找不受参数影响的量.可 以先研究一下特殊情况,找出定点或定值, 再视具体情况进行研究.同时,也要掌握巧妙 利用特殊值解决相关的定点、定值问题,如 将过焦点的弦特殊化,变成垂直于对称轴的 弦来研究等.
2020年高考数学专题讲解:曲线与方程

2020年高考数学专题讲解:曲线与方程(一)高考目标考纲解读1.了解方程的曲线与曲线的方程的对应关系.2.对直线与曲线的位置关系能用数形结合的思想解题.考向预测1.用直接法、定义法求轨迹方程.2.用相关点法求轨迹方程.3.考查方式可以是选择题或解答题.4.以考查直线与圆锥曲线的位置关系为主,同时考查平面向量、函数、数列、导数、不等式等综合知识.(二)课前自主预习知识梳理1.曲线的方程与方程的曲线在直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点,那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线(图形).2.平面解析几何研究的两个主要问题(1)根据已知条件,求出表示曲线的方程;(2)通过曲线的方程研究曲线的性质.3.求曲线方程的一般方法(五步法)求曲线(图形)的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2)写出适合条件p的点M的集合P={M|p(M)};(3)用坐标表示条件p(M),列出方程f(x,y)=0;(4)化方程f(x,y)=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.4.两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点,方程组,两条曲线就没有交点.(2)两条曲线有交点的条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.5.求曲线轨迹方程的常用方法(1)直接法如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,直接表述成含x,y的等式,就得到轨迹方程,这种方法称为直接法.(2)定义法如果能够确定动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法.(3)代入法又称相关点法,其特点是,动点M(x,y)的坐标取决于已知曲线C上的点(x′,y′)的坐标,可先用x,y来表示x′,y′,再代入曲线C的方程,即得点M的轨迹方程.6.圆锥曲线的共同特征圆锥曲线上的点到焦点与到定直线的距离之比为定值e,当时,圆锥曲线为双曲线;当时,为椭圆;当 时,为抛物线.7.直线与圆锥曲线交点直线与圆锥曲线的交点由直线方程与圆锥曲线方程联立得到.(三)基础自测1.(山东潍坊)已知圆x 2+y 2=4,过点A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( )A .(x -1)2+y 2=4(-1≤x <12) B .(x -1)2+y 2=4(0≤x <1) C .(x -2)2+y 2=4(-1≤x <12) D .(x -2)2+y 2=4(0≤x <1) [答案] D[解析] 由圆的几何性质知,BC 的中点到A 与圆心连线的中点的距离为2,即方程为(x -2)2+y 2=4,又中点在圆内,∴0≤x <1.2.(宝鸡)如图所示,△PAB 所在的平面α与四边形ABCD 所在的平面β垂直,且AD ⊥α,BC ⊥α,AD =6,BC =12,AB =9,∠APD =∠CPB ,则点P 在平面α内的轨迹是( )A .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分[答案] A[解析] 由条件可知,Rt △DAP ∽Rt △CBP ,∴PA PB =AD BC =12, 故P 点的轨迹是圆的一部分.[点评] 一般地,若平面内动点P 到两定点A 、B 距离之比PA PB=常数k ,若k =1轨迹为线段AB 的中垂线,若k ≠1,则轨迹为圆.3.F 1、F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点,P 是椭圆上任一点,过一焦点引∠F 1PF 2的外角平分线的垂线,则垂足Q 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线[解析] ∵PQ平分∠F1PA,且PQ⊥AF1,∴Q为AF1的中点,且|PF1|=|PA|,∴|OQ|=12|AF2|=12(|PA|+|PF2|)=a,∴Q点轨迹是以O为圆心,a为半径的圆.4.过双曲线x2-y22=1的右焦点F作直线l交双曲线于A、B两点,若|AB|=4,这样的直线条数为( ) A.1 B.2 C.3 D.4[答案] C[解析] 若与双曲线右支交于两点A,B,则|AB|≥4(通径),此时弦长为4的弦有一条;若与左右两支各有一交点A、B,则|AB|≥2(实轴长),此时弦长为4的弦有两条.∴共3条.5.如图所示,过点P(0,2)的直线和抛物线y2=8x交于A,B两点,若线段AB的中点M在直线x=2上,则弦AB 的长为________.[答案] 2 5[解析] 设A(x1,y1),B(x2,y2),则AB的中点M⎝⎛⎭⎪⎫2,y1+y22,由y12=8x1,和y22=8x2相减得(y1-y2)(y1+y2)=8(x1-x2),∵k PM=k AB,∴k AB=y1-y2x1-x2=8y1+y2=y1+y22-22-0令y1+y2=2b,则有b2-2b-8=0,∴b=4或b=-2,于是M(2,4)或M(2,-2).∵M(2,4)在抛物线上(舍去).∴M的坐标为(2,-2),从而k AB=-2.∴AB :y =-2x +2,将其代入抛物线方程得x 2-4x +1=0.∴|AB |=+k 2x 1+x 22-4x 1x 2]=[1+-22]42-4×1=215. 6.两动直线l 1、l 2分别经过O (0,0)和A (0,2),且方向向量分别为(1,λ)和(λ,-1),则它们交点的轨迹方程是________.[答案] x 2+y 2-2x =0[解析] 当λ=0时,l 1与l 2的交点为(0,0);当λ≠0时,kl 1=λ,kl 2=-1λ,l 1:y =λx ,l 2:y -2=-1λx ,l 1与l 2的方程相乘可得:x 2+y 2-2y =0.(当λ=0时也适合此式)综上可得交点的轨迹方程为x 2+y 2-2y =0.(当λ=0时,也适合此式)[点评] 一般地,过点A (x 0,y 0),方向向量为a =(λ,μ)的直线方程为:λ(y -y 0)-μ(x -x 0)=0.7.已知△ABC 的两个顶点为A (-2,0),B (0,-2),第三个点C 在曲线y =3x 2-1上移动,求△ABC 重心的轨迹方程.[解析] 设C (x 1,y 1),重心G (x ,y ),由重心坐标公式得⎩⎪⎨⎪⎧ -2+0+x 13=x0-2+y 13=y ,即⎩⎪⎨⎪⎧ x 1=3x +2y 1=3y +2,∵C (x 1,y 1)在曲线y =3x 2-1上,∴3y +2=3(3x +2)2-1,化简得y =(3x +2)2-1=9x 2+12x +3,故△ABC 的重心的轨迹方程为y =9x 2+12x +3.(四)典型例题1.命题方向:定义法求曲线方程[例1] (安徽)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为33,以原点为圆心、椭圆短半轴长为半径的圆与直线y =x +2相切.(1)求a 与b ;(2)设该椭圆的左、右焦点分别为F 1和F 2,直线l 1过F 2且与x 轴垂直,动直线l 2与y 轴垂直,l 2交l 1于点P .求线段PF 1的垂直平分线与l 2的交点M 的轨迹方程,并指明曲线类型.[分析] 本小题主要考查椭圆、抛物线的方程,点到直线的距离公式,直线与曲线的位置关系等基础知识,考查综合运用知识分析问题、解决问题的能力.[解析] (1)由e =c a =1-b 2a 2=33,得b a =63. 又由原点到直线y =x +2的距离等于圆的半径,得b =2,a = 3. (2)解法1:由c =a 2-b 2=1得F 1(-1,0),F 2(1,0),设M (x ,y ),则P (1,y ).由|MF 1|=|MP |,得(x +1)2+y 2=(x -1)2,化简得y 2=-4x .此轨迹是抛物线.解法2:因为点M 在线段PF 1的垂直平分线上,所以|MF 1|=|MP |,即M 到F 1的距离等于M 到l 1的距离. 此轨迹是以F 1(-1,0)为焦点l 1:x =1为准线的抛物线,轨迹方程为y 2=-4x .[点评] 在利用圆锥曲线定义求轨迹时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程,若所求轨迹是某种圆锥曲线上的特定点的轨迹,则利用圆锥曲线的定义列出等式,化简求得方程. 跟踪练习1已知圆的方程为x 2+y 2=4,动抛物线过点A (-1,0),B (1,0),且以圆的切线为准线,则抛物线的焦点的轨迹方程是________.[答案] x 24+y 23=1 [解析] 设P (x 0,y 0)为圆上任一点,过该点的切线l :x 0x +y 0y =4 (|x 0|≤2),以l 为准线过A 、B 两点的抛物线焦点F (x ,y ),A 、B 到l 距离分别为d 1、d 2,根据抛物线的定义,|FA |+|FB |=d 1+d 2 |-x 0-4|x 02+y 02+|x 0-4|x 02+y 02=x 0+42+4-x 02=4>|AB |, ∴F 点的轨迹是以A 、B 为焦点,长轴长为4的椭圆,∴c =1,∴b 2=3,∴方程为x 24+y 23=1. 2.命题方向:直接法求曲线方程[例2] (青岛一中期中)如图,两条过原点O 的直线l 1,l 2分别与x 轴、y 轴成30°的角,点P (x 1,y 1)在直线l 1上运动,点Q (x 2,y 2)在直线l 2上运动,且线段PQ 的长度为2.(1)求动点M (x 1,x 2)的轨迹C 的方程;(2)设过定点T (0,2)的直线l 与(1)中的轨迹C 交于不同的两点A 、B ,且∠AOB 为锐角,求直线l 的斜率k 的取值范围.[解析] (1)由已知得直线l 1⊥l 2,l 1y =33x ,l 2y =-3x , ∵点P (x 1,y 1)在直线l 1上运动,点Q (x 2,y 2)在直线l 2上运动,∴y 1=33x 1,y 2=-3x 2, 由|PQ |=2,得(x 12+y 12)+(x 22+y 22)=4,即43x 12+4x 22=4⇒x 123+x 22=1, ∴动点M (x 1,x 2)的轨迹C 的方程为x 23+y 2=1.(2)直线l 的方程为y =kx +2,将其代入x 23+y 2=1, 化简得(1+3k 2)x 2+12kx +9=0,设A (x 3,y 3)、B (x 4,y 4),∴Δ=(12k )2-36×(1+3k 2)>0⇒k 2>1,且x 3+x 4=-12k 1+3k 2,x 3x 4=91+3k 2, ∵∠AOB 为锐角,∴OA →·OB →>0,即x 3x 4+y 3y 4>0⇒x 3x 4+(kx 3+2)(kx 4+2)>0,∴(1+k 2)x 3x 4+2k (x 3+x 4)+4>0.将x 3+x 4=-12k 1+3k 2,x 3x 4=91+3k 2代入上式, 化简得13-3k 21+3k 2>0⇒k 2<133. [点评] 轨迹方程实质上是动点的横、纵坐标所满足的方程,因此探求轨迹方程实质上是寻求动点坐标所满足的等量关系,这就需要我们在情境中挖掘其等量关系,从而找到动点坐标所满足的方程.由k 2>1且k 2<133,得k ∈(-393,-1)∪(1,393). 跟踪练习2已知两点M (-1,0),N (1,0),且点P 使MP →·MN →,PM →·PN →,NM →·NP →成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 的坐标为(x 0,y 0),记θ为PM →与PN →的夹角,求tan θ.[解析] (1)设P (x ,y ),则PM →=-MP →=(-1-x ,-y ),PN →=-NP →=(1-x ,-y ),MN →=-NM →=(2,0),∴MP →·MN →=2(1+x ),PM →·PN →=x 2+y 2-1,NM →·NP →=2(1-x ),由题意⎩⎪⎨⎪⎧ x 2+y 2-1=12+x +-x -x -+x ,即⎩⎪⎨⎪⎧ x 2+y 2=3x >0, 所以点P 的轨迹是以原点为圆心,3为半径的右半圆(不含端点).(2)点P 的坐标为(x 0,y 0),而PM →·PN →=x 02+y 02-1=2.又|PM →|·|PN →|=+x 02+y 02×-x 02+y 02=24-x 02.所以cos θ=PM →·PN →|PM →|·|PN →|=14-x 02, ∵0<x 0≤3,∴12<cos θ≤1,∴0≤θ<π3, ∴sin θ=1-cos 2θ=1-14-x 02,3.命题方向:代入法求曲线方程[例3] 如右图所示,从双曲线x 2-y 2=1上一点Q 引直线x +y =2的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.[解析] 设动点P 的坐标为(x ,y ),点Q 的坐标为(x 1,y 1),则N 点的坐标为(2x -x 1,2y -y 1).∵点N 在直线x +y =2上,∴2x -x 1+2y -y 1=2,①又∵PQ 垂直于直线x +y =2,∴y -y 1x -x 1=1.即x -y +y 1-x 1=0.② 由①、②联立,解得⎩⎪⎨⎪⎧ x 1=32x +12y -1,y 1=12x +32y -1.又Q 在双曲线x 2-y 2=1上, ∴x 12-y 12=1,即(32x +12y -1)2-(12x +32y -1)2=1整理得2x 2-2y 2-2x +2y -1=0,这就是所求动点P 的轨迹方程. [点评] 体会相关点求轨迹方程的实质,就是用所求动点P 的坐标表达式(即含有x 、y 的表达式)表示已知动点M 的坐标(x 0,y 0),即得到x 0=f (x ,y ),y 0=g (x ,y ),再将x 0,y 0的表达式代入点M 的方程F (x 0,y 0)=0中,即得所求.跟踪练习3M 是抛物线y 2=x 上一动点,O 为坐标原点,以OM 为一边作正方形MNPO ,求动点P 的轨迹方程.[分析] 设M (x 0,y 0),即x 0=y 02,设P (x ,y ),用x ,y 表示x 0,y 0或者直接消掉y 0.[解析] 依题意,设P (x ,y ),M (y 02,y 0)∵四边形MNPO 为正方形,∴|OM |=|OP |且OP ⊥OM .∴⎩⎪⎨⎪⎧ y 04+y 02=x 2+y 2y x ·y 0y 02=-1, ①②, 由①②消去y 0,化简得y 2=x 4, ∴动点P 的轨迹方程为x 2=±y (y ≠0).[点评] 这种方法,关键就是求x ,y 与x ′,y ′之间的等式关系,注意本题中去掉y =0的情况.4.命题方向:直线与圆锥曲线的位置关系[例4] (天津文)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B .已知点A 的坐标为(-a,0).①若|AB |=425,求直线l 的倾斜角; ②若点Q (0,y 0)在线段AB 的垂直平分线上,且QA →·QB →=4.求y 0的值.[解析] 本题考查了椭圆的标准方程及其几何性质、直线的方程、两点间的距离公式、直线的倾斜角、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想. (1)由e =c a =32,得3a 2=4c 2, 再由c 2=a 2-b 2,解得a =2b .由题意可得12×2a ×2b =4,即ab =2. 解方程组⎩⎪⎨⎪⎧a =2b ab =2,得a =2,b =1.∴椭圆的方程为x 24+y 2=1. (2)①由(1)知,点A 的坐标为(-2,0)设点B 的坐标为(x 1,y 1),直线l 的斜率为k ,则直线l 的方程为y =k (x +2).∴A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧ y =k x +2x 24+y 2=1,消去y 整理得, (1+4k 2)x 2+16k 2x +(16k 2-4)=0.由韦达定理得,-2x 1=16k 2-41+4k 2,∴x 1=2-8k 21+4k2, 从而y 1=4k 1+4k2, ∴|AB |=⎝ ⎛⎭⎪⎫-2-2-8k21+4k 22+⎝ ⎛⎭⎪⎫4k1+4k 22=41+k 21+4k 2, 由|AB |=425,得41+k 21+4k 2=425, 整理得32k 4-9k 2-23=0,即(k 2-1)(32k 2+23)=0,解得k =±1.∴直线l 的倾斜角为π4或3π4. ②设线段AB 的中点为M ,由①得M 的坐标为⎝ ⎛⎭⎪⎫-8k 21+4k 2,2k 1+4k 2. 1°当k =0时,点B 的坐标为(2,0),线段AB 的垂直平分线为y 轴,∴QA →=(-2,-y 0),QB →=(2,-y 0),由QA →·QB →=4得,-4+y 02=4⇒y 0=±2 2.2°由k ≠0时,线段AB 的垂直平分线方程为y -2k 1+4k 2=-1k ⎝ ⎛⎭⎪⎫x +8k 21+4k 2, 令x =0,解得y 0=-6k 1+4k 2. 由QA →=(-2,-y 0),QB →=(x 1,y 1-y 0),∴QA →·QB →=-2x 1-y 0(y 1-y 0)=--8k 21+4k 2+6k 1+4k 2⎝ ⎛⎭⎪⎫4k 1+4k 2+6k 1+4k 2=k 4+15k 2-+4k 22=4. 整理得7k 2=2,∴k =±147, ∴y 0=±2145, 综上所述,y 0=±22或±2145. 跟踪练习4(北京)已知菱形ABCD 的顶点A 、C 在椭圆x 2+3y 2=4上,对角线BD 所在直线的斜率为1.(1)当直线BD 过点(0,1)时,求直线AC 的方程;(2)当∠ABC =60°时,求菱形ABCD 面积的最大值.[解析] (1)由题意得直线BD 的方程为y =x +1.因为四边形ABCD 为菱形,所以AC ⊥BD .于是可设直线AC 的方程为y =-x +n .由⎩⎪⎨⎪⎧ x 2+3y 2=4y =-x +n ,得4x 2-6nx +3n 2-4=0.因为A 、C 在椭圆上,所以Δ=-12n 2+64>0, 解得-433<n <433. 设A 、C 两点坐标分别为(x 1,y 1)、(x 2,y 2),则x 1+x 2=3n 2,x 1x 2=3n 2-44,y 1=-x 1+n ,y 2=-x 2+n ,所以y 1+y 2=n 2. 所以AC 的中点坐标为(3n 4,n 4).由四边形ABCD 为菱形可知,点(3n 4,n 4)在直线y =x +1上,所以n 4=3n 4+1,解得n =-2. 所以直线AC 的方程为y =-x -2,即x +y +2=0.(2)因为四边形ABCD 为菱形,且∠ABC =60°,所以|AB |=|BC |=|CA |.所以菱形ABCD 的面积S =32|AC |2. 由(1)可得|AC |2=(x 1-x 2)2+(y 1-y 2)2=-3n 2+162, 所以S =34(-3n 2+16) (-433<n <433). 所以当n =0时,菱形ABCD 的面积取得最大值4 3.5.命题方向:圆锥曲线中的定点、定值和最值问题[例5] 已知椭圆x 24+y 22=1上的两个动点P ,Q 及定点M ⎝⎛⎭⎪⎫1,62,F 是椭圆的左焦点,且|PF |,|MF |,|QF |成等差数列.(1)求证:线段PQ 的垂直平分线经过一个定点A ;(2)设点A 关于原点O 的对称点是B ,求|PB |的最小值及相应的P 点坐标.[分析] (1)由|PF |,|MF |,|QF |成等差数列可得PQ 的中点横坐标,引入参数PQ 中点的纵坐标,先求kPQ ,利用直线PQ 的方程求解.(2)建立|PB |关于动点坐标的目标函数,利用函数的性质求最值.[解析] (1)设P (x 1,y 1),Q (x 2,y 2),由条件可知a =2,b =2,c =2,e =22. 由椭圆的焦半径公式得|PF |=2+22x 1, |QF |=2+22x 2,|MF |=2+22. ∵2|MF |=|PF |+|QF |,∴2⎝⎛⎭⎪⎫2+22=4+22(x 1+x 2), ∴x 1+x 2=2.当x 1≠x 2时,由⎩⎪⎨⎪⎧x 12+2y 12=4x 22+2y 22=4, 得y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2. 设线段PQ 的中点N (1,n ),∴k PQ =y 1-y 2x 1-x 2=-12n, ∴线段PQ 的垂直平分线方程为y -n =2n (x -1),∴(2x -1)n -y =0,该直线恒过一个定点A ⎝ ⎛⎭⎪⎫12,0. 当x 1=x 2时,线段PQ 的中垂线也过定点A ⎝ ⎛⎭⎪⎫12,0. 综上,线段PQ 的垂直平分线恒过定点A ⎝ ⎛⎭⎪⎫12,0. (2)由于点B 与点A 关于原点O 对称,故点B ⎝ ⎛⎭⎪⎫-12,0. ∵-2≤x 1≤2,-2≤x 2≤2, ∴x 1=2-x 2∈[0,2],|PB |2=⎝ ⎛⎭⎪⎫x 1+122+y 12=12(x 1+1)2+74≥94,∴当点P 的坐标为(0,±2)时,|PB |min =32.[点评] 本题是圆锥曲线中的综合问题,涉及到了等差数列、定点问题以及最值问题.求圆锥曲线的最值问题通常是先建立一个目标函数,然后利用函数的单调性、函数的图像、函数的有界性或重要不等式等求最值,本题是建立二次函数、利用二次函数的图像求最值. 跟踪练习5在例题条件不变的情况下,若+=0,求|PB |的最大值及相应的P 点坐标.[解析] ∵OA →+OB →=0,∴B 点坐标为⎝ ⎛⎭⎪⎫-12,0. |PB |=⎝⎛⎭⎪⎫x 1+122+y 12=x 12+x 1+14+2-x 122=12x 12+x 1+94=12x 12+2x 1++74=12x 1+2+74, ∵-2≤x 1≤2,∴当x 1=2时,|PB |max =52,此时,P 点坐标为(2,0).(五)思想方法点拨:1.常见的轨迹(1)在平面内,到两定点距离相等的点的轨迹是连结两定点的线段的垂直平分线. (2)平面内到角两边距离相等的点的轨迹是这个角的平分线.(3)平面内到定点的距离等于定长的点的轨迹是以定点为圆心,以定长为半径的圆.(4)平面内到定点的距离与到定直线距离之比等于常数(定点不在定直线上)的点的轨迹是圆锥曲线.当常数大于1时,表示双曲线;当常数等于1时,表示抛物线;当常数大于0而小于1时,表示椭圆.定点和定直线分别是圆锥曲线的焦点和相应的准线.(5)平面内到定直线的距离等于某一定值的点的轨迹是与这条直线平行的两条直线. 2.求轨迹的常用方法(1)直译法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表达成含x 、y 的等式得到轨迹方程,这种方法称之为直译法. 用直译法求动点轨迹的方程一般有建系、设点、列式、代入、化简、证明六个步骤,但最后的证明可以省略.(2)定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.(3)代入法:形成轨迹的动点P (x ,y )随另一动点Q (x ′,y ′)的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得, 则可先将x ′、y ′用x 、y 表示,再代入Q 的轨迹方程,然后整理得P 的轨迹方程,代入法也称相关点法.(4)参数法:求轨迹方程有时很难直接找出动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x 、y 之间建立起联系,然后再从所求式子中消去参数,得出动点的轨迹方程.(5)交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然后消去参数得到轨迹方程. 3.轨迹问题还应区别是“求轨迹”,还是“求轨迹方程”.一般说来,若是“求轨迹方程”,求到方程就可以了;若是“求轨迹”,求到方程还不够,还应指出方程所表示的曲线的类型.有时候,问题仅要求指出轨迹的形状.如果能绕过求轨迹方程这一环节直接根据定义及已知知识指出轨迹是什么曲线,则可不求轨迹方程.4.直线与圆锥曲线相交弦长问题(1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2|=1+k 2|x 2-x 1|或|P 1P 2|=1+1k2|y 2-y 1|,其中求|x 2-x 1|与|y 2-y 1|时,通常作如下变形|x 2-x 1|=x 1+x 22-4x 1x 2,|y 2-y 1|=y 1+y 22-4y 1y 2,使用韦达定理即解决.(2)当斜率k 不存在时,直线为x =m 的形式,可直接代入求出交点纵坐标y 1、y 2得弦长|y 1-y 2|.(3)经过圆锥曲线焦点的弦(也称焦点弦)的长度.应用圆锥曲线的定义转化为两个焦半径之和,往往比用弦长公式简捷.5.二次曲线求最值的方法(1)代数法:归结为求函数的最值问题,利用“配方法、判别式法、不等式法”等代数方法求解. (2)几何法:利用二次曲线的几何性质结合图形性质求解.(六)课后强化作业一、选择题1.(山东文)已知抛物线y 2=2px (p >0),过焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2[答案] B[解析] 本题考查了抛物线的方程及中点弦问题,可设A (x 1,y 1),B (x 2,y 2),则中点(x 1+x 22,y 1+y 22),∴y 1+y 22=2,⎩⎪⎨⎪⎧y 12=2px 1 ①y 22=2px 2 ②①-②得y 12-y 22=2p (x 1-x 2)⇒y 1-y 2x 1-x 2=2p y 1+y 2=p y 1+y 22,∴k AB =1=p 2⇒p =2,∴y 2=4x ,∴准线方程式为:x =-1,故选B.2.过点(0,-12)的直线l 与抛物线y =-x 2交于A 、B 两点,O 为坐标原点,则OA →·OB →的值为( )A .-12B .-14C .-4D .无法确定[答案] B[解析] 设A (x 1,y 1),B (x 2,y 2),直线l 的方程y =kx -12,代入抛物线方程得2x 2+2kx -1=0,∴⎩⎪⎨⎪⎧x 1+x 2=-k ,x 1x 2=-12.∴OA →·OB →=x 1x 2+y 1y 2=x 1x 2+(kx 1-12)(kx 2-12)=(k 2+1)x 1x 2-12k (x 1+x 2)+14=-12(k 2+1)-12k (-k )+14=-14.3.已知动圆过点(1,0),且与直线x =-1相切,则动圆圆心的轨迹方程为( ) A .x 2+y 2=1 B .x 2-y 2=1 C .y 2=4xD .x =0[答案] C[解析] 动点到(1,0)和直线x =-1的距离相等,所以其轨迹方程为y 2=4x . 4.已知动点P (x ,y )满足10x -2+y -2=|3x +4y |,则P 点的轨迹是( )A .椭圆B .双曲线C .抛物线D .两相交直线[答案] A [解析] 条件化为2x -2+y -2=|3x +4y |5,即为点P (x ,y )到定点F (1,2)的距离与到定直线l x +4y =0的距离之比为12,又点F 不在直线l 上,故根据椭圆的第二定义可知,点P 的轨迹是椭圆.5.直线y =kx -k +1与椭圆x 225+y 216=1的位置关系为( ) A .相交 B .相切 C .相离 D .不确定[答案] A[解析] 直线y =k (x -1)+1过椭圆内定点(1,1),故直线与椭圆相交.6.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .3 2B .2 6C .27D .4 2[答案] C[解析] 根据题意设椭圆方程为x 2b 2+4+y 2b2=1(b >0),则将x =-3y -4代入椭圆方程得,4(b 2+1)y 2+83b 2y -b 4+12b 2=0,∵椭圆与直线x +3y +4=0有且仅有一个交点, ∴Δ=(83b 2)2-4×4(b 2+1)(-b 4+12b 2)=0, 即(b 2+4)(b 2-3)=0,∴b 2=3, 长轴长为2b 2+4=27,故选C.7.已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)[答案] C[解析] ∵渐近线l 1:y =b ax 与过焦点F 的直线l 平行,或渐近线l 1从该位置绕原点按逆时针旋转时,直线l 与双曲线的右支交于一个点.∴b a≥3,即c 2=a 2+b 2≥4a 2,∴e ≥2,故选C.8.(重庆理)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )A .直线B .椭圆C .抛物线D .双曲线[答案] D[解析] 如图所示,设两异面直线为m ,n 过n 上任一点O ,作m 的平行线m ′,设m ′与n 确定的平面为α,以O 为原点,m ′,n 分别为x 轴,y 轴建立坐标系,设与两异面直线距离相等的点为M (x ,y ),令m 到平面α的距离为d ,由题意|x |2+d 2=|y |2即y 2-x 2=d 2故轨迹为双曲线. 二、填空题9.已知BC 是圆x 2+y 2=25的动弦,且|BC |=6,则BC 的中点的轨迹方程是________. [答案] x 2+y 2=16[解析] 设BC 中点为P (x ,y ),则OP ⊥BC , ∵|OC |=5,|PC |=3,∴|OP |=4,∴x 2+y 2=16.10.点P 在以F 1、F 2为焦点的椭圆x 23+y 24=1上运动,则△PF 1F 2的重心G 的轨迹方程是________.[答案]x 213+y 249=1(x ≠0) [解析] F 1(0,-1)、F 2(0,1),设P (x 0,y 0),G (x ,y ), ∵G 为△PF 1F 2的重心,∴⎩⎪⎨⎪⎧x =x 03y =y3,∴⎩⎪⎨⎪⎧x 0=3xy 0=3y ,代入x 23+y 24=1中得x 213+y 249=1构成三角形时,三点P 、F 1、F 2不共线,∴x ≠0.11.过点P (8,1)的直线与双曲线x 2-4y 2=4相交于A 、B 两点,且P 是线段AB 的中点,则直线AB 的方程为________.[答案] 2x -y -15=0[解析] 解法1:经分析知k 一定存在,设直线方程为y -1=k (x -8), ∴y =k (x -8)+1,代入x 2-4y 2=4中,整理得(1-4k 2)x 2+(64k 2-8k )x -256k 2+64k -8=0.x 1+x 2=64k 2-8k 4k 2-1=16,即8k 2-k4k 2-1=2,∴k =2,∴所求方程为2x -y -15=0.解法2:设A 、B 坐标分别为(x 1,y 1)、(x 2,y 2)则x 12-4y 12=4,(1) x 22-4y 22=4,(2)(1)-(2)得(x 1+x 2)(x 1-x 2)-4(y 1+y 2)(y 1-y 2)=0, ∵P 是线段AB 的中点,∴x 1+x 2=16,y 1+y 2=2, ∴y 1-y 2x 1-x 2=x 1+x 2y 1+y 2=2.∴直线AB 的斜率为2,∴直线AB 的方程为2x -y -15=0.[点评] 用“点差法”解决圆锥曲线中点弦等有关问题较为方便,注意进行总结. 三、解答题12.(江苏卷)如图,在平面直角坐标系xOy 中,已知椭圆x 29+y 25=1的左、右顶点为A 、B ,右焦点为F .设过点T (t ,m )的直线TA ,TB 与此椭圆分别交于点M (x 1,y 1),N (x 2,y 2),其中m >0,y 1>0,y 2<0(1)设动点P 满足PF 2-PB 2=4,求点P 的轨迹; (2)设x 1=2,x 2=13,求点T 的坐标.[解析] 本主要考查求简单曲线的方程,考查直线与椭圆的方程等基础知识,考查运算求解能力和探究问题的能力.由题设得A (-3,0),B (3,0),F (2,0).(1)设点P (x ,y ),则PF 2=(x -2)2+y 2,PB 2=(x -3)2+y 2.由PF 2-PB 2=4,得(x -2)2+y 2-(x -3)2-y 2=4,化简得x =92.故所点P 的轨迹为直线x =92.(2)由x 1=2,x 129+y 125=1及y 1>0,得y 1=53,则点M (2,53),从而直线AM 的方程为y =13x +1;由x 2=13,x 229+y 225=1,及y 2<0,得y 2=-209,则点N (13,-209),从而直线BN 的方程为y =56x -52. 由⎩⎪⎨⎪⎧y =13x +1,y =56x -52,解得⎩⎪⎨⎪⎧x =7,y =103.所以点T 的坐标为(7,103).13.(广东文)已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,两个焦点分别为F 1和F 2,椭圆G 上一点到F 1和F 2的距离之和为12.圆C k :x 2+y 2+2kx -4y -21=0(k ∈R)的圆心为点A k .(1)求椭圆G 的方程; (2)求△A k F 1F 2的面积;(3)问是否存在圆C k 包围椭圆G ?请说明理由.[解析] 考查椭圆的定义与标准方程、圆的一般方程、椭圆与圆的位置关系及运算能力、分析解决问题的能力.(1)设椭圆G 的方程为:x 2a 2+y 2b2=1(a >b >0),半焦距为c ;则⎩⎪⎨⎪⎧2a =12c a =32,解得⎩⎨⎧a =6c =33,∴b 2=a 2-c 2=36-27=9,所求椭圆G 的方程为:x 236+y 29=1.(2)点A k 的坐标为(-k,2),S △A k F 1F 2=12×|F 1F 2|×2=12×63×2=6 3.(3)若k ≥0,由62+02+12k -0-21=15+12k >0可知点(6,0)在圆C k 外, 若k <0,由(-6)2+02-12k -0-21=15-12k >0可知点(-6,0)在圆C k 外; ∴不论k 为何值,圆C k 都不能包围椭圆G .14.直线m: y =kx +1和双曲线x 2-y 2=1的左支交于A 、B 两点,直线l 过点P (-2,0)和AB 线段的中点,求l 在y 轴上的截距b 的取值范围.[解析] 由⎩⎪⎨⎪⎧y =kx +1x 2-y 2=1消去y 得(1-k 2)x 2-2kx -2=0则⎩⎪⎨⎪⎧1-k 2≠0Δ=4k 2+-k22k 1-k 2<0-21-k 2>0,∴1<k < 2设M (x 0,y 0)为AB 的中点,则x 0=k1-k2y 0=kx 0+1=k 21-k 2+1=11-k 2,∴M ⎝ ⎛⎭⎪⎫k 1-k 2,11-k 2∵P (-2,0),M ⎝ ⎛⎭⎪⎫k 1-k 2,11-k 2,Q (0,b )三点共线故b =2-2k 2+k +2,设φ(k )=-2k 2+k +2,则φ(k )在(1,2)上是减函数,于是φ(2)<φ(k )<φ(1),即2-2<φ(k )<1,且φ(k )≠0,∴b >2或b <-(2+2).[点评] 因为b 的变化是由于k 的变化引起的,且m 有固定的位置时,l 也有确定的位置,即对于k 的每一个允许值,b 都有确定的值与之对应,因此b 是k 的函数.15.(北京理)在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于-13.(1)求动点P 的轨迹方程;(2)设直线AP 与BP 分别与直线x =3交于点M ,N .问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由.[解析] 本题考查了点的轨迹方程及三角形的面积公式,第(1)问可利用直接法求出轨迹,(2)问先表示出三角形面积,再结合已知条件即可求解.(1)因为点B 与点A (-1,1)关于原点对称,得B 点坐标为(1,-1). 设P 点坐标为(x ,y ),则k AP =y -1x +1,k BP =y +1x -1,由题意得y -1x +1·y +1x -1=-13,化简得:x 2+3y 2=4(x ≠±1).即P 点轨迹方程为:x 2+3y 2=4,(x ≠±1). (2)因为∠APB +∠MPN =180°, 可得sin ∠APB =sin ∠MPN , 又S △APB =12|PA ||PB |sin ∠APB ,S △MPN =12|PM ||PN |sin ∠MPN ,若S △APB =S △MPN ,则有|PA ||PB |=|PM ||PN |, 即|PA ||PM |=|PN ||PB |设P 点坐标为(x 0,y 0),则有:|x 0+1||3-x 0|=|3-x 0||x 0-1|,解得:x 0=53,又因x 02+3y 02=4,解得y 0=±339.故存在点P 使得△PAB 与△PMN 的面积相等,此时P 点坐标为(53,339)或(53,-339).。
经典小结论在高考中的应用——以2020 年全国卷圆锥曲线为例

296学苑论衡本文中的小结论,是指对课本知识的深化、引申及推广的一些经验公式和规律等。
经过多年的教学研究,我发现小结论在考试中有简化计算程序,简约思维过程的价值。
现以2020年全国卷圆锥曲线为例,介绍一些经典小结论为读者高考备考助力。
1.双曲线的离心率与渐近线斜率关系e=1+k 2 (焦点在x 轴)或e=1+1k2(焦点在y 轴).(1)(Ⅲ卷,文14) 设双曲线 a 2x 2-b 2y2=1(a >0,b >0)的一条渐近线为y=2x,则C 的离心率为 .答案:3解析:渐近线的斜率k=2,从而e=1+k 2=3. 涉及到该结论的高考题有:2019年全国Ⅰ卷文10,2010年全国新课标卷文5,2006年全国Ⅱ卷文、理9,2004年全国Ⅲ卷文8、理7.2.通径 过双曲线焦点且垂直实轴的弦,其长为a 2b2.(2) (Ⅰ卷,理15) 已知F 为双曲线C: a 2x 2-b 2y2=1(a >0,b >0)的右焦点, A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .答案:2 解析:由已知B(c,ab2),k AB ==e+1=3,所以e=2.涉及到该结论的高考题有:2016年新课标Ⅱ卷理11,2011年新课标卷理7,2005年浙江卷理13,2016年山东卷文14、理13,2015年四川卷文7、理5.3.焦点三角形的面积 若P 是双曲线 a 2x 2-b2y2=1(a >0,b >0)上一点,F 1,F 2是其左右焦点,设∠F 1PF 2=θ,则△PF 1F 2的面积为b 2cot θ2(其中tan·θ2cot·θ2=1).(3) (Ⅰ卷,文11) 设F 1,F 2是双曲线x 2-3y 2=1的两个焦点,O 为坐标原点,点P 在C 上且|OP|=2,则△PF 1F 2的面积为A.72 B.3 C.52 D. 2答案:B 经典小结论在高考中的应用——以2020年全国卷圆锥曲线为例张青松 (云南省昆明市云南师范大学实验中学)解析:由|OP|=2和|F 1F 2|=4,知点P 在以F 1F 2为直径的圆上,故∠F 1PF 2=90°.△PF 1F 2的面积为3cot45°=3.(4) (Ⅲ卷,理11) 设双曲线C : a 2x 2-b2y2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为5.P 是C 上一点,且F 1P ⊥F 2P.若△PF 1F 2的面积为4,则a=A.1 B.2 C.4 D. 8答案:A 解析:由∠F 1PF 2=90°,△PF 1F 2的面积为b 2cot45°=4,得b 2=4.结合 a2b 2=e 2-1=4,得a=1.涉及该结论的高考题有:2019全国Ⅲ卷文10,2019全国Ⅱ卷文20第(2)问,2019上海卷20,2003北京春卷理15,2009上海理9,2000全国卷文、理14.4.椭圆的焦半径公式设椭圆方程为 a 2x 2-b 2y2=1(a >b >0),P (x 0,y 0)为其上任意一点,F 1、F 2分别为左右焦点,则椭圆的焦半径公式为|PF 1|=a+ex 0,|PF 2|=a-ex 0.根据两点间的距离公式和椭圆定义不难证明。
专题21 圆锥曲线综合-2020年高考数学(文)母题题源解密(全国Ⅰ专版)(解析版)

专题21 圆锥曲线综合【母题来源一】【2020年高考全国Ⅰ卷文数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1). 则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.【母题来源二】【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a . 因为M 与直线x +2=0相切,所以M 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥,故可得2224(2)a a +=+,解得=0a 或=4a . 故M 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M 的半径为=|+2|,||=2r x AO .由于MO AO ⊥,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.【母题来源三】【2018年高考全国Ⅰ文数】设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.【答案】(1)y =112x +或112y x =--;(2)见解析. 【解析】(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2). 所以直线BM 的方程为y =112x +或112y x =--. (2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x =-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k,y 1y 2=–4. 直线BM ,BN 的斜率之和为1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补, 所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .【名师点睛】本题主要考查抛物线的标准方程与几何性质、直线与抛物线的位置关系,考查考生的化归与转化能力、运算求解能力,考查的数学核心素养是直观想象与数学运算.在设直线的方程时,一定要注意所设方程的适用范围,如用点斜式时,要考虑到直线的斜率不存在的情况,以免解答不严密或漏解. (1)求出直线l 与抛物线的交点,利用两点式写出直线BM 的方程;(2)由(1)知,当直线l 与x 轴垂直时,结论显然成立,当直线l 与x 轴不垂直时,设出斜率k ,联立直线l 与C 的方程,求出M ,N 两点坐标之间的关系,再表示出BM 与BN 的斜率,得其和为0,从而说明BM 与BN 两条直线的斜率互为相反数,进而可知两角相等.【命题意图】(1)了解椭圆或抛物线的实际背景,了解椭圆或抛物线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆或抛物线的定义、几何图形、标准方程及简单性质. (3)了解圆锥曲线的简单应用. (4)理解数形结合的思想. 【命题规律】解析几何的解答题一般难度较大,多为试卷的压轴题之一,常考查直线与圆锥曲线的位置关系及最值范围、定点、定值、存在性问题及证明问题,多涉及最值求法,综合性强.从近三年高考情况来看,多考查直线与椭圆或抛物线的位置关系,常与向量、圆等知识相结合,解题时,充分利用数形结合思想,转化与化归思想.同时注重数学思想在解题中的指导作用,以及注重对运算能力的培养. 【方法总结】(一)求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.【注意】用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为22100()mx ny m n m n >>+≠=,且. (二)用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程. (三)直线与圆锥曲线的弦长问题有三种解法:(1)过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义可优化解题.(2)将直线的方程与圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长. (3)它体现了解析几何中的设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系.(四)圆锥曲线中的定点、定值问题定点、定值问题多以直线与圆锥曲线为背景,常与函数与方程、向量等知识交汇,形成了过定点、定值等问题的证明.解决此类问题的关键是引进参变量表示所求问题,根据等式的恒成立、数式变换等寻找不受参数影响的量.可以先研究一下特殊情况,找出定点或定值,再视具体情况进行研究.同时,也要掌握巧妙利用特殊值解决相关的定点、定值问题,如将过焦点的弦特殊化,变成垂直于对称轴的弦来研究等.1.(西藏日喀则市2020届高三上学期学业水评测试(模拟)数学试题)已知椭圆C :22221(0)x y a b a b+=>>经过点⎫⎪⎪⎝⎭(1)求椭圆C 的方程;(2)过点()2,0M 的直线l 交椭圆于A ,B 两点,F 为椭圆C 的左焦点,若5FA FB ⋅=,求直线l 的方程.【答案】(1)22132x y +=;(2)20x y --=或20x y +-=.【解析】 【分析】(1)由,b a ===,可得2221132c c⎝⎭+=,将点,12⎛⎫ ⎪ ⎪⎝⎭代入,利用待定系数法即可求解.(2)设直线l 的方程为2x my =+,设点()11,A x y 、()22,B x y ,将直线与椭圆方程联立,消x ,利用韦达定理可得122823m y y m -+=+,122223y y m =+,再利用向量数量积的坐标运算即可求解. 【详解】(1)设椭圆C 的焦距为()20c c >,则3c a =,∴a =,b =,所以,椭圆C 的方程为2222132x y c c +=,将点,12⎛⎫ ⎪⎪⎝⎭的坐标代入椭圆C的方程得2221132c c⎝⎭+=, 解得1c =,则b ==a ==因此,椭圆C 的方程为22132x y +=.(2)若直线l 斜率为0,则,A B 为长轴的两交点, 此时0FA FB ⋅<不合题意,设直线l 的方程为2x my =+,设点()11,A x y 、()22,B x y ,将直线l 的方程代入椭圆的方程, 并化简得()2223820m y my +++=,()()22264422324210m m m ∆=-⨯⨯+=->,解得m <或m >, 由韦达定理可得122823m y y m -+=+,122223y y m =+, ()()11111,3,FA x y my y =+=+,同理可得()223,FB m y y =+,所以()()()()21212121233139FA FB my my y y m y y m y y ⋅=+++=++++()22222124952323m m m m +=-+=++, 即22429523m m -+=+,解得:1m =±,符合题意, 因此,直线l 的方程为20x y --=或20x y +-=. 【点睛】本题考查了待定系数法求椭圆方程、直线与椭圆的位置关系,此题要求有较高的计算能力,属于中档题.2.(重庆市巴蜀中学2020届高三下学期适应性月考九数学试题)已知椭圆1C :22163x y +=的长轴为AB ,动点P 是椭圆上不同于A ,B 的任一点,点Q 满足AP AQ ⊥,BP BQ ⊥. (1)求点Q 的轨迹2C 的方程;(2)过点()0,6R 的动直线l 交2C 于M ,N 两点,y 轴上是否存在定点S ,使得RSM RSN π∠+∠=总成立?若存在,求出定点S ;若不存在,请说明理由.【答案】(1)221126y x +=(0y ≠);(2)存在,()0,2S .【解析】 【分析】(1)设()00,P x y (00y ≠),(),Q x y , ()A ,)B,根据AP AQ ⊥,BP BQ ⊥,由0AP AQ ⋅=,0BP BQ ⋅=,利用代入求解.(2)设()11,M x y ,()22,N x y ,假设存在这样的点()0,S t ,当直线l 的斜率存在时,设方程为6y kx =+与椭圆方程联立, 根据RSM RSN π∠+∠=,由0MS NS k k +=,结合韦达定理求解. 【详解】(1)设()00,P x y (00y ≠),(),Q x y ,()A,)B,AP AQ ⊥,BP BQ ⊥,0AP AQ ∴⋅=,0BP BQ ⋅=,((000000x x y y x x y y ⎧+=⎪∴⎨-+=⎪⎩解得002x x y y =-⎧⎪⎨=-⎪⎩代入2200163x y +=,得点Q 的轨迹2C 的方程为221126y x +=(0y ≠).(2)设()11,M x y ,()22,N x y ,假设存在这样的点()0,S t 满足RSM RSN π∠+∠=,当直线l 的斜率存在时,设为6y kx =+,代入椭圆221126y x+=中,得()22212240k x kx +++=,122122k x x k -∴+=+,122242x x k ⋅=+, ()()2221449624840k k k ∆=-+=->, RSM RSN π∠+∠=,0MS NS k k ∴+=,即12120y t y tx x --+=, 即()()2112x y t x y t -+-,()()211266x kx t x kx t =+-++-,()()()()1212222241212262620222k kkx x t x x kt t k k k -=+-+=+-=-=+++, 0k ≠,2t ∴=,即()0,2S ;当斜率不存在时,直线l 也过()0,2.综上,y 轴上存在定点()0,2S ,使得RSM RSN π∠+∠=总成立. 【点睛】本题主要考查椭圆方程的求法,直线与椭圆的位置关系以及定点问题,还考查了运算求解的能力,属于中档题.3.(四川省绵阳市江油中学2020-2021学年高三8月第二次考试文科数学试题)已知A (0,2),B (0,﹣2),动点P (x ,y )满足PA ,PB 的斜率之积为12-. (1)求动点P 的轨迹C 的方程;(2)已知直线l :y =kx +m ,C 的右焦点为F ,直线l 与C 交于M ,N 两点,若F 是△AMN 的垂心,求直线l 的方程.【答案】(1)2284x y +=1(x ≠0);(2)y =x 83-.【解析】 【分析】(1)根据动点P (x ,y )满足PA ,PB 的斜率之积为12-,可得P 的坐标之间的关系,且横坐标不为0,求出P 的轨迹方程;(2)由(1)可得右焦点F 的坐标,联立直线与椭圆的方程可得两根之和及两根之积,由F 是△AMN 的垂心可得AF ⊥MN ,NF ⊥AM ,可得m 的值. 【详解】(1)因为动点P (x ,y )满足PA ,PB 的斜率之积为12-, 所以2212y y x x -+⋅=-(x ≠0), 整理可得2284x y +=1,所以动点P 的轨迹C 的方程:2284x y +=1(x ≠0);(2)由(1)可得右焦点F (2,0),可得k AF 2002-==--1, 因为F 为垂心,所以直线MN 的斜率为1, 设M (x 1,y 1),N (x 2,y 2),联立直线l 与椭圆的方程:2228y x mx y =+⎧⎨+=⎩,整理得:3x 2+4mx +2m 2﹣8=0, △=16m 2﹣4×3×(2m 2﹣8)>0,即m 2<12,x 1+x 243m =-,x 1x 22283m -=,因为AM ⊥NF , 所以k AM ⋅k NF =﹣1,即121222y y x x -⋅=--1, 整理可得y 2(y 1﹣2)+x 1(x 2﹣2)=0, 即y 1y 2+x 1x 2﹣2x 1﹣2y 2=0, 即y 1y 2+x 1x 2﹣2x 1﹣2(x 2+m )=0, 整理可得y 1y 2+x 1x 2﹣2(x 1+x 2)﹣2m =0,而y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2283m -= 所以283m --243m -⋅-2m 2283m -+=0, 解得m 83=-或m =2(舍), 所以直线l 的方程为:y =x 83-.【点睛】本题主要考查轨迹方程的求法,直线与椭圆的位置关系以及垂心的应用,还考查了运算求解的能力,属于中档题.4.(2020届河北省衡水中学高三卫冕联考数学试题)如图所示椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,右焦点为F ,13A F =,离心率12e =.(1)求椭圆C 的方程;(2)过点(0,1)E 作斜率为的直线l 与椭圆C 交于点M ,N (点N 在第一象限),直线1MB 与直线2NB 交于点T ,求点T 的坐标.【答案】(1)22143x y +=;(2)10,3).【解析】 【分析】(1)根据13A F =及12e =可求,a b 的值,从而可得椭圆的方程. (2)联立直线方程和椭圆方程可求,M N 的坐标,再求得直线12,MB NB 的方程后可得点T 的坐标. 【详解】解:(1)由13A F =及12e =, 可知32112a c a c c a +=⎧=⎧⎪⇒⎨⎨==⎩⎪⎩,所以2223b a c =-=,所以椭圆C 的方程为22143x y +=.(2)依题可设过点(0,1)E 且斜率为52的直线5:12l y x =+,()11,M x y ,()22,N x y , 联立方程组2221437520512x y x x y x ⎧+=⎪⎪⇒+-=⎨⎪=+⎪⎩, 解得11x =-,227x =,则132y =-,2127y =, 所以31,2M ⎛⎫--⎪⎝⎭,212,77N ⎛⎫⎪⎝⎭, 由(1)知,1B,2(0,B .所以直线13:2MB y x ⎫=+⎪⎭,①直线2:62NB y x ⎛=+- ⎝⎭,②由①②,解得103x y ⎧=⎪⎨=⎪⎩,所以点T的坐标为10,3). 【点睛】本题考查椭圆方程的求法、直线与椭圆的相交时交点坐标的求法、直线与直线的交点的求法,后两者均需联立曲线的方程,消元后求解即可,本题属于中档题.5.(广西钦州市第一中学2021届高三8月月考数学试题)已知椭圆22:24C x y +=. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线2y =上,点B 在椭圆C 上,且OA OB ⊥,求线段AB 长度的最小值.【答案】(1)2c e a ==(2)【解析】试题分析:(1)由椭圆C 的方程可以求椭圆C 的离心率(2)设椭圆C 的椭圆方程,结合OA OB ⊥,得出结果.(1)由题意,椭圆C 的标准方程为22142x y +=,所以224,2a b ==,从而2222c a b =-=,因此2,a c ==C的离心率2c e a ==. (2)设点A ,B 的坐标分别为00(,2),(,)t x y ,其中00x ≠, 因为OA OB ⊥,所以0OA OB ⋅=,即0020tx y +=,解得02y t x =-,又220024x y +=, 所以22200||()(2)AB x t y =-+-=2200002()(2)y x y x ++-=2220002044y x y x +++ =2220002042(4)42x x x x --+++=22002084(04)2x x x ++<≤, 因为22002084(04)2x x x +≥<≤,且当204x =时间等号成立,所以2||8AB ≥, 故线段AB长度的最小值为考点:本小题主要考查椭圆的标准方程与几何性质、两点距离公式、不等式等基础知识,试题注重了知识的结合,考查了平面向量与圆锥曲线的结合、不等式与函数的结合等,有一定的综合性,考查转化与化归等数学思想,考查正确的计算能力,考查同学们分析问题与解决问题的能力.6.(山东省泰安市2020届高三第四轮模拟复习质量数学试题)已知椭圆1C :()222210x y a b a b +=>>的左、右顶点分别是双曲线2C :2221x y m -=的左、右焦点,且1C 与2C相交于点⎝⎭. (1)求椭圆1C 的标准方程; (2)设直线l :13y kx =-与椭圆1C 交于A ,B 两点,以线段AB 为直径的圆是否恒过定点?若恒过定点,求出该定点;若不恒过定点,请说明理由.【答案】(1)2212x y +=;(2)过定点,()0,1.【解析】 【分析】(1)将两个曲线的交点当然双曲线的方程可得m 的值,进而求出双曲线的左右焦点,即椭圆的左右顶点,再将交点的坐标代入椭圆的方程可得b 的值,进而求出椭圆的方程;(2)由对称性可得圆的圆心在y 轴上,设M 的坐标,设A ,B 的坐标,将直线与椭圆联立,求出两根之和及两根之积,求出数量积0MA MB ⋅=,求出M 的坐标. 【详解】(1)将⎝⎭代入2221x y m -=,解得21m = ∴2212a m =+=将⎝⎭代入22212x y b += 解得21b =∴椭圆1C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由221312y kx x y ⎧=-⎪⎪⎨⎪+=⎪⎩整理得()2291812160k x kx +--=, ∴12212918kx x k+=+,12216918x x k-=+ ()22144649180k k ∆=++>.由对称性可知,以AB 为直径的圆若恒过定点,则定点必在y 轴上. 设定点为()00,M y ,则()110,MA x y y =-,()220,MB y y y =-()()121020MA MB x x y y y y ⋅=+--()212120120x x y y y y y y =+-++()()22121212012021339k x x k x x x x y k x x y ⎡⎤=+-+-+-++⎢⎥⎣⎦()()2212012001211339k x x k y x x y y ⎛⎫=+-+++++ ⎪⎝⎭()22200021819615918y k y y k-++-=+0=∴202001096150y y y ⎧-=⎨+-=⎩解得01y = ∴()0,1M∴以线段AB 为直径的圆恒过定点()0,1. 【点睛】本题考查求椭圆,双曲线的方程,及直线与圆锥曲线的综合,及以线段的端点为直径的圆的性质,属于难题.7.(四川省内江市2020届高三下学期第三次模拟考试数学试题)已知椭圆()2222:10y x C a b a b+=>>的离,且椭圆上一点到两个焦点的距离之和为(1)求椭圆C 的方程;(2)斜率为k 的动直线l 与椭圆C 交于A 、B 两点,点1,03S ⎛⎫- ⎪⎝⎭在直线l 上,求证无论直线l 如何转动,以AB 为直径的圆恒过点()1,0T .【答案】(1)2212y x +=;(2)证明见解析.【解析】 【分析】(1)根据椭圆的离心率,以及椭圆的定义及性质,列出方程组求解,即可得出a =1c =,1b =,进而可求出椭圆方程;(2)由题意可得,直线l 的方程为13y k x ⎛⎫=+⎪⎝⎭,设()11,A x y ,()12,B x y ,将直线l 的方程代入椭圆方程,根据韦达定理,计算0TA TB ⋅=,即可证明结论成立.(1)因为椭圆的离心率为2,则2c e a ==;又椭圆上一点到两个焦点的距离之和为2a =,由22222c a a b a c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩,解得a =1c =,1b =, 故所求椭圆方程为2212y x +=;(2)证:由题意可得,直线l 的方程为13y k x ⎛⎫=+ ⎪⎝⎭, 设()11,A x y ,()12,B x y ,则代入椭圆方程2212y x +=,整理得:()22222182039k k k x x -+++=.∵点S 在椭圆内,∴此方程必有二实根1x ,2x ,且()2122232k x x k +=-+,()21221892k x x k -⋅=+. 于是,()()11221,1,TA TB x y x y ⋅=--()()1212111133x x k x k x ⎛⎫⎛⎫=--++⋅+ ⎪ ⎪⎝⎭⎝⎭()()()()22212121113939k x x k x x k =++-+++ ()()()()()()222222211182392092k k k k k k k ⎡⎤=+---+++=⎣⎦+可知TA TB ⊥,即以AB 直径的圆过点T .本题主要考查待定系数法求椭圆的方程,考查椭圆中存在定点满足某条件的问题,熟记椭圆的标准方程及椭圆的简单性质即可,属于常考题型.8.(湖南省长沙市雅礼中学2020届高三高考数学模拟试题(一)(a 卷))在平面直角标系xOy 中,点P ⎛ ⎝⎭在椭圆()2222:10x y M a b a b +=>>(1)求椭圆M 的标准方程;(2)过椭圆M 的右顶点A 作椭圆M 的两条弦AB 、AC ,记直线AB 、AC ,BC 的斜率分别为1k 、2k 、k ,其中1k 、2k 的值可以变化,当1k =,求1212k k k k --的所有可能的值.【答案】(1)2214x y +=;(2)14.【解析】 【分析】(1)由题意可得221314a b+=,c e a ==,求出,a b ,即得椭圆M 的标准方程;(2)点()2,0A .设()11,B x y ,()22,C x y ,直线BC 的方程为()2y x m m =+≠-.把,直线BC 的方程代入椭圆M 的方程,结合韦达定理,即求答案. 【详解】(1)根据题意221314a b+=,离心率c e a ==2a =,1b =,所以椭圆M 的标准方程为:2214x y +=.(2)点()2,0A .设()11,B x y ,()22,C x y ,直线BC 的方程为()2y x m m =+≠-.由2214y x m x y =+⎧⎪⎨+=⎪⎩,可得()2258410x mx m ++-=. ① 1x ,2x 是方程①的两个根,()22264454116800,m m m m ∴∆=-⨯⨯-=-+><<2m ≠-.1285m x x ∴+=-,()212415m x x -=. ()()()()212121212121212211111112224m x m x m k k k k k k x x x x x x +⎛⎫⎛⎫++∴--=---=---=- ⎪⎪---++⎝⎭⎝⎭()()()()222222511114444116444555m m m mm m ++=-=-=-=-++++.故1212k k k k --的所有可能的值为14. 【点睛】本题考查椭圆的标准方程,考查与椭圆有关的定值问题,属于较难的题目.9.(四川省内江六中2020届高三高考数学强化训练试题(三))设椭圆:C 22221x y a b+=(0a b >>)的左右顶点为12A A ,,上下顶点为12B B ,,菱形1122A B A B 的内切圆C ',椭圆的离心率为2. (1)求椭圆C 的方程;(2)设M N ,是椭圆上关于原点对称的两点,椭圆上一点P 满足PM PN =,试判断直线PM PN ,与圆C '的位置关系,并证明你的结论.【答案】(1)22163x y += (2)直线PM 、PN 与圆C '相切,证明见解析 【解析】 【分析】(1)由离心率得a =,用两种方法表示出菱形1122A B A B 的面积可求得,b a ,得椭圆方程;(2)设()11M x y ,,()22P x y ,.当直线PM 的斜率存在时,设直线PM 的方程为y kx m =+,代入椭圆方程,用韦达定理得1212,x x x x +,利用OP OM ⊥,即12120x x y y +=得,k m 的关系,求出圆心C '到直线PM 的距离可得直线与圆的位置关系.直线PM 的斜率不存在时,直接计算可得,由对称性PN 的结论也可得.【详解】(1)设椭圆的半焦距为c .由椭圆的离心率为2知,b c a =,. 设圆C '的半径为r,则r ab =,2,解得b =a =∴椭圆C 的方程为22163x y += (2)∵M N ,关于原点对称,PM PN =,∴OP MN ⊥. 设()11M x y ,,()22P x y ,.当直线PM 的斜率存在时,设直线PM 的方程为y kx m =+.由直线和椭圆方程联立得()2226x kx m ++=,即()222124260k x kmx m +++-=,∴12221224212621km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩. ∵()11OM x y =,,()22OP x y =,,∴()()12121212OM OP x x y y x x kx m kx m ⋅=+=+++()()()22222121222264112121m km k x x km x x m k km m k k --=++++=+⋅+⋅+++()222322021m k k --==+, ∴22220m k --=,2222m k =+, ∴圆C '的圆心O 到直线PMr ==,∴直线PM 与圆C '相切.当直线PM 的斜率不存在时,依题意得()11,N x y --,()11,P x y -. 由PM PN=得1122x y =,∴2211x y =,结合2211163x y +=得212x =, ∴直线PM 到原点O, ∴直线PM 与圆C '也相切. 同理可得,直线PN 与圆C '也相切.∴直线PM 、PN 与圆C '相切【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交问题,考查直线与圆的位置关系.直线与椭圆相交,一般采取设而不求思想,即设交点坐标1122(,),(,)x y x y ,设直线方程y kx m =+,由直线方程与椭圆方程联立,消元后用韦达定理得1212,x x x x +,把这个结论代入其他条件求解. 10.(甘肃省天水市一中2020届高三一轮复习第一次模拟考试数学试题)已知椭圆C :22221(0)x y a b a b +=>>(1)求C 的方程; (2)若斜率为12-的直线l 与椭圆C 交于P ,Q 两点(点P ,Q 均在第一象限),O 为坐标原点,证明:直线OP ,PQ ,OQ 的斜率依次成等比数列.【答案】(1) 2214x y +=.(2)见解析.【解析】 【分析】(1)根据题中条件,得到2c ac ⎧=⎪⎨⎪=⎩,再由222b a c =-,求解,即可得出结果; (2)先设直线l 的方程为12y x m =-+,()11,P x y ,()22,Q x y ,联立直线与椭圆方程,结合判别式、韦达定理等,表示出1212OP OQ y y k k x x =,只需和2PQ k 相等,即可证明结论成立. 【详解】(1)由题意可得22c a c ⎧=⎪⎨⎪=⎩,解得2{a c ==, 又2221b ac =-=,所以椭圆方程为2214x y +=.(2)证明:设直线l 的方程为12y x m =-+,()11,P x y ,()22,Q x y , 由221214y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消去y ,得()222210x mx m -+-= 则()()222481420m m m∆=--=->,且1220x xm +=>,()212210x x m =->故()22121212121111122422m y y x m x m x x m x x m -⎛⎫⎛⎫=-+-+=-++=⎪⎪⎝⎭⎝⎭ ()212122121212111424OP OQPQ x x m x x m y y k k k x x x x -++==== 即直线OP ,PQ ,OQ 的斜率依次成等比数列. 【点睛】本题主要考查求椭圆的标准方程,以及椭圆的应用,熟记椭圆的标准方程以及椭圆的简单性质即可,属于常考题型.11.(甘肃省白银市靖远县2020届高三高考数学第四次联考试题)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,且椭圆C的右顶点到直线0x y -+=的距离为3. (1)求椭圆C 的方程;(2)过点(2,0)P 的直线l 与椭圆C 交于A ,B 两点,求OAB 面积的最大值(O 为坐标原点).【答案】(1)22182x y +=;(2)2.【解析】 【分析】(1)由离心率的值及右顶点到直线0x y -=的距离为3和a ,c ,b 之间的关系求出a ,b 的值,进而求出椭圆的方程;(2)设直线l 的方程与椭圆联立求出两根之和及两根之积,进而求出面积的表达式,换元,由均值不等式的可得面积的最大值. 【详解】(1)由椭圆的方程可得右顶点(,0)a,所以右顶点到直线0x y -+=的距离为3d ==,0a >可得:a =由离心率c e a ===,可得c =222862b a c =-=-=, 所以椭圆C 的方程为:22182x y +=;(2)由题意显然直线l 的斜率不为0,设直线l 的方程为:2x my =+,设1(A x ,1)y ,2(B x ,2)y ,联立直线l 与椭圆的方程可得:222{182x my x y =++=,整理可得:22(4)440m y my ++-=,12244my y m -+=+,12244y y m-=+ 所以1211··22OABSOP y y =-===设2t ,取等号时,0m =,即斜率不存在, 这时24AOBS==, 当0m ≠,2t >,则2222t m =-,所以2442422AOBt St t t ==++- 令2()f t t t =+,2t >,则22222()10t f t t t -=-+=>'恒成立,所以()f t 在2t >单调递增,无最小值,也无最大值,所以2442422AOBt St t t ==++-无最大值, 综上所述当且仅当2t =,即0m =时,所以OAB 面积的最大值为2. 【点睛】本题考查求椭圆的方程及直线与椭圆的综合及均值不等式的应用,考查了利用韦达定理搭桥建立各个变量之间的关系,从而求得圆锥曲线的最值问题,计算量相对较大,属于较难题.12.(新高考课改专家2021届高三数学命题卷试题)已知椭圆C :()222210x y a b a b+=>>的右焦点为F ,下顶点为1B ,上顶点为2B ,离心率为12,且122FB FB ⋅=-. (1)求椭圆C 的标准方程;(2)设椭圆C 的右顶点为A ,椭圆C 上有一点P (不与A 重合),直线PF 与直线2x =相交于M .若AM =P 的横坐标.【答案】(1)22143x y +=;(2)0或85【解析】 【分析】(1)由所以22122FB FB c b ⋅=-=-,又12c e a ==,得2a c =,又222a c b -=联立即可求解; (2)可求出M 坐标,可知直线PF 斜率存在且不为0,求出斜率,即可得出直线方程,联立直线与椭圆就能求得P 的横坐标. 【详解】(1)由题意:12(,0),(0,),(0,)F c B b B b =-=,所以22122FB FB c b ⋅=-=-, 又12c e a ==,2a c ∴=, 又222a c b -=,联立以上三式得:224,3a b ==,所以椭圆的标椎方程22143x y +=;(2)3AM ,可知2,3M ,()1,0F ,则直线斜率30321k ,所以直线PF 方程为)1y x =-,代入椭圆可得2580x x ,解得0x =或85x =, 所以点P 的横坐标为0或85. 【点睛】本题考查了椭圆的标椎方程的求法和直线相交的求解,属于基础题.13.(安徽省合肥市2020届高三下学期第三次教学质量检测数学试题)在平面直角坐标系xOy 中,已知点P 是椭圆E :24x +y 2=1上的动点,不经过点P 的直线l 交椭圆E 于A ,B 两点.(1)若直线l 经过坐标原点,证明:直线PA 与直线PB 的斜率之积为定值;(2)若0OA OB OP ++=,证明:△ABP 三边的中点在同一个椭圆上,并求出这个椭圆的方程.【答案】(1)证明见解析;(2)证明见解析,椭圆的方程为2241x y +=.【解析】 【分析】(1)设11(,)A x y ,22(,)P x y ,则11(,)B x y --,再将PA PB k k ⋅表示出来,根据,A B 在椭圆上化简,证得直线PA 与直线PB 的斜率之积为定值;(2)设11(,)A x y ,22(,)B x y ,33(,)P x y ,由0OA OB OP ++=,得1230x x x ++=,1230y y y ++=,再得到AB 的中点1212(,)22x x y y D ++,化简得33(,)22x y D --,又223314x y +=,则2233()4()122x y-+-=,知D 在椭圆2241x y +=上,同理可得,AP BP 的中点都在椭圆2241x y +=,得证. 【详解】(1)设11(,)A x y ,22(,)P x y ,则11(,)B x y --, 则PA PBk k ⋅2212122122121221y y y y y y x x x x x x ----=⋅=----, 又222214x y +=,221114x y +=,相减得222221211()4y y x x -=--,得PA PB k k ⋅14=-,即直线PA 与直线PB 的斜率之积为定值,定值为14-.(2)设11(,)A x y ,22(,)B x y ,33(,)P x y ,由0OA OB OP ++=, 得1230x x x ++=,1230y y y ++=, AB 的中点1212(,)22x x y y D ++,化简得33(,)22x y D --, 又223314x y +=,则2233()4()122x y -+-=,知D 在椭圆2241x y +=上,同理可得,AP BP 的中点都在椭圆2241x y +=,即△ABP 三边的中点在同一个椭圆上,这个椭圆的方程为2241x y +=.【点睛】本题考查了椭圆的标准方程及结构特征,考查了学生观察、分析能力,运算能力,属于中档题.14.(福建省三明第一中学2020届高三模拟(六)数学试题)已知椭圆22122:1(0)x y C a b a b+=>>的一焦点F 与抛物线22:4C y x =.(1)求椭圆1C 的标准方程;(2)过焦点F 的直线l 与抛物线2C 交于A 、B 两点,与椭圆1C 交于C 、D 两点,求||||CD AB 的最大值.【答案】(1)2212x y +=;(2)4. 【解析】 【分析】(1)首先求出抛物线的焦点坐标,可得c 的值,结合离心率以及222a b c =+,即可求出椭圆1C 的标准方程(2)分析直线斜率存在与不存在两种情况,当斜率不存在时可直接求出AB 、CD 即可得比值,当斜率存在时,设出直线的方程和椭圆方程联立,运用弦长公式把||||CD AB 用斜率k 表示出来,然后用基本不等式求最值. 【详解】(1)因为抛物线22:4C y x =的焦点坐标为(1,0),所以椭圆的一个焦点坐标为(1,0)F ,即1c = ,又椭圆离心率为2,所以2c a =,故可求得a = 所以2221b a c =-=,所以椭圆1C 的标准方程为2212x y +=(2)当直线l 的斜率不存在时,直线:1l x =,此时易求得||4AB =,CD =,所以||||4CD AB =, 当直线l 的斜率存在时,设直线:(1)l y k x =-,联立椭圆方程得:()2222124220kxk x k +-+-=设()11,C x y ,()22,D x y ,则2122412k x x k +=+,21222212k x x k -=+所以||CD ==所以)221||12k CD k +=+同理,将直线方程与曲线2C 联立得:()2222240k x k x k -++=设()33,A x y ,()44,B x y ,则234224k x x k++=,341x x = 所以()2234224124||22k k AB x x k k++=++=+=所以)()()22222221||121||44121222k CD k AB k k k k ++===<⎛⎫+++ ⎪⎝⎭所以||||4CD AB ≤||||CD AB的最大值为4. 【点睛】本题主要考查了求椭圆的标准方程,考查了直线和椭圆的位置关系,考查了弦长公式以及基本不等式求最值,属于较难题.15.(湖北省武汉外国语学校2020届高三下学期高考冲刺押题联考(一)数学试题)已知椭圆()2222:10x y E a b a b+=>>,长轴长为4,P 为椭圆E 上一点,F 为椭圆的右焦点,满足PF 与x 轴垂直,且32PF =. (1)求椭圆E 的方程;(2)已知Q 为直线4x =上一点,直线QF 与椭圆E 依次交于A ,B 两点(按照Q 、A 、F 、B 的顺序),证明:QA FA QBFB=.【答案】(1)22143x y +=;(2)证明详见解析.【解析】 【分析】(1)2a =和P x c =可得椭圆的标准方程;(2)设直线方程和各点的坐标,则根据直线上的两点间距离公式、斜率公式、韦达定理代入QA FA QBFB=等式显然成立,可得证明. 【详解】(1)由题意可知24a =,可得2a =,P x c =代入椭圆的方程可得:232b PF a ==,可得23b =.从而椭圆的方程为:22143x y +=.(2)由题意可知直线AB 的斜率肯定存在,设():1AB y k x =-,()11,A x y ,()22,B x y ,()4,Q t ,根据已知有2112x x <<<, 由根据直线上的两点间距离公式及斜率公式得QA 114t y k x -=-,则1QA x =-,同理,2QB x =-,12,FA x FB x =-=-所以1244QA x QB x -==-,1211FA x FBx -==-, 根据题意,等价于证明:11224141x x x x --=--,分式化整式可得:()12122580x x x x -++=①,联立22143y kx k x y =-⎧⎪⎨+=⎪⎩得:()22224384120k x k x k +-+-=,由韦达定理可得:2122843k x x k +=+,212241243k x x k -=+,代入①得:222282440804343k k k k --+=++, 化简得:()222824408430k k k --++=,显然成立. 【点睛】本题考查了椭圆的标准方程和性质,直线和椭圆的位置关系,韦达定理.。
2020年高考数学圆锥曲线及解题技巧

椭圆与双曲线的性质椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若在椭圆上,则过的椭圆的切线方程是.000(,)P x y 22221x y a b +=0P 00221x x y y a b +=6. 若在椭圆外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线000(,)P x y 22221x y a b+=方程是.00221x x y ya b +=7. 椭圆 (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点,则椭圆22221x y a b+=12F PF γ∠=的焦点角形的面积为.122tan2F PF S b γ∆=8. 椭圆(a >b >0)的焦半径公式:22221x y a b+=,( , ).10||MF a ex =+20||MF a ex =-1(,0)F c -2(,0)F c 00(,)M x y 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆的不平行于对称轴的弦,M 为AB 的中点,则,22221x y a b +=),(00y x 22OM AB b k k a ⋅=-即。
0202y a x b K AB -=12. 若在椭圆内,则被Po 所平分的中点弦的方程是.000(,)P x y 22221x y a b +=2200002222x x y y x y a b a b +=+13. 若在椭圆内,则过Po 的弦中点的轨迹方程是.000(,)P x y 22221x y a b +=22002222x x y yx y a b a b+=+双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点42 曲线与方程、圆锥曲线的综合应用 一、选择题
1.(2020·山东高考理科·T8)已知双曲线22221xyab(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为 (A)22154xy (B)22145xy (C)221xy36 (D)221xy63 【思路点拨】先求出圆C的圆心坐标(3,0),半径r=2,再求出渐近线方程,由圆心到渐近线的距离等于半径即可得到a,b的关系,再由双曲线的右焦点为圆C的圆心知c=2,即可求出结果. 【精讲精析】选A.双曲线的渐近线方程为bx+ay=0和bx-ay=0,圆心为(3,0),半径r=2.由圆心到直线的
距离为223rbab所以4a2=5b2又因为双曲线的右焦点为圆C的圆心,所以c=3,即9=a2+b2 所以,a2=5,b2=4. 2.(2020·福建卷理科·T7)设圆锥曲线的两个焦点分别为F1,F2,若曲线上存在点P满足
1122::PFFFPF=4:3:2,则曲线的离心率等于( )
(A)1322或 (B)23或2 (C)12或2 (D)2332或 【思路点拨】根据1122::PFFFPF=4:3:2,设出1122PFFFPF||、||、||,然后按曲线为椭圆或者双曲线,在12PFF中分别利用定义求离心率. 【精讲精析】 选A. Q1122::PFFFPF=4:3:2,11224,||3,||2,PFkFFkPFk可设||= 其中12||23FFck,32kc.若圆锥曲线为椭圆,则12||||26PFPFak,3ak,312.32kce
ak若圆锥曲线为双曲线,则12||||22,PFPFak
33132,,.222kcakeeak的取值为或
3. (2020·福建卷文科·T11)设圆锥曲线的两个焦点分别为F1, F2,若曲线上存在点P满足1PF:12FF:2PF= 4:3:2,则曲线的离心率等于( )
(A)1322或 (B)223或 (C)122或 (D)2332或 【思路点拨】根据1122::PFFFPF=4:3:2,设出1122PFFFPF||、||、||,然后按曲线为椭圆或者双曲线,在12PFF中分别利用定义求离心率. 【精讲精析】选A. Q1122::PFFFPF=4:3:2,11224,||3,||2,PFkFFkPFk设||= 其中12||23FFck,32kc.若圆锥曲线为椭圆,则12||||26PFPFak,3ak,312,32kceak若圆锥曲线为双曲线,则12||||22,PFPFak,ak
332,2kce
ak
13.22的取值为或e
二、填空题
4.(2020·山东高考文科·T15)已知双曲线22221(0b0)xyaab>,>和椭圆22xy=1169有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 . 【思路点拨】先求椭圆焦点,即双曲线的焦点,再由双曲线的离心率是椭圆离心率的两倍求出b,然后写出双曲线的方程.
【精讲精析】由题意知双曲线的焦点为(-7,0)、(7,0),即c=7,又因为双曲线的离心率为
472ac,所以a=2,故b2=3,所以双曲线的方程为13422yx
5.(2020·北京高考理科·T14)曲线C是平面内与两个定点1(1,0)F和2(1,0)F的距离的积等于常数2(1)aa
的点的轨迹.给出下列三个结论:
①曲线C过坐标原点; ②曲线C关于坐标原点对称; ③若点P在曲线C上,则12FPF的面积不大于212a. 其中所有正确的结论的序号是 . 【思路点拨】写出曲线C的方程,再逐个验证三个结论. 【精讲精析】②③.设P(x,y)为曲线C上任意一点,则由212||||PFPFa得,
C:22222(1)(1)xyxya把(0,0)代入方程可得21a,与1a矛盾,故①不正确; 当M(x,y)在曲线C上时,点M关于原点的对称点'(,)Mxy,也满足方程,故曲线C关于原点对称,故②正确;122212121111||||sinsin222FPFSPFPFFPFaFPFa,故③正确. 6.(2020·安徽高考理科·T21)若0,点A的坐标为(1,1),点B在抛物线2xy上运动,点Q满足BQQAuuuruuur,经过点Q与x轴垂直的直线交抛物线于点M,点P满足MPQM,求点P的轨迹方程.
【思路点拨】设出P点坐标,通过Q,B等中间量建立方程,消去中间量,的点P的轨迹方程. 【精讲精析】解:由MPQM知Q,M,P三点在同一条垂直于x轴的直线上,故可设P(x,y),Q(x,0y),M(x,x2),则).(202xyyx即 .)1(20yxy ① 再设),,(11yxB由BQQAuuuruuur,即),1,1(),(0101yxyyxx解得 .)1(.)1(011yyxx ② 将①式代入②式,消去0y,得
.)1()1(.)1(2211yxyxx
③
又点B在抛物线2xy上,所以211xy,再将③式代入211xy,得
.0)1()1()1(2.)1(2)1()1()1(.))1(()1()1(22222222yxxxyxxyx
因为0,两边同时除以),1(得 .012yx 故所求点P的轨迹方程为12xy. 7. (2020·新课标全国高考理科·T20)在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足//MBOAuuuruur, MAABMBBAuuuruuuruuuruur,M点的轨迹为曲线C. (Ⅰ)求C的方程; (Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值. 【思路点拨】第(1)问,求M点的轨迹,可设M点坐标为(,)xy,然后利用条件//MBOAuuuruuur得到点B的坐标,最后将条件MAABMBBAuuuruuuruuuruuur转化为坐标关系,得到,xy满足的关系式,化简整理即得C的方程; 第(2)问,设出点P的坐标,利用导数求出切线l的斜率,表示出l的方程,再利用点到直线的距离公式求得O点到l距离的函数,然后利用函数的知识求出最值即可. 【精讲精析】(Ⅰ)设M(x,y),由已知得B(x,-3),A(0,-1).
所以MAuuur=(-x,-1-y), MBuuur=(0,-3-y), ABuuur=(x,-2). 再由题意可知(MAuuur+MBuuur)• ABuuur=0, 即(-x,-4-2y)• (x,-2)=0. 所以曲线C的方程式为y=14x2-2. (Ⅱ)设P(x0,y0)为曲线C:y=14x 2-2上一点,因为y'=12x,所以l的斜率为12x0 因此直线l的方程为0001()2yyxxx,即2000220xxyyx. 则O点到l的距离20020|2|4yxdx.又200124yx,所以
202
022
00
14142(4)2,244xdxxx
当20x=0时取等号,所以O点到l距离的最小值为2. 8.(2020·山东高考理科·T22)(本小题满分14分)
已知直线l与椭圆C: 22132xy交于P(x1,y1),Q(x2,y2)两不同点,且△OPQ的面积62OPQS,其中O为坐标原点. (Ⅰ)证明x12+x22和y12+y22均为定值 (Ⅱ)设线段PQ的中点为M,求PQOM的最大值;
(Ⅲ)椭圆C上是否存在点D,E,G,使得ODEODGOEG6SSS?2若存在,判断△DEG的形状;若不存在,请说明理由. 【思路点拨】本题重点考察学生的计算能力,相比较去年的圆锥曲线题目,今年的题目难度要大一些,是一道较好的选拔优秀学生的题目.(1)分斜率存在和不存在两种情况讨论.(2)利用第一问的结论,再应用基本不等式容易得出结论.(3)利用反证法,假设存在这样的点,经推理得出矛盾,从而证明原结论成立. 【精讲精析】(Ⅰ)当直线l的斜率不存在时,,PQ两点关于x轴对称,则1212,xxyy,由11,Pxy
在椭圆上,则2211132xy,而1162OPQSxy,则116,12xy.于是22123xx,22122yy.当直线l的斜率存在,设直线l为ykxm,代入22132xy可得2223()6xkxm,即222(23)6360kxkmxm,由0得,222236km4(23k)(3m6)0
,化简得2232km
2121222
636,2323kmmxxxxkk
22212121211()4PQkxxkxxxx
222
2
2632123kmkk
21mdk
,222112632622232POQkmSdPQmk
则22322km,满足0 2222212121222
63(2)()2()232323kmmxxxxxxkk
,
222222121212
222(3)(3)4()2333yyxxxx,
综上可知22123xx,22122yy.
(Ⅱ)当直线l的斜率不存在时,由(Ⅰ)知1626;2OMxPQ 当直线l的斜率存在时,由(Ⅰ)知12322xxkm, 2121231()222yyxxk
kmmmm,
22221212
222
9111()()(3)2242xxyykOM
mmm