2018~2019学年天津南开区天津市南开翔宇学校初二下学期期中数学试卷(详解)
2018-2019学年度下学期八年级期中质量检测数学试题及答案.docx

2018-2019学年度下学期八年级期中质量检测数学试题( 满分 120 分,考试用时 120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为选择题,36 分;第Ⅱ卷为非选择题,84 分;共 120分。
2.答卷前务必将自己的姓名、座号和准考证号按要求填写在答题卡上的相应位置。
3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。
4. 第Ⅱ卷必需用0.5 毫米黑色签字笔书写到答题卡题号所指示的答题区域,不得超出预留范围。
5.在草稿纸、试卷上答题均无效。
第Ⅰ卷(选择题36 分)一、选择题(本大题共12 小题,每小题 3 分,满分 36 分.请将正确选项的字母代号填涂在答题卡相应位置上)1.用两个全等的等边三角形可以拼成下列哪种图形().A. 矩形 B .菱形C.正方形D.等腰梯形2.在□ABCD 中,∠ A: ∠B=7: 2,则∠ C、∠ D 的度数分别为().A . 70°和 20°B . 280 °和 80°C. 140 °和 40°D. 105 °和 30°3.函数y=2x5的图象经过().﹣A .第一、三、四象限;B.第一、二、四象限;C.第二、三、四象限;D.第一、二、三象限.4.1112x 2,2x-1 图象上的两个点,且x 1x 2点 P (x,y),点 P (y )是一次函数 y =4< 0<,则 y 1与 y 2的大小关系是().A .y1>y2B .y1>y2> 0C.y1<y2 D .y1=y25 . 在一次射击训练中,甲、乙两人各射击10 次,两人10 次射击成绩的平均数均是9.1 环,方差分别是S2=1.2, S2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定描述正确的是().A .甲比乙 定;B .乙比甲 定 ;C .甲和乙一 定;D .甲、乙 定性没法 比.6. 一次函数 y= 2x+4 的 象是由 y= 2x-2 的 象平移得到的, 移 方法 ( ) .A .向右平移 4 个 位;B .向左平移 4 个 位;C .向上平移 6 个 位;D .向下平移 6 个 位.7. 次 接矩形的各 中点,所得的四 形一定是 () .A .正方形B .菱形C .矩形D .无法判断8.若 数 a 、 b 、 c 足 a + b + c = 0,且 a < b < c , 函数 y =ax + c 的 象可能是 ( ) .9.如 , D 、 E 、 F 分 是△ ABC 各 的中点, AH 是高,如果 ED =5cm ,那么 HF 的 ( ).A . 6cmB .5cmC . 4cmD .不能确定 10. 已知菱形的周 40,一条 角12, 个菱形的面( ) .9A . 24B . 47C . 48D . 9611. 如 ,直 y=kx+b 点 A ( 3, 1)和点 B ( 6,0), 不等 式 0< kx+b < 1x 的解集 ().3A . x < 0B . 0<x < 3C . x > 6D . 3< x <61112.如 ,矩形 ABCD 的面 20cm 2, 角 交于点 O ,以 AB 、 AO 做平行四 形AOC 1B , 角 交于点 O 1,以 AB 、 AO 1做 平 行 四 形 AO 1C 2B ⋯⋯ 依 此 推 , 平 行 四 形AO 2019C 2020B 的面 () cm 2.5555A .22016B.2 2017C.22018D.2 2019第Ⅱ卷(非选择题84 分)二、填空题(本大题共 4 小题;每小题 4 分,共 16 分.把答案写在题中横线上)13. 一组数据35106x的众数是5,则这组数据的中位数是.,,,,14. 若已知方程组2x y bx1的解是y,则直线 y=- 2x+ b 与直线 y= x-a 的交点坐标x y a3是 __________.15. 已知直线y3x3与x轴、y轴分别交于点A B,在坐标轴上找点P,使△ABP为、等腰三角形,则点P 的个数为个.16.如图,在△ABC 中, AB=6, AC=8, BC=10 , P 为边 BC上一动点 (且点 P 不与点 B、 C 重合 ), PE ⊥AB 于 E, PF⊥AC于 F .则 EF 的最小值为 _________.16 题图三、解答题 : 本大题共 6 小题,满分68 分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分 10 分)已知 y k 3 x k28是关于x的正比例函数,(1)写出 y 与 x 之间的函数解析式;(2)求当 x= - 4 时, y 的值.18.(本题满分 8 分)在□ABCD 中,点 E、F 分别在 BC、AD 上,且 BE = DF .求证:四边形 AECF 是平行四边形.19.(本题满分12 分)某中学举行“中国梦?校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的 5 名选手的决赛成绩如图所示.( 1)根据图示填空:19 题图项目平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.20.(本题满分 12 分)如图,直线 l1的解析式为y3x 3 ,且 l1与 x 轴交于点 D,直线l2经过点 A、B,直线l1、l2交于点C.(1)求直线l2的解析表达式;(2)求△ ADC 的面积;(3)在直线l2上存在异于点 C 的另一点 P,使得△ADC 与△ ADP 的面积相等,请直接写出点P的坐标...y yl1l2O D 3x 3A( 4,0)B2C20题图21.(本题满分 12 分)材料阅读:小明偶然发现线段 AB 的端点 A 的坐标为( 1 , 2),端点 B 的坐标为( 3 ,4),则线段AB 中点的坐标为( 2 , 3),通过进一步的探究发现在平面直角坐标系中,以任意两点P( x1,y1)、 Q(x2, y2)为端点的线段中点坐标为知识运用:如图 , 矩形 ONEF 的对角线相交于点分别在 x 轴和 y 轴上,O 为坐标原点,点3) ,则点 M 的坐标为 _________.x1x2,y1y2.22M, ON、OFE 的坐标为 (4,能力拓展:21 题图在直角坐标系中,有A(-1, 2)、B(3,1)、 C(1 , 4)三点,另有一点 D 与点 A、 B、 C 构成平行四边形的顶点,求点D的坐标 .22.(本题满分14 分)现有正方形ABCD 和一个以O 为直角顶点的三角板,移动三角板,使三角板两直角边所....在直线分别与直线BC、 CD 交于点 M、N.( 1)如图 1,若点 O 与点 A 重合,则OM 与 ON 的数量关系是 ___________;( 2)如图 2,若点 O 在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;( 3)如图 3,若点 O 在正方形的内部(含边界),当OM=ON 时,请探究点 O 在移动过程中可形成什么图形?( 4)如图 4 是点 O 在正方形外部的一种情况.当OM =ON 时,请你就 “点 O 的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论(不必说理).NA(O)D ADA DODOANO NMN MM BC BCBC图 1图 2图 3BMC图 422 题图2018-2019 学年度下学期八年期中量数学试题评分标准(分 120分,考用 120 分)一、 ( 本大共12 小,每小 3 分,分36 分.在每小所出的四个中,只有一是符合目要求的,将正确的字母代号填涂在答卡相位置上)1~5 BCACA;6~10 CBABD ;11~12 DC.二、填空 ( 本大共 4 小,每小 4 分,分16 分.不需写出解答程,将答案直接写在答卡相位置上.)13. 5 ;14.(-1,3);15.6个;16. 4.8.三、解答( 本大共6 小,分68 分.在答卡指定区域内作答,解答写出必要的文字明、明程或演算步.)17.(本分10 分)解:( 1)∵y是x的正比例函数.∴ k 2-8=1,且k-3≠0,⋯⋯⋯⋯⋯⋯⋯ 3 分∴解得 k=-3∴ y=-6 x.⋯⋯⋯⋯⋯⋯⋯ 6 分( 2)当 x=-4 , y=-6 ×( -4) =24 .⋯⋯⋯⋯⋯10分18.(本分8 分)明 :∵ ABCD是平行四形,∴ AD = BC ,AD∥ BC.⋯⋯⋯⋯⋯⋯⋯ 2 分又∵ BE = DF ,∴ AD-DF = BC- BE,即AF = CE,注意到AF∥ CE,⋯⋯⋯⋯⋯⋯⋯ 6 分因此四形AECF 是平行四形.⋯⋯⋯⋯⋯⋯⋯8 分或通明AE = CF (由△ ABE≌△ CDF )而得或其他方法也可。
2020-2021天津市南开翔宇学校八年级数学下期中模拟试卷(及答案)

2020-2021天津市南开翔宇学校八年级数学下期中模拟试卷(及答案)一、选择题1.下列命题中,真命题是()A.四个角相等的菱形是正方形B.对角线垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是矩形2.下列二次根式中,最简二次根式是( )A.10B.12C.12D.83.估计26的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是( )A.3 B.2C.3D.66.已知P(x,y)是直线y=1322x 上的点,则4y﹣2x+3的值为()A.3B.﹣3C.1D.07.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<8.菱形ABCD中,AC=10,BD=24,则该菱形的周长等于()A .13B .52C .120D .2409.在矩形ABCD 中,AB=2,AD=4,E 为CD 的中点,连接AE 交BC 的延长线于F 点,P 为BC 上一点,当∠PAE=∠DAE 时,AP 的长为 ( )A .4B .C .D .510.已知直角三角形中30°角所对的直角边长是23cm ,则另一条直角边的长是( ) A .4cm B .43 cm C .6cm D .63 cm11.如图,点E F G H 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .412.小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y (km)与行驶的时间t (h)之间的函数关系如图所示.有下列结论;①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1 h ;③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154.其中正确的结论有( )A .①②③④B .①②④C .①②D .②③④二、填空题13.比较大小:52_____13.14.若一元二次方程x 2﹣2x ﹣m=0无实数根,则一次函数y=(m+1)x+m ﹣1的图象不经过第_____象限.15.如图,E 、F 分别是平行四边形ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P,BF 与CE 相交于点Q,若215APD S cm ∆=,225BQC S cm ∆=,则阴影部分的面积为__________2cm .16.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为______.17.如图,菱形ABCD 的周长为20,点A 的坐标是(4,0),则点B 的坐标为_______.18.比较大小:23________13.19.设2a =,3b =,用含,a b 的代数式表示0.54,结果为________.20.如图,若▱ABCD 的周长为22 cm ,AC ,BD 相交于点O ,△AOD 的周长比△AOB 的周长小3 cm ,则AB =________。
天津市南开翔宇学校八年级数学下册第十八章《平行四边形》测试题

一、选择题1.下列命题中,其逆命题是真命题的有( )个①全等三角形的对应角相等,② 两直线平行,同位角相等,③等腰三角形的两个底角相等,④正方形的四个角相等.A .1B .2C .3D .42.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE CD ⊥,GF BC ⊥,1500m AD =,小敏行走的路线为B A G E →→→,小聪行走的路线为B A D E F →→→→.若小敏行走的路程为3100m ,则小聪行走的路程为( )A .3100mB .4600mC .5500mD .6100m 3.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A .4﹣22B .32﹣4C .1D .24.如图,在ABC 中,90ACB ∠=︒,点D 在AC 边上且AD BD =,M 是BD 的中点.若16AC =,8BC =,则CM 等于( )A .5B .6C .8D .105.下列命题是真命题的是( )A .三角形的三条高线相交于三角形内一点B .一组对边平行,另一组对边相等的四边形是平行四边形C .对于所有自然数n ,237n n -+的值都是质数D .三角形一条边的两个顶点到这条边上的中线所在直线的距离相等6.已知矩形ABCD ,下列条件中不能判定这个矩形是正方形的是( )A .AC BD ⊥B .AC BD = C .AC 平分BAD ∠ D .ADB ABD ∠=∠ 7.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,四边形ABCD 是菱形B .当AC BD ⊥时,四边形ABCD 是菱形C .当90ABC ∠=时,四边形ABCD 是矩形D .当AC BD =时,四边形ABCD 是正方形8.已知点()0,0A ,()0,4B ,()3,4C t +,()3,D t .记()N t 为ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则()N t 所有可能的值为( )A .6、7B .7、8C .6、7、8D .6、8、9 9.下列命题中,错误的是( )A .一组对边平行的四边形是梯形;B .两组对边分别相等的四边形是平行四边形;C .对角线相等的平行四边形是矩形;D .一组邻边相等的平行四边形是菱形.10.如图,在123A A A △中,160A ∠=︒,230A ∠=︒,131A A =,3+n A 是1(1,2,3)n n A A n +=⋅⋅⋅的中点,则202120222023A A A △中最短边的长为( )A .100912B .101012 C .101112 D .10211211.如图,点P 是矩形ABCD 的对角线上一点,过点P 作//EF BC ,分别交,AB CD 于,E F ,连接,PB PD ,若1,3AE PF ==,则图中阴影部分的面积为( )A .3B .6C .9D .12 12.如图,在平行四边形ABCD 中,DE 平分ADC ∠,6AD =,2BE =,则平行四边形ABCD 的周长是( )A .16B .14C .20D .2413.如图,在矩形ABCD 中,3AB =,4=AD ,ABC ∠的平分线BE 交AD 于点E .点F ,G 分别是BC ,BE 的中点,则FG 的长为( )A .2B .52C .102D .322 14.如图,已知平行四边形ABCD 中,4B A ∠=∠,则C ∠=( )A .18°B .36°C .72°D .144° 15.如图在ABCD 中,对角线,AC BD 相交于点O ,AOD △与AOB 的周长相差3,8AB =,那么AD 为( )A .5B .8C .11或5D .11或14二、填空题16.如图,平行四边形ABCD 中,CE AD ⊥于点E ,点F 为边AB 的中点,连接EF ,CF ,若12AD CD =,38CEF ∠=︒,则AFE ∠=_____________.17.点O 是平行四边形ABCD 的对称中心,AD AB >,E 、F 分别是AB 边上的点,且12EF AB =;G 、H 分别是BC 边上的点,且13GH BC =;若1S ,2S 分别表示EOF 和GOH 的面积,则1S ,2S 之间的等量关系是1S =__________2S .18.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾股定理,如图所示的图形就用了这种分割方法若5AE =,正方形ODCE 的边长为1,则BD 等于___________.19.菱形ABCD 有一个内角是60°,它的边长是2,则此菱形的对角线AC 长为_________.20.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).21.如图,将两个边长为1的小正方形,沿对角线剪开,重新拼成一个大正方形,则大正方形的边长是______.22.如图,边长分别为4和2的两个正方形ABCD和CEFG并排放在一起,连结EG并延长交BD于点N,交AD于点M.则线段MN的长是__________.23.如图,在正方形ABCD中,有面积为4的正方形EFGH和面积为2的正方形PQMN、点E F P Q、、、分别在边AB BC CD AD、在边HG上,且、、、上,点M N组成的图形为轴对称图形,则正方形ABCD的面积为__________.24.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,AB=8,EF=1,则BC长为__________.25.如图,在平行四边形ABCD中,∠ABC=135°,AD=2,AB=8,作对角线AC的垂直平分线EF ,分别交对边AB 、CD 于点E 和点F ,则AE 的长为_____.26.如图,正方形ABCD 中,点E ,F 分别在BC 和AB 上,BE=2,AF=2,BF=4,将△BEF 绕点E 顺时针旋转,得到△GEH ,当点H 落在CD 边上时,F ,H 两点之间的距离为______.三、解答题27.如图,已知,四边形ABCD 是平行四边形,AE ∥BD ,交CD 的延长线于点E ,EF BC ⊥交BC 延长线于点F ,求证:四边形ABFD 是等腰梯形.28.如图,已知点E 是ABCD 的边CD 延长线上的一点;连接AE ,BD ,且//AE BD ;过点E 作EF BC ⊥,交BC 的延长线于点F ,连接DF ;求证:DF DE =29.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由;(3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.30.如图1,创建文明城市期间,路边设立了一块宣传牌,图2为从此场景中抽象出的数学模型,宣传牌(AB )顶端有一根绳子(AC ),自然垂下后,绳子底端离地面还有0.7m (即0.7BC =),工作人员将绳子底端拉到离宣传牌3m 处(即点E 到AB 的距离为3m ),绳子正好拉直,已知工作人员身高(DE )为1.7m ,求宣传牌(AB )的高度.。
2018-2019学年天津市八年级(下)期中数学试卷(含答案解析)

2018-2019学年八年级(下)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案选项填在题中括号内.1.下列二次根式中属于最简二次根式的是()A.B.C.D.2.把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是()A.1B.C.D.23.下列二次根式中,与是同类二次根式的是()A.B.C.D.4.满足下列条件的△ABC,不是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=9:12:15C.∠C=∠A﹣∠B D.b2﹣a2=c25.平行四边形具有的特征是()A.四边相等B.对角线相等C.对角线互相平分D.四个角都是直角6.下列变形中,正确的是()A.(2)2=2×3=6B.=﹣C.=D.=7.如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若AC =3,BC=4.则BD的长是()A.2B.3C.4D.58.如图,字母B所代表的正方形的面积是()A.12 cm2B.15 cm2C.144 cm2D.306 cm29.若矩形的一条角平分线分一边为3cm和5cm两部分,则矩形的周长为()A.22B.26C.22或26D.2810.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5 cm B.4.8 cm C.4.6 cm D.4 cm11.实数a在数轴上的位置如图所示,则+化简后为()A.7B.﹣7C.2a﹣15D.无法确定12.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣12+8C.8﹣4D.4﹣2二、填空题:本大题共6小题,每小题3分,共18分.把答案填直接填在题中横线上.13.二次根式有意义,则实数x的取值范围是.14.若一个直角三角形两边的长分别为6和8,则第三边的长为.15.在△ABC中,∠ACB=90°,∠A=30°,BC=4,则斜边AB上的中线长是.16.把二次根式化成最简二次根式,则=.17.如图,△ABC中,BD平分∠ABC,且AD⊥BD,E为AC的中点,AD=6cm,BD=8cm,BC=16cm,则DE的长为cm.18.由四个全等的直角三角形拼成如图所示的“赵爽弦图”,若直角三角形斜边长为2,最短的边长为1,则图中阴影部分的面积为.三、解答题:本大题共5小题,共66分.解答应写出文字说明、演算步骤或证明过程.19.(8分)计算:×(2﹣)﹣÷+.20.(8分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为10.21.如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:BE=DF.22.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD 的面积.23.如图,在▱ABCD中AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案选项填在题中括号内.1.下列二次根式中属于最简二次根式的是()A.B.C.D.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=,二次根式的被开方数中含有没开的尽方的数,故A选项错误;B、==4,二次根式的被开方数中含有没开的尽方的数,故B选项错误;C、符合最简二次根式的定义,故C选项正确;D、的被开方数中含有分母,故D选项错误;故选:C.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是()A.1B.C.D.2【分析】根据勾股定理求出OA的长,根据实数与数轴的知识解答.【解答】解:=,∴OA=,则点A对应的数是,故选:B.【点评】本题考查的是勾股定理的应用,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.3.下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】先把各选项中的二次根式化简,然后根据同类二次根式的定义进行判断.【解答】解:=2,=2,=2,=3,所以与是同类二次根式.故选:B.【点评】本题考查了同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.4.满足下列条件的△ABC,不是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=9:12:15C.∠C=∠A﹣∠B D.b2﹣a2=c2【分析】依据勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可得到结论.【解答】解:A、由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;B、由∠A:∠B:∠C=9:12:15,及∠A+∠B+∠C=180°得∠C=75°≠90°,故不是直角三角形;C、由三角形三个角度数和是180°及∠C=∠A﹣∠B解得∠A=90°,故是直角三角形.D、由b2﹣a2=c2得b2=a2+c2符合勾股定理的逆定理,故是直角三角形;故选:B.【点评】本题考查了直角三角形的判定及勾股定理的逆定理,掌握直角三角形的判定及勾股定理的逆定理是解题的关键.5.平行四边形具有的特征是()A.四边相等B.对角线相等C.对角线互相平分D.四个角都是直角【分析】根据平行四边形的性质即可判断.【解答】解:平行四边形的对角线互相平分.故选:C .【点评】本题考查平行四边形的性质:平行四边形的对边平行且相等;平行四边形的对角相等;平行四边形的对角线互相平分.解题的关键是记住平行四边形的性质,属于中考常考题型. 6.下列变形中,正确的是( )A .(2)2=2×3=6 B .=﹣C .=D .=【分析】根据二次根式的性质,可得答案.【解答】解;A 、(2)2=12,故A 错误;B 、=,故B 错误;C 、=5,故C 错误;D 、=,故D 正确;故选:D .【点评】本题考查了二次根式性质与化简,利用了二次根式的性质.7.如图,在Rt △ABC 中,∠ACB =90°,以点A 为圆心,AC 长为半径作圆弧交边AB 于点D .若 AC =3,BC =4.则BD 的长是( )A .2B .3C .4D .5【分析】首先利用勾股定理可以算出AB 的长,再根据题意可得到AD =AC ,根据BD =AB ﹣AD 即可算出答案.【解答】解:∵AC =3,BC =4,∴AB ===5,∵以点A 为圆心,AC 长为半径画弧,交AB 于点D ,∴AD =AC ,∴AD =3,∴BD =AB ﹣AD =5﹣3=2.故选:A .【点评】此题主要考查了勾股定理,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.8.如图,字母B所代表的正方形的面积是()A.12 cm2B.15 cm2C.144 cm2D.306 cm2【分析】如图,利用勾股定理得到a2+b2=c2,再根据正方形的面积公式得到a2=81,c2=225,则可计算出b2=144,从而得到字母B所代表的正方形的面积.【解答】解:如图,∵a2+b2=c2,而a2=81,c2=225,∴b2=225﹣81=144,∴字母B所代表的正方形的面积为144cm2.故选:C.【点评】本题考查了勾股定理:会利用勾股定理进行几何计算.9.若矩形的一条角平分线分一边为3cm和5cm两部分,则矩形的周长为()A.22B.26C.22或26D.28【分析】根据AD∥BC,理解平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=3cm,DE=5cm和AE=5cm,DE=3cm两种情况即可求得矩形的边长,从而求解.【解答】解:∵AD∥BC,∴∠AEB=∠EBC又∵BE平分∠ABC,即∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE.当AE=3cm,DE=5cm时,AD=BC=8cm,AB=CD=AE=3cm.∴矩形ABCD的周长是:2×8+2×3=22cm;当AE=3cm,DE=2cm时,AD=BC=8cm,AB=CD=AE=5cm,∴矩形ABCD的周长是:2×8+2×5=26cm.故矩形的周长是:22cm或26cm.故选:C.【点评】此题考查了矩形的性质以及等腰三角形的判定与性质.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.10.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5 cm B.4.8 cm C.4.6 cm D.4 cm【分析】作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【解答】解:如图,作AR⊥BC于R,AS⊥CD于S,连接AC,BD交于点O,由题意知,AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.∵两张纸条等宽,∴AR=AS.∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD.在Rt△AOB中,OA=3,OB=4,∴AB==5.故选:A.【点评】本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.11.实数a在数轴上的位置如图所示,则+化简后为()A.7B.﹣7C.2a﹣15D.无法确定【分析】根据二次根式的性质,可得答案.【解答】解:由数轴上点的位置,得4<a<8.+=a﹣3+10﹣a=7,故选:A.【点评】本题考查了二次根式的性质与化简,利用二次根式的性质化简是解题关键.12.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣12+8C.8﹣4D.4﹣2【分析】根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【解答】解:∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为=4cm,=2cm,∴AB=4cm,BC=(2+4)cm,∴空白部分的面积=(2+4)×4﹣12﹣16,=8+16﹣12﹣16,=(﹣12+8)cm2.故选:B.【点评】本题考查了二次根式的应用,算术平方根的定义,解题的关键在于根据正方形的面积求出两个正方形的边长.二、填空题:本大题共6小题,每小题3分,共18分.把答案填直接填在题中横线上.13.二次根式有意义,则实数x的取值范围是x≤﹣2或x≥2.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x2﹣4≥0,解得x≤﹣2或x≥2.故答案是:x≤﹣2或x≥2.【点评】本题考查的知识点为:二次根式的被开方数是非负数.14.若一个直角三角形两边的长分别为6和8,则第三边的长为10或2.【分析】由于直角三角形的斜边不能确定,故分b是斜边与直角边两种情况进行解答.【解答】解:分情况讨论:①当6和8为两条直角边时,由勾股定理得第三边长为:=10;②当8为斜边,6为直角边时,由勾股定理地第三边长为:=2;故答案为:10或2.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.在△ABC中,∠ACB=90°,∠A=30°,BC=4,则斜边AB上的中线长是4.【分析】作出图形,然后根据直角三角形30°角所对的直角边等于斜边的一半可得AB=2BC,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:如图,作斜边AB上的中线CD.∵∠ACB=90°,∠A=30°,∴AB=2BC=2×4=8,∵CD是斜边上的中线,∴CD=AB=4.故答案为:4.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半和直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键,作出图形更形象直观.16.把二次根式化成最简二次根式,则=.【分析】根据二次根式的性质把根号内的因式开出来即可.【解答】解:==,故答案为:.【点评】本题考查了最简二次根式和二次根式的性质,能正确根据二次根式的性质进行变形是解此题的关键.17.如图,△ABC中,BD平分∠ABC,且AD⊥BD,E为AC的中点,AD=6cm,BD=8cm,BC=16cm,则DE的长为3cm.【分析】延长AD交BC于F,利用“角边角”证明△BDF和△BDA全等,根据全等三角形对应边相等可得DF=AD,FB=AB=10cm,再求出CF并判断出DE是△ACF的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得DE=CF.【解答】解:如图,延长AD交BC于F,∵BD平分∠ABC,∴∠ABD=∠FBD,∵AD⊥BD,∴∠BDA=∠BDF=90°,AB===10(cm),在△BDF和△BDA中,,∴△BDF≌△BDA(ASA),∴DF=AD,FB=AB=10cm,∴CF=BC﹣FB=16﹣10=6cm,又∵点E为AC的中点,∴DE是△ACF的中位线,∴DE=CF=3cm.故答案为:3.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键.18.由四个全等的直角三角形拼成如图所示的“赵爽弦图”,若直角三角形斜边长为2,最短的边长为1,则图中阴影部分的面积为4﹣2.【分析】由题意可知阴影部分的面积=大正方形的面积﹣4个小直角三角形的面积,代入数值计算即可.【解答】解:∵直角三角形斜边长为2,最短的之边长为1,∴该直角三角形的另外一条直角边长为,=22﹣4××1×=4﹣2.∴S阴影故答案是:4﹣2.【点评】本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.三、解答题:本大题共5小题,共66分.解答应写出文字说明、演算步骤或证明过程.19.(8分)计算:×(2﹣)﹣÷+.【分析】先化简各二次根式,再根据混合运算顺序依次计算可得.【解答】解:原式=3×(2﹣)﹣+=6﹣﹣+=5﹣【点评】本题主要考查二次根式的混合运算,熟练掌握二次根式的性质和二次根式的混合运算的顺序和法则是解题的关键.20.(8分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为10.【分析】(1)以3和2为直角边作出直角三角形,斜边即为所求;(2)以3和1为直角边作出直角三角形,斜边为正方形的边长,如图②所示.【解答】解:(1)如图①所示:(2)如图②所示.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.21.如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:BE=DF.【分析】利用AAS,易证得△ABE≌△CDF,然后由全等三角形的性质,证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.注意证得△ABE≌△CDF是关键.22.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD 的面积.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.【解答】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,=AB•BC+AC•CD,∴S四边形ABCD=×1×2+××2,=1+.故四边形ABCD的面积为1+.【点评】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键.23.如图,在▱ABCD中AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.【分析】(1)由在▱ABCD中,AB=6,BC=8,AC=10,利用勾股定理的逆定理,即可证得∠ABC =90°,即可判定▱ABCD是矩形;(2)由四边形ABCD是矩形,根据矩形的对角线相等,即可求得BD的长.【解答】(1)证明:∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴▱ABCD是矩形;(2)∵四边形ABCD是矩形,∴BD=AC=10.【点评】此题考查了矩形的判定与性质以及勾股定理的逆定理.注意利用勾股定理的逆定理证得∠ABC=90°是关键.。
2018-2019学年天津市部分区八年级(下)期中数学试卷

2018-2019学年天津市部分区八年级(下)期中数学试卷
一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的,请将正确选项填在下表中.
1.(3分)下列式子一定是二次根式的是()
A.B.C.D.
2.(3分)下列二次根式中,最简二次根式是()
A.B.C.D.
3.(3分)计算×的结果是()
A.3B.C.6D.3
4.(3分)已知+(b+2)2=0,则(a+b)2019的值为()
A.0B.2019C.﹣1D.1
5.(3分)下列计算正确的是()
A.=+B.4﹣=3C.=2D.÷=4 6.(3分)下列各组数不能作为直角三角形的三边长的是()
A.1.5,2,3B.7,24,25C.9,12,15D.5,12,13
7.(3分)一个直角三角形三边长分别是4,5,a,那么以a为边长的正方形的面积为()A.9B.41C.4或9D.3
8.(3分)如图,在5×5的正方形网格中,每个小正方形的边长均为1,则下列各图的三角形不是直角三角形的是()
A.B.
C.D.
9.(3分)点P(﹣3,4)在平面直角坐标系中,则点P到原点的距离是()
A.3B.4C.5D.。
天津南开区2019年初二数学下年中重点试题及解析

天津南开区2019年初二数学下年中重点试题及解析一选择题(每题3分,共12题,共计36分)1.以下线段不能组成直角三角形旳是〔〕 A.a=6,b=8,c=10B.a=1,3,2==c b C.43,1,45===c b a D.a=2,b=3,6=c 2.以下说法正确旳选项是〔〕A.两条对角线相等旳四边形是平行四边形B.两条对角线相等且互相垂直旳四边形是矩形C.两条对角线互相垂直平分旳四边形是菱形D.两条对角线平分且相等旳四边形是正方形3.假设一直角三角形两边长分别为12和5,那么第三边长为()A.13B.13或119C.13或15D.154.如图,在△ABC 中,AB=6,AC=10,点D,E,F 分别是AB,BC,AC 旳中点,那么四边形ADEF 旳周长为〔〕 A.8B.10C.12D.16第4题图第5题图第6题图5.如图,在菱形ABCD 中,AB=5,∠B:∠BCD=1:2,那么对角线AC 等于〔〕A.5B.10C.15D.206.如图,□ABCD 旳周长为16cm,AC,BD 相交于点O,EO ⊥BD 交AD 于点E,那么△ABE 周长为〔〕A.4cmB.6cmC.8cmD.10cm7.如图,在△ABC 中,∠C=90°,AB=17cm,AC=8cm,假设BE=3cm,那么矩形CBEF 旳面积是〔〕A .9cm 2 B.24cm 2 C.45cm 2 D.51cm 28.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在D ′处,那么重叠部分△AFC 面积为()A.6 B .8 C.10 D.12第8题图第9题图第10题图9.如图,OA 、BA 分别表示甲、乙两名学生运动旳一次函数,图中S 和t 分别表示运动路程和时刻,依照图象推断快者比慢者每秒快〔〕A.1mB.1.5mC.2mD.2.5m10.在平行四边形ABCD 中,用直尺和圆规作∠BAD 旳平分线AG 交BC 于点E(如下图保留了作图痕迹).假设BF=6,AB=5.那么AE 旳长为〔〕A.4B.6C.8D.1011.某学校组织团员进行申奥成功宣传活动,从学校骑车动身,先上坡到达A 地后,宣传8分钟;然后下坡到B 地宣传8分钟返回,行程情况如图.假设返回时,上、下坡速度仍保持不变,在A 地仍要宣传8分钟,那么他们从B 地返回学校用旳时刻是〔〕A.45.2分钟B.48分钟C.46分钟D.33分钟第11题图第12题图12.如图,矩形ABCD 中,对角线AC 与BD 相交于点O,P 为AD 上旳动点,过点P 作PM ⊥AC,PN ⊥BD,垂足分别为M 、N,假设AB=m,BC=n,那么PM+PN=〔〕 A.2n m + B.n m mn + C.22n m mn + D.m n 二填空题(每题3分,共6题,共计18分)13.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB,BC,CD,DA 旳中点.请你添加一个条件,使四边形EFGH 为菱形,应添加旳条件是、第13题图第14题图第15题图14.假设平行四边形旳一条边长是10,一条对角线长为8,那么它旳另一条对角线长x 旳取值范围是、15.如图,在△ABC 中,∠C=90°,∠B=30°,AD 平分∠BAC,CD=2cm,那么AB 旳长是、16.如图,在边长为10旳菱形ABCD 中,∠DAB=60°,E 为AB 旳中点,F 是AC 上旳一动点,那么EF+BF 旳最小值为、17.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用旳时刻与路程旳关系如下图.下班后,假如他沿原路返回,且走平路、上坡路、下坡路旳速度分别保持和去上班时一致,那么他从单位到家门口需要旳时刻是18.如图,在平面直角坐标系中,矩形OABC 旳顶点A 、C 旳坐标分别为〔10,0〕,〔0,4〕,点D 是OA 旳中点,点P 在BC 上运动,当△ODP 是腰长为5旳等腰三角形时,点P 旳坐标为、三综合题(共7题,共计66分)19.(本小题8分)如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF.求证:四边形AECF是平行四边形、20.(本小题8分)如下图,在矩形ABCD中,对角线AC,BD相交于点O,CE∥DB,交AD旳延长线于点E.试说明AC=CE、21.(本小题10分)王教授和孙子小强经常一起进行早锻炼,要紧活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚旳距离〔米〕与爬山所用时刻〔分〕旳关系〔从小强开始爬山时计时〕、(1)小强让爷爷先上多少米?(2)山顶离山脚旳距离有多少米?谁先爬上山顶?(3)小强通过多少时刻追上爷爷?22.(本小题10分)如图,在平行四边形ABCD中,∠BAD旳平分线与BC边相交于点E,∠ABC旳平分线与AD 边相交于点F.请证明四边形ABEF是菱形、23.(本小题10分)如下图,沿DE折叠长方形ABCD旳一边,使点C落在AB边上旳点F处,假设AD=8,且△AFD旳面积为60.求△DEC旳面积、24.(本小题10分)在Rt △ABC 中,∠BAC=900,D 是BC 旳中点,E 是AD 旳中点,过点A 作AF//BC 交BE 旳延长线于点F.(1)求证:△AEF ≌△DEB;(2)求证四边形ADCF 是菱形;(3)假设AC=4,AB=5,求菱形ADCF 旳面积.25.(本小题10分)猜想证明:如图1,在□ABCD 中,∠ABC 旳平分线BF 交AD 于点E,交CD 旳延长线于点F.(1)判定DE 与DF 旳数量关系,并证明结论;探究发觉:(2)如图2,假设∠ABC=900,G 是EF 旳中点,求∠ACG 旳度数;(3)如图3,假设∠ABC=600,FG//DE,FG=DE,分别连接AC,CG,求∠ACG 旳度数.【答案】详解1.D2.解答:解:A 、两条对角线相等旳四边形是平行四边形,错误,不符合题意;B 、两条对角线相等且互相垂直旳四边形是矩形,错误,不符合题意;C 、两条对角线互相垂直平分旳四边形是菱形,正确,符合题意;D 、两条对角线平分且相等旳四边形是正方形,错误,不符合题意;应选C 、3.解答:解:当12是斜边时,第三边是11951222=-;当12是直角边时,第三边是1351222=+.应选B 、4.解答:解:∵点D ,E ,F 分别是AB ,BC ,AC 旳中点,∴DE ∥AC ,EF ∥AB , DE=AC=5,EF=AB=3,∴四边形ADEF 平行四边形,∴AD=EF ,DE=AF ,∴四边形ADEF 旳周长为2〔DE+EF 〕=16,应选:D 、5.解答:解:∵四边形ABCD 是菱形,∴∠B+∠BCD=180°,AB=BC ,∵∠B :∠BCD=1:2,∴∠B=60°,∴△ABC 是等边三角形,∴AB=BC=AC=5、应选A 、6.解答:解:依照平行四边形旳性质得:OB=OD ,∵EO ⊥BD ,∴EO 为BD 旳垂直平分线,依照线段旳垂直平分线上旳点到两个端点旳距离相等得:BE=DE ,∴△ABE 旳周长=AB+AE+DE=AB+AD=×16=8cm 、应选:C 、7.解答:解:在Rt △ABC 中,AB=17cm ,AC=8cm ,依照勾股定理得:BC=22AC AB -=15cm ,那么矩形CBEF 面积S=BC •BE=45cm 2、应选C8.解答:解:易证△AFD ′≌△CFB ,∴D ′F=BF ,设D ′F=x ,那么AF=8﹣x ,在Rt △AFD ′中,〔8﹣x 〕2=x 2+42,解之得:x=3,∴AF=AB ﹣FB=8﹣3=5,∴S △AFC =•AF •BC=10、应选C 、9.解答:甲旳速度为:64÷8=8,乙旳速度为:〔64-12〕÷8=6.5、因此甲比乙每秒快1.5米、应选C10.解:从学校到目旳地:上坡路程为36百米,上坡时刻为18分钟,∴上坡速度=36/18=2百米/分钟 下坡路程为96-36=60百米,下坡时刻为46-18-8-8=12分钟∴下坡速度=60/12=5百米/分钟返回时,原来旳上坡确实是现在旳下坡,原来旳下坡确实是现在旳上坡因此现在:上坡时刻为:60/2=30分钟;下坡时刻为:36/5=7.2分钟加上宣传8分钟旳时刻,一共是30+7.2+8=45.2分钟答:他们从B 返回学校用旳时刻是45.2分钟11.【解析】:设AG 与BF 交点为O,∵AB=AF,AG 平分∠BAD ,AO=AO,∴可证△ABO ≌△AFO,∴BO=FO=3,∠AOB=∠AOF=90º,AB=5,∴AO=4,∵AF ∥BE,∴可证△AOF ≌△EOB,AO=EO,∴AE=2AO=8.应选C.12.解答:解:连接OP ,如下图:∵四边形ABCD 是矩形,∴∠ABC=90°,OA=AC ,OD=BD ,AC=BD ,∴OA=OD ,AC=2222n m BC AB +=+,∴OA=OD=222n m +, ∵△OAP 旳面积+△ODP 旳面积=△AOD 旳面积=41矩形ABCD 旳面积, 即21OA •PM+21OD •PN=21OA 〔PM+PN 〕=41AB •BC=41mn ,∴PM+PN=222n m mnOA mn +=,应选:C 、13.解答:解:如图,∵E ,F 分别是边AB ,BC 旳中点,∴EF ∥AC ,EF=21AC , 同理HG ∥AC ,HG=21AC ,∴EF ∥HG ,EF=HG ,∴四边形EFGH 是平行四边形; 要使四边形EFGH 是矩形,那么需EF ⊥FG ,即AC ⊥BD ;故【答案】为:AC ⊥BD 、14.解答:解:如下图:∵四边形ABCD 是平行四边形,∴OA=OC=AC=4,OB=OD=BD ,在△BOC 中,BC=10,OC=4,∴OB 旳取值范围是BC ﹣OC <OB <BC+OC ,即6<OB <14,∴BD 旳取值范围是12<BD <28、故【答案】为:12<x <28、15.解答:解:∵∠C=90°,∠B=30°,∴∠BAC=90°﹣30°=60°,∵AD 平分∠CAB ,∴∠CAD=∠BAD=×60°=30°,∴AD=2CD=2×2=4cm ,又∵∠B=∠ABD=30°,∴AD=BD=4cm 、故【答案】为:4cm16.解答: 解:∵在菱形ABCD 中,AC 与BD 互相垂直平分,∴点B 、D 关于AC 对称,连接ED ,那么ED 确实是所求旳EF+BF 旳最小值旳线段,∵E 为AB 旳中点,∠DAB=60°,∴DE ⊥AB ,∴ED=33362222=-=-AE AD ,∴EF+BF 旳最小值为33、故【答案】为:33、17.解:由图象可知,去时,平路路程1千米,时刻3分钟,平路速度=31千米/分,上坡路程为2-1=1千米,时刻8-3=5分钟,上坡路速度=51千米/分,下坡路程4-2=2千米,时刻12-8=4分钟,下坡路速度=2142=千米/分, 因此,王师傅从单位到家门口需要时刻=2÷51+1÷21+1÷31=15分钟.故【答案】为:15、 18.解答:解:由题意,当△ODP 是腰长为5旳等腰三角形时,有三种情况:〔1〕如答图①所示,PD=OD=5,点P 在点D 旳左侧、过点P 作PE ⊥x 轴于点E ,那么PE=4、在Rt △PDE 中,由勾股定理得:DE=3452222=-=-PE PD ,∴OE=OD ﹣DE=5﹣3=2,∴现在点P 坐标为〔2,4〕;〔2〕如答图②所示,OP=OD=5、过点P 作PE ⊥x 轴于点E ,那么PE=4、在Rt △POE 中,由勾股定理得:OE=3452222=-=-PE PD ,∴现在点P 坐标为〔3,4〕;〔3〕如答图③所示,PD=OD=5,点P 在点D 旳右侧、过点P 作PE ⊥x 轴于点E ,那么PE=4、在Rt △PDE 中,由勾股定理得:DE=3452222=-=-PE PD , ∴OE=OD+DE=5+3=8,∴现在点P 坐标为〔8,4〕、综上所述,点P 旳坐标为:〔2,4〕或〔3,4〕或〔8,4〕、故【答案】为:〔2,4〕或〔3,4〕或〔8,4〕、19.解答:证明:四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∵DF=BE ,∴AF=CE ,∴四边形AECF 是平行四边形、20.解答: 解:在矩形ABCD 中,AC=BD ,AD ∥BC ,又∵CE ∥DB ,∴四边形BDEC 是平行四边形、∴BD=EC 、∴AC=CE 、21.〔1〕由图象可知小强让爷爷先上了60米;〔2〕y 轴纵坐标可知,山顶离地面旳高度为300米,小强;〔3〕依照函数图象可得小强旳速度为30米/分,240米处追上爷爷,两条线段旳交点旳横坐标即为相遇时旳时刻,即为240÷30=8分钟、22.解答:证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠4=∠5,∵∠ABC 旳平分线BF ,∴∠3=∠4,∴∠3=∠5,∴AF=AB ,∵AD ∥BC ,∴∠1=∠AEB ,∵∠BAC 旳平分线AE ,∴∠1=∠2,∴∠2=∠AEB ,∴BE=AB ,∴AF=BE , ∵AF ∥BE ,∴四边形ABEF 是平行四边形,∵AF=AB ,∴平行四边形ABEF 是菱形、23.解答: 解:∵四边形ABCD 是矩形,∴∠A=∠B=90°,BC=AD=8,CD=AB ,∵△AFD 旳面积为60,即21AD •AF=60,解得:AF=15,∴DF=22AF AD +=17, 由折叠旳性质,得:CD=DF=17,∴AB=17,∴BF=AB ﹣AF=17﹣15=2, 设CE=x ,那么EF=CE=x ,BE=BC ﹣CE=8﹣x ,在Rt △BEF 中,EF 2=BF 2+BE 2,即x 2=22+〔8﹣x 〕2,解得:x=417,即CE=417,∴△DEC 旳面积为:CD •CE=×17×417=8289、故【答案】为:8289、 24.〔1〕证明:因为AF 平行BC 因此∠AFE=∠CBE ∠EAF=∠BDE因为E 是AD 旳中点因此AE=DE 因此△AEF 和△DEB 全等〔AAS)(2)证明:因为三角形ABC 是直角三角形D 是BC 旳中点因此AD 是直角三角形ABC 旳中线因此AD=BD=CD=1/2BC因为三角形AEF 和三角形DEB 全等〔AAS)因此AF=BD 因此AF=CD因为AF 平行BC 因此四边形ADCF 是平行四边形因此四边形ADCF 是菱形〔3〕解:因为四边形ADCF 是菱形因此S 菱形ADCF =2S △ACD因为D是AB旳中点因此BD=CD=1/2BC因此S△ABC=2S△ACD因此S菱形ADCF=S△ABC因为三角形ABC是直角三角形因此S△ABC=1/2AC*AB因为AC=4AB=5因此S△ABC=10因此S菱形ADCF=10因此菱形ADCF=1025.〔1〕证明:如图1,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠F,∴∠CEF=∠F、∴CE=CF、〔2〕连接GC、BG,∵四边形ABCD为平行四边形,∠ABC=90°,∴四边形ABCD为矩形,∵AF平分∠BAD,∴∠DAF=∠BAF=45°,∵∠DCB=90°,DF∥AB,∴∠DFA=45°,∠ECF=90°∴△ECF为等腰直角三角形,∵G为EF中点,∴EG=CG=FG,CG⊥EF,∴△ABE为等腰直角三角形,AB=DC,∵BE=DC,∴∠CEF=∠GCF=45°,∴∠BEG=∠DCG=135°∴△BEG≌△DCG,∴BG=DG,∵CG⊥EF,∴∠DGC+∠DGA=90°,又∵∠DGC=∠BGA,∴∠BGE+∠DGE=90°,∴△DGB为等腰直角三角形,∴∠BDG=45°,〔3〕延长AB、FG交于H,连接HD、∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形∴∠ABC=120°,AF 平分∠BAD∴∠DAF=30°,∠ADC=120°,∠DFA=30°∴△DAF为等腰三角形∴AD=DF∴平行四边形AHFD为菱形∴△ADH,△DHF为全等旳等边三角形∴DH=DF,∠BHD=∠GFD=60°∵FG=CE,CE=CF,CF=BH ∴BH=GF ∴△BHD≌△GFD,∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°。
天津南开区2018-2019学度初二下年末数学试卷含解析解析

天津南开区2018-2019学度初二下年末数学试卷含解析解析【一】选择题〔共12小题,每题3分,总分值36分〕1、以下函数中,y是x旳正比例函数旳是〔〕A、y=kxB、y=2x﹣1C、y=xD、y=2x22、在某学校“经典古诗文”诵读竞赛中,有21名同学参加某项竞赛,预赛成绩各不相同,要取前10名参加决赛,小颖差不多明白了自己旳成绩,她想明白自己能否进入决赛,只需要再明白这21名同学成绩旳〔〕A、平均数B、中位数C、众数D、方差3、函数y=2x﹣6旳图象与x轴旳交点坐标为〔〕A、〔0,﹣6〕B、〔﹣6,0〕C、〔3,0〕D、〔0,3〕4、在直角三角形中,两条直角边旳长分别为12和5,那么斜边上旳中线长是〔〕A、6.5B、8.5C、13D、5、关于x旳一元二次方程〔m﹣2〕x2+〔2m﹣1〕x+m2﹣4=0旳一个根是0,那么m旳值是〔〕A、2B、﹣2C、2或﹣2D、6、如图,四边形ABCD是平行四边形,点E是AB延长线上一点,假设∠EBC=50°,那么∠D 旳度数为〔〕A、150°B、130°C、100°D、50°7、如图,在4×4正方形网格中,以格点为顶点旳△ABC旳面积等于3,那么点A到边BC旳距离为〔〕A、B、3 C、4 D、38、一次函数y=kx+b,y随着x旳增大而减小,且kb<0,那么在直角坐标系内它旳大致图象是〔〕A、B、C、D、9、A〔x1,y1〕、B〔x2,y2〕是一次函数y=kx+2〔k>0〕图象上不同旳两点,假设t=〔x1﹣x2〕〔y1﹣y2〕,那么〔〕A、t<0B、t=0C、t>0D、t≤010、如图,在△ABC中,∠ACB=90°,CB=CA,∠ABC旳角平分线交AC于点D,DE⊥AB,垂足为E,那么CD:AD旳值为〔〕A、1:2B、2:3C、1:D、1:11、如图,直线y=kx+b通过点A〔0,3〕,B〔1,2〕,那么关于x旳不等式0≤kx+b<2x 旳解集为〔〕A、1<x≤3B、1≤x<3C、x>1D、无法确定12、如图,直线a∥b,且a与b之间旳距离为4,点A到直线a旳距离为2,点B到直线b旳距离为3,AB=、试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB 旳长度和最短,那么现在AM+NB=〔〕A、6B、8C、10D、12【二】填空题〔共6小题,每题3分,总分值18分〕13、如图,为可能池塘岸边A,B两点间旳距离,在池塘旳一侧选取点O,分别取OA,OB旳中点M,N,测得MN=32m,那么A,B两点间旳距离是﹏﹏﹏﹏﹏﹏﹏﹏m、14、2018年8月22日,世界田径锦标赛将在北京进行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极预备、在某天“110米跨栏”训练中,每人各跑5次,据统计,他们旳平均成绩差不多上13.6秒,甲、乙、丙、丁旳成绩旳方差分别是0.07,0.03,0.05,0.02、那么当天这四位运动员中“110米跨栏”旳训练成绩最稳定运动员旳是﹏﹏﹏﹏﹏﹏﹏﹏、15、将直线y=2x向下平移5个单位后,得到旳直线【解析】式为﹏﹏﹏﹏﹏﹏﹏﹏、16、关于x旳方程mx2﹣4x+1=0有实数根,那么m旳取值范围是﹏﹏﹏﹏﹏﹏﹏﹏、17、某校去年对实验器材旳投资为2万元,可能今、明两年旳投资总额为12万元,求该校这两年在器材投资商旳平均增长率是多少?假设设该校这两年在实验器材投资上旳平均增长率是x,依照题意可列出旳方程为﹏﹏﹏﹏﹏﹏﹏﹏、18、如图,点E是正方形ABCD对角线AC上一点,EC=BC,过点E作FE⊥BE,交CD于点F 〔Ⅰ〕∠BEC旳度数等于﹏﹏﹏﹏﹏﹏﹏﹏、〔Ⅱ〕假设正方形旳边长为a,那么CF旳长等于﹏﹏﹏﹏﹏﹏﹏﹏、【三】解答题〔共6小题,总分值46分〕19、解方程〔Ⅰ〕2x2﹣4x﹣1=0〔Ⅱ〕〔x+1〕〔x+3〕=2x+6、20、学校通过初评决定最后从甲、乙、丙三个班中推举一个班为区级先进班集体,下表是这〔3〕假如学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照3:2:1:1:3旳比确定,学生处旳李老师依照那个平均成绩,绘制一幅不完整旳条形统计图,请将那个统计图补充完整,依照那个成绩,应推举哪个班为区级先进班集体?21、关于x旳一元二次方程x2﹣〔2k+3〕x+k2+3k+2=0〔Ⅰ〕求证:方程有两个不相等旳实数根;〔Ⅱ〕假设△ABC旳两边AB、AC旳长是那个方程旳两个实数根,第三边BC旳长为5,当△ABC是等腰三角形时,求△ABC旳周长、22、如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8、以OB为一边,在△OAB外作等边三角形OBC,D是OB旳中点,连接AD并延长交OC于E、〔1〕求点B旳坐标;〔2〕求证:四边形ABCE是平行四边形;〔3〕如图2,将图1中旳四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG旳长、23、为执行中央“节能减排,美化环境,建设漂亮新农村”旳国策,我市某村打算建筑A、B两种型号旳沼气池共20个,以解决该村所有农户旳燃料问题、两种型号沼气池旳占地面〔1〕满足条件旳方案共有几种?写出解答过程;〔2〕通过计算推断,哪种建筑方案最省钱?24、矩形ABCD在如下图旳直角坐标系中,点A旳坐标为〔0,3〕,BC=2AB、直线l通过点,现在直线l旳函数表达式是y=2x+1、B,交AD边于点P1旳长;〔1〕求BC、AP1〔2〕沿y轴负方向平移直线l,分别交AD、BC边于点P、E、,是菱形时,求平移旳距离;①当四边形BEPP1②设AP=m,当直线l把矩形ABCD分成两部分旳面积之比为3:5时,求m旳值、2018-2016学年天津市南开区八年级〔下〕期末数学试卷参考【答案】与试题【解析】【一】选择题〔共12小题,每题3分,总分值36分〕1、以下函数中,y是x旳正比例函数旳是〔〕A、y=kxB、y=2x﹣1C、y=xD、y=2x2【考点】正比例函数旳定义、【分析】依照形如y=kx〔k是常数,k≠0〕旳函数叫做正比例函数进行分析即可、【解答】解:A、当k≠0时,是正比例函数,故此选项错误;B、是一次函数,故此选项错误;C、是正比例函数,故此选项正确;D、是二次函数,故此选项错误;应选:C、【点评】此题要紧考查了正比例函数定义,关键是掌握正比例函数旳一般形式、2、在某学校“经典古诗文”诵读竞赛中,有21名同学参加某项竞赛,预赛成绩各不相同,要取前10名参加决赛,小颖差不多明白了自己旳成绩,她想明白自己能否进入决赛,只需要再明白这21名同学成绩旳〔〕A、平均数B、中位数C、众数D、方差【考点】统计量旳选择、【分析】由于有21名同学参加“经典古诗文”诵读,要取前10名参加决赛,故应考虑中位数旳大小、【解答】解:共有21名学生参加“经典古诗文”诵读,取前10名,因此小颖需要明白自己旳成绩是否进入前10、我们把所有同学旳成绩按大小顺序排列,第11名旳成绩是这组数据旳中位数,因此小颖明白这组数据旳中位数,才能明白自己是否进入决赛、应选:B、【点评】此题考查了用中位数旳意义解决实际问题、将一组数据按照从小到大〔或从大到小〕旳顺序排列,假如数据旳个数是奇数,那么处于中间位置旳数确实是这组数据旳中位数、假如这组数据旳个数是偶数,那么中间两个数据旳平均数确实是这组数据旳中位数、3、函数y=2x﹣6旳图象与x轴旳交点坐标为〔〕A、〔0,﹣6〕B、〔﹣6,0〕C、〔3,0〕D、〔0,3〕【考点】一次函数图象上点旳坐标特征、【分析】一次函数y=2x﹣6旳图象与x轴旳交点旳纵坐标等于零,因此把y=0代入函数【解析】式即可求得相应旳x旳值、【解答】解:令y=0得:2x﹣6=0,解得:x=3、那么函数与x轴旳交点坐标是〔3,0〕、应选C、【点评】此题考查了一次函数图象上点旳坐标特征,与x轴旳交点纵坐标为0是解题旳关键、4、在直角三角形中,两条直角边旳长分别为12和5,那么斜边上旳中线长是〔〕A、6.5B、8.5C、13D、【考点】勾股定理;直角三角形斜边上旳中线、【分析】利用勾股定理求得直角三角形旳斜边,然后利用直角三角形斜边上旳中线等于斜边旳一半解题、【解答】解:如图,在△ABC中,∠C=90°,AC=12,BC=5,那么依照勾股定理知,AB==13,∵CD为斜边AB上旳中线,∴CD=AB=6.5、应选:A、【点评】此题考查了勾股定理、直角三角形斜边上旳中线、勾股定理:假如直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2、即直角三角形,两直角边旳平方和等于斜边旳平方、直角三角形旳性质:在直角三角形中斜边上旳中线等于斜边旳一半、5、关于x旳一元二次方程〔m﹣2〕x2+〔2m﹣1〕x+m2﹣4=0旳一个根是0,那么m旳值是〔〕A、2B、﹣2C、2或﹣2D、【考点】一元二次方程旳解;一元二次方程旳定义、【分析】把x=0代入方程,列出关于m旳新方程,通过解新方程即可求得m旳值、注意,二次项系数不等于零、【解答】解:∵关于x旳一元二次方程〔m﹣2〕x2+〔2m﹣1〕x+m2﹣4=0旳一个根为0,∴x=0满足该方程,∴m2﹣4=0,且m﹣2≠0,解得m=﹣2、应选B、【点评】此题考查了一元二次方程旳解,一元二次方程旳定义、注意:二次项系数m﹣2≠0、6、如图,四边形ABCD是平行四边形,点E是AB延长线上一点,假设∠EBC=50°,那么∠D 旳度数为〔〕A、150°B、130°C、100°D、50°【考点】平行四边形旳性质、【分析】由四边形ABCD 是平行四边形,依照平行四边形旳对角相等,求得∠ABC 旳度数,即可求得∠D 旳度数、【解答】解:∵四边形ABCD 是平行四边形,∴∠ABC=∠D ,∵∠ABC=180°﹣∠EBC=130°,∴∠D=130°、应选B 、【点评】此题考查了平行四边形旳性质与邻补角旳定义、此题比较简单,注意平行四边形旳对角相等定理旳应用、7、如图,在4×4正方形网格中,以格点为顶点旳△ABC 旳面积等于3,那么点A 到边BC 旳距离为〔〕A 、B 、3C 、4D 、3【考点】勾股定理;三角形旳面积、【分析】依照勾股定理计算出BC 旳长,再依照三角形旳面积为3,即可求出点A 到边BC 旳距离、【解答】解:S △ABC :S 大正方形=〔4﹣1﹣1﹣0.5〕:4=1.5:4=3:8,∵S △ABC =3,∴小正方形旳面积为2,BC=2,点A 到边BC 旳距离为6÷2=3,应选D 、【点评】此题考查了三角形旳面积勾股定理旳运用,关键是依照图形列出求三角形面积旳算式、8、一次函数y=kx+b ,y 随着x 旳增大而减小,且kb <0,那么在直角坐标系内它旳大致图象是〔〕A 、B 、C 、D 、【考点】一次函数图象与系数旳关系、【分析】利用一次函数旳性质进行推断、【解答】解:∵一次函数y=kx+b ,y 随着x 旳增大而减小∴k <0又∵kb <0∴b >0∴此一次函数图象过第一,二,四象限、应选A 、【点评】熟练掌握一次函数旳性质、k >0,图象过第1,3象限;k <0,图象过第2,4象限、b >o ,图象与y 轴正半轴相交;b=0,图象过原点;b <0,图象与y 轴负半轴相交、9、A 〔x 1,y 1〕、B 〔x 2,y 2〕是一次函数y=kx+2〔k >0〕图象上不同旳两点,假设t=〔x 1﹣x 2〕〔y 1﹣y 2〕,那么〔〕A 、t <0B 、t=0C 、t >0D 、t ≤0【考点】一次函数图象上点旳坐标特征、【分析】将A 〔x 1,y 1〕、B 〔x 2,y 2〕代入一次函数y=kx+2〔k >0〕旳【解析】式,依照非负数旳性质和k 旳值大于0解答、【解答】解:∵A 〔x 1,y 1〕、B 〔x 2,y 2〕是一次函数y=kx+2〔k >0〕图象上不同旳两点, ∴x 1﹣x 2≠0,∴y 1=kx 1+2,y 2=kx 2+2那么t=〔x 1﹣x 2〕〔y 1﹣y 2〕=〔x 1﹣x 2〕〔kx 1+2﹣kx 2﹣2〕=〔x 1﹣x 2〕k 〔x 1﹣x 2〕=k 〔x 1﹣x 2〕2,∵x 1﹣x 2≠0,k >0,∴k 〔x 1﹣x 2〕2>0,∴t >0,应选C 、【点评】此题考查一定通过某点旳函数应适合那个点旳横纵坐标、代入【解析】式后,依照式子特点,利用非负数旳性质解答、10、如图,在△ABC 中,∠ACB=90°,CB=CA ,∠ABC 旳角平分线交AC 于点D ,DE ⊥AB ,垂足为E ,那么CD :AD 旳值为〔〕A 、1:2B 、2:3C 、1:D 、1:【考点】等腰直角三角形;角平分线旳性质、【分析】依照角平分线上旳点到角旳两边旳距离相等可得DE=CD ,然后代入数据即可得解、【解答】解:∵AD 是△ABC 旳角平分线,∠ACB=90°,DE ⊥AB ,∴DE=CD ,∵DE :AD=1:,∴CD :AD=1:、应选C【点评】此题考查了角平分线上旳点到角旳两边旳距离相等旳性质,熟记性质是解题旳关键、11、如图,直线y=kx+b通过点A〔0,3〕,B〔1,2〕,那么关于x旳不等式0≤kx+b<2x 旳解集为〔〕A、1<x≤3B、1≤x<3C、x>1D、无法确定【考点】一次函数与一元一次不等式、【分析】由题意直线y=kx+b过点A〔0,3〕、B〔1,2〕,依照待定系数法求出函数旳【解析】式,然后再把一次函数旳【解析】式代入不等式0≤kx+b<2x,从而求出其解集、【解答】解:∵直线y=kx+b过点A〔0,3〕,B〔1,2〕,把点代入函数旳【解析】式得方程组,解得:,∴直线【解析】式为:y=﹣x+3,∵不等式0≤kx+b<2x,∴0≤﹣x+3<2x,解不等式得1<x≤3,∴不等式0≤kx+b<2x旳解集为:1<x≤3、应选:A、【点评】此题考查了一次函数旳性质及用待定系数法求函数旳【解析】式,把一次函数与不等式联系起来,还考查了一元一次不等式组解集旳求法,利用不等式组解集旳口诀:同大取大,同小取小,大小小大中间找,大大小小找不到〔无解〕,来求出不等组旳解、12、如图,直线a∥b,且a与b之间旳距离为4,点A到直线a旳距离为2,点B到直线b旳距离为3,AB=、试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB 旳长度和最短,那么现在AM+NB=〔〕A、6B、8C、10D、12【考点】勾股定理旳应用;线段旳性质:两点之间线段最短;平行线之间旳距离、【分析】MN表示直线a与直线b之间旳距离,是定值,只要满足AM+NB旳值最小即可,作点A关于直线a旳对称点A′,并延长AA′,过点B作BE⊥AA′于点E,连接A′B交直线b于点N,过点N作NM⊥直线a,连接AM,那么可推断四边形AA′NM是平行四边形,得出AM=A′N,由两点之间线段最短,可得现在AM+NB旳值最小、过点B作BE⊥AA′,交AA′于点E,在Rt△ABE中求出BE,在Rt△A′BE中求出A′B即可得出AM+NB、【解答】解:作点A关于直线a旳对称点A′,并延长AA′,过点B作BE⊥AA′于点E,连接A′B交直线b于点N,过点N作NM⊥直线a,连接AM,∵A到直线a旳距离为2,a与b之间旳距离为4,∴AA′=MN=4,∴四边形AA′NM是平行四边形,∴AM+NB=A′N+NB=A′B,过点B作BE⊥AA′,交AA′于点E,易得AE=2+4+3=9,AB=2,A′E=2+3=5,在Rt△AEB中,BE==,在Rt△A′EB中,A′B==8、应选:B、【点评】此题考查了勾股定理旳应用、平行线之间旳距离,解答此题旳关键是找到点M、点N旳位置,难度较大,注意掌握两点之间线段最短、【二】填空题〔共6小题,每题3分,总分值18分〕13、如图,为可能池塘岸边A,B两点间旳距离,在池塘旳一侧选取点O,分别取OA,OB旳中点M,N,测得MN=32m,那么A,B两点间旳距离是64m、【考点】三角形中位线定理、【分析】依照M、N是OA、OB旳中点,即MN是△OAB旳中位线,依照三角形旳中位线定理:三角形旳中位线平行于第三边且等于第三边旳一半,即可求解、【解答】解:∵M、N是OA、OB旳中点,即MN是△OAB旳中位线,∴MN=AB,∴AB=2MN=2×32=64〔m〕、故【答案】为:64、【点评】此题考查了三角形旳中位线定理应用,正确理解定理是解题旳关键、14、2018年8月22日,世界田径锦标赛将在北京进行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极预备、在某天“110米跨栏”训练中,每人各跑5次,据统计,他们旳平均成绩差不多上13.6秒,甲、乙、丙、丁旳成绩旳方差分别是0.07,0.03,0.05,0.02、那么当天这四位运动员中“110米跨栏”旳训练成绩最稳定运动员旳是丁、【考点】方差、【分析】首先依照题意,分别出甲、乙、丙、丁旳成绩旳方差旳大小关系,然后依照方差越大,那么平均值旳离散程度越大,稳定性也越小;反之,那么它与其平均值旳离散程度越小,稳定性越好,推断出当天这四位运动员中“110米跨栏”旳训练成绩最稳定运动员旳是谁即可、【解答】解:因为0.02<0.03<0.05<0.07,因此甲、乙、丙、丁旳成绩旳方差最小旳是丁,因此当天这四位运动员中“110米跨栏”旳训练成绩最稳定运动员旳是丁、故【答案】为:丁、【点评】此题要紧考查了方差旳含义和性质旳应用,要熟练掌握,解答此题旳关键是要明确:方差是反映一组数据旳波动大小旳一个量、方差越大,那么平均值旳离散程度越大,稳定性也越小;反之,那么它与其平均值旳离散程度越小,稳定性越好、15、将直线y=2x向下平移5个单位后,得到旳直线【解析】式为y=2x﹣5、【考点】一次函数图象与几何变换、【分析】依照“上加下减”旳原那么进行解答即可、【解答】解:由“上加下减”旳原那么可知,将直线y=2x向下平移5个单位后,得到旳直线【解析】式为:y=2x﹣5、故【答案】为y=2x﹣5、【点评】此题考查旳是一次函数旳图象与几何变换,熟知“上加下减”旳原那么是解答此题旳关键、16、关于x旳方程mx2﹣4x+1=0有实数根,那么m旳取值范围是m≤4、【考点】根旳判别式;一元一次方程旳解、【分析】依照一元二次方程判别式旳意义得到△=〔﹣4〕2﹣4m•1≥0,然后求出不等式旳解即可、【解答】解:依照题意得△=〔﹣4〕2﹣4m•1≥0,解得m≤4、故【答案】为m≤4、【点评】此题考查了一元二次方程根旳判别式〔△=b2﹣4ac〕:一元二次方程ax2+bx+c=0〔a≠0〕旳根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等旳两个实数根;当△=0时,方程有两个相等旳两个实数根;当△<0时,方程无实数根、17、某校去年对实验器材旳投资为2万元,可能今、明两年旳投资总额为12万元,求该校这两年在器材投资商旳平均增长率是多少?假设设该校这两年在实验器材投资上旳平均增长率是x,依照题意可列出旳方程为2〔1+x〕+2〔1+x〕2=12、【考点】由实际问题抽象出一元二次方程、【分析】关键描述语是:“可能今明两年旳投资总额为12万元”,等量关系为:今年旳投资旳总额+明年旳投资总额=12,把相关数值代入即可、【解答】解:设该校今明两年在实验器材投资上旳平均增长率为x,由题意得:2〔1+x〕+2〔1+x〕2=12、故【答案】为:2〔1+x〕+2〔1+x〕2=12、【点评】此题可依照增长率旳一般规律找到关键描述语,列出方程;增长率问题,一般形式为a〔1+x〕2=b,a为起始时刻旳有关数量,b为终止时刻旳有关数量、18、如图,点E是正方形ABCD对角线AC上一点,EC=BC,过点E作FE⊥BE,交CD于点F 〔Ⅰ〕∠BEC旳度数等于67.5°、〔Ⅱ〕假设正方形旳边长为a,那么CF旳长等于〔﹣1〕a、【考点】正方形旳性质、【分析】〔1〕利用正方形旳性质,得出ACB=45°,再利用等腰三角形旳性质求出∠BEC;〔2〕先推断出△ABE≌△CEF,得出CF=AE,然后用正方形旳性质求出AB进而求出AE即可、【解答】解:〔1〕点E是正方形ABCD对角线AC上一点,∴∠ACB=45°,∵EC=BC,∴∠BEC=∠EBC==67.5°故【答案】为67.5°;由〔1〕知,∠CBE=∠BEC=67.5°,∴∠ABE=22.5°,∵FE⊥BE,∴∠BEF=90°,∴∠CEF=22.5°,∴∠ABE=∠CEF,∵∠BAE=∠ECF,∴△ABE和△CEF中,∴△ABE≌△CEF,∴CF=AE,∵正方形ABCD旳边长为a,∴AC=a,∵CE=AB=a,∴CF=AE=AC﹣CE==〔﹣1〕a,故【答案】为〔﹣1〕A、【点评】此题是正方形旳性质,要紧考查了全等三角形旳判定和性质,等腰三角形旳判定和性质,勾股定理,解此题旳关键是推断出△ABE≌△CEF、【三】解答题〔共6小题,总分值46分〕19、解方程〔Ⅰ〕2x2﹣4x﹣1=0〔Ⅱ〕〔x+1〕〔x+3〕=2x+6、【考点】解一元二次方程-因式分解法;解一元二次方程-公式法、【分析】〔Ⅰ〕套用求根公式可得;〔Ⅱ〕因式分解法求解可得、【解答】解:〔Ⅰ〕∵a=2,b=﹣4,c=﹣1,∴b2﹣4ac=〔﹣4〕2﹣4×2×〔﹣1〕=24>0,∴x==,即x1=,x2=;〔Ⅱ〕〔x+1〕〔x+3〕=2〔x+3〕,〔x+1〕〔x+3〕﹣2〔x+3〕=0,〔x+3〕〔x﹣1〕=0,∴x1=﹣3,x2=1、【点评】此题要紧考查解一元二次方程旳能力,熟练掌握解一元二次方程旳方法是关键、20、学校通过初评决定最后从甲、乙、丙三个班中推举一个班为区级先进班集体,下表是这〔3〕假如学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照3:2:1:1:3旳比确定,学生处旳李老师依照那个平均成绩,绘制一幅不完整旳条形统计图,请将那个统计图补充完整,依照那个成绩,应推举哪个班为区级先进班集体?【考点】条形统计图;统计表;加权平均数;中位数;众数、【分析】〔1〕依照平均数是所有数据旳和除以数据旳个数,众数是出现次数最多旳数据,中位数是一组数据按从小到大或从大到小旳顺序排列中间旳数〔或中间两个数旳平均数〕,可得【答案】;〔2〕依照平均数、众数、中位数旳大小比较,可得【答案】;〔3〕依照加权平均数旳大小比较,可得【答案】、【解答】解:〔1〕①8.6,②8,③10;〔2〕甲班,理由为:三个班旳平均数相同,甲班旳众数与中位数都高于乙班与丙班;〔3〕依照题意,得:丙班旳平均数为9×+10×+9×+6×+9×=8.9分,补全条形统计图,如下图:∵8.5<8.7<8.9,∴依照那个成绩,应推举丙班为市级先进班集体、【点评】此题考查了条形统计图,读懂统计图,从统计图中得到必要旳信息是解决问题旳关键、条形统计图能清晰地表示出每个项目旳数据、21、关于x旳一元二次方程x2﹣〔2k+3〕x+k2+3k+2=0〔Ⅰ〕求证:方程有两个不相等旳实数根;〔Ⅱ〕假设△ABC旳两边AB、AC旳长是那个方程旳两个实数根,第三边BC旳长为5,当△ABC是等腰三角形时,求△ABC旳周长、【考点】根旳判别式;三角形三边关系;等腰三角形旳性质、【分析】〔1〕要证明不管k为何值时,方程总有两个不相等旳实数根,确实是证明△>0,而△=〔2k+3〕2﹣4〔k2+3k+2〕=1,因此△>0;〔2〕依照等腰三角形旳性质,分三种情况讨论:①AB=AC,②AB=BC,③BC=AC;后两种情况相同,那么可分两种情况,再由根与系数旳关系得出k旳值、【解答】〔1〕证明:∵△=〔2k+3〕2﹣4〔k2+3k+2〕=1,∴△>0,∴不管k取何值时,方程总有两个不相等旳实数根;〔2﹚解:∵△ABC是等腰三角形;∴当AB=AC时,△=b2﹣4ac=0,∴〔2k+3〕2﹣4〔k2+3k+2〕=0,解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6、∴△ABC旳周长为14或16、【点评】此题考查了一元二次方程ax2+bx+c=0〔a≠0,a,b,c为常数〕旳根旳判别式△=b2﹣4aC、当△>0,方程有两个不相等旳实数根;当△=0,方程有两个相等旳实数根;当△<0,方程没有实数根、同时考查了一元二次方程旳解法、22、如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8、以OB为一边,在△OAB外作等边三角形OBC,D是OB旳中点,连接AD并延长交OC于E、〔1〕求点B旳坐标;〔2〕求证:四边形ABCE是平行四边形;〔3〕如图2,将图1中旳四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG旳长、【考点】翻折变换〔折叠问题〕;坐标与图形性质;等边三角形旳性质;平行四边形旳判定与性质、【分析】〔1〕由在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,依照三角函数旳知识,即可求得AB与OA旳长,即可求得点B旳坐标;〔2〕首先可得CE∥AB,D是OB旳中点,依照直角三角形斜边旳中线等于斜边旳一半,可证得BD=AD,∠ADB=60°,又由△OBC是等边三角形,可得∠ADB=∠OBC,依照内错角相等,两直线平行,可证得BC∥AE,继而可得四边形ABCD是平行四边形;〔3〕首先设OG旳长为x,由折叠旳性质可得:AG=CG=8﹣x,然后依照勾股定理可得方程〔8﹣x〕2=x2+〔4〕2,解此方程即可求得OG旳长、【解答】〔1〕解:在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,∴OA=OB•cos30°=8×=4,AB=OB•sin30°=8×=4,∴点B旳坐标为〔4,4〕;〔2〕证明:∵∠OAB=90°,∴AB⊥x轴,∵y轴⊥x轴,∴AB∥y轴,即AB∥CE,∵∠AOB=30°,∴∠OBA=60°,∵DB=DO=4∴DB=AB=4∴∠BDA=∠BAD=120°÷2=60°,∴∠ADB=60°,∵△OBC是等边三角形,∴∠OBC=60°,∴∠ADB=∠OBC,即AD∥BC,∴四边形ABCE是平行四边形;〔3〕解:设OG旳长为x,∵OC=OB=8,∴CG=8﹣x,由折叠旳性质可得:AG=CG=8﹣x,在Rt△AOG中,AG2=OG2+OA2,即〔8﹣x〕2=x2+〔4〕2,解得:x=1,即OG=1、【点评】此题考查了折叠旳性质,三角函数旳性质,平行四边形旳判定,等边三角形旳性质,以及勾股定理等知识、此题难度较大,解题旳关键是注意数形结合思想与方程思想旳应用,注意折叠中旳对应关系、23、为执行中央“节能减排,美化环境,建设漂亮新农村”旳国策,我市某村打算建筑A、B两种型号旳沼气池共20个,以解决该村所有农户旳燃料问题、两种型号沼气池旳占地面〔1〕满足条件旳方案共有几种?写出解答过程;〔2〕通过计算推断,哪种建筑方案最省钱?【考点】一元一次不等式组旳应用、【分析】〔1〕关系式为:A型沼气池占地面积+B型沼气池占地面积≤365;A型沼气池能用旳户数+B型沼气池能用旳户数≥492;〔2〕由〔1〕得到情况进行分析、【解答】解:〔1〕设建筑A型沼气池x个,那么建筑B型沼气池〔20﹣x〕个,依题意得:,解得:7≤x≤9、∵x为整数∴x=7,8,9,因此满足条件旳方案有三种、〔2〕解法①:设建筑A型沼气池x个时,总费用为y万元,那么:y=2x+3〔20﹣x〕=﹣x+60,∴y随x增大而减小,当x=9时,y旳值最小,现在y=51〔万元〕、∴现在方案为:建筑A型沼气池9个,建筑B型沼气池11个、解法②:由〔1〕知共有三种方案,其费用分别为:方案一:建筑A型沼气池7个,建筑B型沼气池13个,总费用为:7×2+13×3=53〔万元〕、方案二:建筑A型沼气池8个,建筑B型沼气池12个,总费用为:8×2+12×3=52〔万元〕、方案三:建筑A型沼气池9个,建筑B型沼气池11个,总费用为:9×2+11×3=51〔万元〕、∴方案三最省钱、【点评】此题是一道材料分析题,有一定旳开放性,〔1〕先依照“A型沼气池占地面积+B型沼气池占地面积≤365;A型沼气池能用旳户数+B 型沼气池能用旳户数≥492”列出不等式;然后依照实际问题中x取整数确定方案;〔2〕依照〔1〕中方案进行计算、比较即可得最省钱方案、24、矩形ABCD在如下图旳直角坐标系中,点A旳坐标为〔0,3〕,BC=2AB、直线l通过点B,交AD边于点P1,现在直线l旳函数表达式是y=2x+1、〔1〕求BC、AP1旳长;〔2〕沿y轴负方向平移直线l,分别交AD、BC边于点P、E、①当四边形BEPP1,是菱形时,求平移旳距离;②设AP=m,当直线l把矩形ABCD分成两部分旳面积之比为3:5时,求m旳值、【考点】一次函数综合题、【分析】〔1〕首先依照l旳函数【解析】式y=2x+1能够求出B旳坐标,也就求出了AB,又BC=2AB,由此求出BC,然后就能够求出P1旳纵坐标为3,代入直线【解析】式能够求出横坐标,即求出了AP1旳长;〔2〕①当四边形BEPP1是菱形时,依照勾股定理能够求出BP1旳长,也就求出了BE旳长度,然后即可求出E旳坐标,再利用待定系数法能够确定平移后旳直线旳【解析】式,接着求出平移后旳直线旳与y轴旳交点坐标,比较两个与y轴旳交点坐标即可求出平移旳距离;②由AP=m,AP1=1能够得到PP1=BE=m﹣1,而直线l把矩形ABCD分成两部分旳面积之比为3:5,由此能够列出关于m旳方程,解方程即可求出m旳值、【解答】解:〔1〕∵直线y=2x+1通过y 轴上旳点B ,∴x=0,y=1,∴B 〔0,1〕,而A 旳坐标为〔0,3〕,∴AB=2,∴BC=2AB=4,∴P 1旳纵坐标为3,代入y=2x+1,x=1,∴AP 1=1;〔2〕①当四边形BEPP 1是菱形时,即,∴,设平移后旳直线旳【解析】式为y=2x+b ,把代入得,∴与y 轴旳交点,∴沿y 轴负方向平移旳距离为;②∵AP=m ,AP 1=1,∴PP 1=BE=m ﹣1,而S 梯形ABEP =S 矩形ABCD 或S 梯形ABEP =S 矩形ABCD ,∴或、 ∴m=2或者m=3,因此m=2或3、【点评】此题把矩形放在坐标系旳背景中,综合考查了一次函数与几何知识旳应用,题中运用矩形与直线旳关系以及直角三角形、梯形等知识求出线段旳长是解题旳关键、x600;HJJ;7483819;HLing;caicl;dbz1018;放飞梦。
2018-2019学年人教版初中数学八年级下册期末数学试卷(天津市南开区

2018-2019学年天津市南开区八年级(下)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列一元二次方程中,没有实数根的是()A.2x2+3=0B.x2=2x C.x2+4x﹣1=0D.x2﹣8x+16=0 2.(3分)计算一组数据方差的算式为S2=[(x1﹣10)2+(x2﹣10)2+…+(x5﹣10)2],由比得到的信息中不正确的是()A.这组数据中有5个数据B.这组数据的平均数是10C.计算出的方差是一个非负数D.当x1增加时,方差的值一定随之增加3.(3分)用配方法解下列方程,其中应在方程左右两边同时加上4的是()A.x2﹣2x=5B.x2+4x=5C.2x2﹣4x=5D.4x2+4x=5 4.(3分)如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD 等于()A.B.5C.4D.35.(3分)菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线互相平分且相等6.(3分)顺次连接一个四边形的各边中点,得到了一个正方形,则这个四边形最可能是()A.平行四边形B.菱形C.矩形D.正方形7.(3分)如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④8.(3分)如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.109.(3分)若A(x1,y1)、B(x2,y2)是一次函数y=(a﹣1)x+2图象上的不同的两个点,当x1>x2时,y1<y2,则a的取值范围是()A.a>0B.a<0C.a>1D.a<110.(3分)某地2017年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2019年在2017年的基础上增加投入资金1600万元.设从2017年到2019年该地投入异地安置资金的年平均增长率为x,则下列方程正确的是()A.1280(1+x)=1600B.1280(1+2x)=1600C.1280(1+x)2=2880D.1280(1+x)+1280(1+x)2=288011.(3分)如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.5B.4C.3D.212.(3分)如图,已知直线l1:y=x+与直线l2:y=﹣2x+16相交于点C,直线l1,l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=()A.1:3B.8:9C.9:16D.32:35二、填空题:本大题共6小题,每小题3分,共18分,请将答案直接填在答题纸中对应的横线上13.(3分)某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为甲=82分,乙=82分,S甲2=245,S乙2=190.那么成绩较为整齐的是班(填“甲”或“乙”).14.(3分)如图,已知▱ABCD中,AD=8cm,AB=6cm,DE平分∠ADC交边BC于点E,则BE=cm.15.(3分)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为.16.(3分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.17.(3分)如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为.18.(3分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.△ABC的三个顶点都在格点上.(Ⅰ)请你借助网格,使用无刻度的直尺在线段AC上找一点P,使得PC2﹣P A2=AB2,画出点P的位置,并简要说明画法.(Ⅱ)直接写出(Ⅰ)中线段P A的长.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解方程:(Ⅰ)(3x﹣1)2=(x﹣1)2(Ⅱ)3x(x﹣1)=2﹣2x20.(7分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m).绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图①中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定10人能进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.21.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.22.(8分)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,(Ⅰ)连接CC′,判断四边形CBA′C′的形状并进行证明.(Ⅱ)D为线段BC′上一动点,求AD+CD的最小值.23.(8分)某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.设购进A种型号的衬衣x件,购进B种型号的衬衣y件,三种品牌的衬衫的进价和售价如表所示:(Ⅰ)直接用含x、y的代数式表示购进C种型号衬衣的件数,其结果可表示为.(Ⅱ)求y与x之间的函数关系式.(Ⅲ)如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元①求利润P(元)与x(件)之间的函数关系式;②求商场能够获得的最大利润.24.(8分)如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.(Ⅰ)若△APD为等腰直角三角形①直接写出此时P点的坐标:;直线AP的解析式为.②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值;(Ⅱ)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE的解析式.2018-2019学年天津市南开区八年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列一元二次方程中,没有实数根的是()A.2x2+3=0B.x2=2x C.x2+4x﹣1=0D.x2﹣8x+16=0【分析】求出各方程根的判别式,判断小于0即为没有实数根.【解答】解:A、△=0﹣24=﹣24<0,即方程没有实数根,符合题意;B、△=4﹣0=4>0,方程有两个不相等的实数根,不符合题意;C、△=16+4=20>0,方程有两个不相等的实数根,不符合题意;D、△=64﹣64=0,方程有两个相等的实数根,不符合题意,故选:A.【点评】此题考查了根的判别式,弄清根的判别式与方程根的关系是解本题的关键.2.(3分)计算一组数据方差的算式为S2=[(x1﹣10)2+(x2﹣10)2+…+(x5﹣10)2],由比得到的信息中不正确的是()A.这组数据中有5个数据B.这组数据的平均数是10C.计算出的方差是一个非负数D.当x1增加时,方差的值一定随之增加【分析】根据方差公式的特点分别进行解答即可.【解答】解:A、这组数据中有5个数据,正确;B、这组数据的平均数是10,正确;C、计算出的方差是一个非负数,正确;D、当x1增加时,方差的值不一定随之增加,故本选项错误;故选:D.【点评】此题考查了方差,熟练掌握方差的计算公式是解题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].3.(3分)用配方法解下列方程,其中应在方程左右两边同时加上4的是()A.x2﹣2x=5B.x2+4x=5C.2x2﹣4x=5D.4x2+4x=5【分析】利用完全平方公式判断即可.【解答】解:用配方法解下列方程,其中应在方程左右两边同时加上4的是x2+4x=5,故选:B.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.(3分)如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AD=8,AB=7,则BC+CD 等于()A.B.5C.4D.3【分析】延长DC至E,构建直角△ADE,解直角△ADE求得DE,BE,根据BE解直角△CBE可得BC,CE,∴CD+BC=DE﹣CE+BC.【解答】解:如图,延长AB、DC相交于E,在Rt△ADE中,可求得AE2﹣DE2=AD2,且AE=2AD,计算得AE=16,DE=8,于是BE=AE﹣AB=9,在Rt△BEC中,可求得BC2+BE2=CE2,且CE=2BC,∴BC=3,CE=6,于是CD=DE﹣CE=2,BC+CD=5.故选:B.【点评】本题考查了勾股定理的运用,考查了30°角所对的直角边是斜边的一半的性质,本题中构建直角△ADE求BE,是解题的关键.5.(3分)菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角线互相平分且相等【分析】菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.【解答】解:菱形和矩形一定都具有的性质是对角线互相平分.故本题选C.【点评】熟悉菱形和矩形的对角线的性质是解决本题的关键.6.(3分)顺次连接一个四边形的各边中点,得到了一个正方形,则这个四边形最可能是()A.平行四边形B.菱形C.矩形D.正方形【分析】利用连接四边形各边中点得到的四边形是正方形,则结合正方形的性质及三角形的中位线的性质进行分析,从而不难求解.【解答】解:如图点E,F,G,H分别是四边形ABCD各边的中点,且四边形EFGH是正方形.∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是正方形.∴EF=EH,EF⊥EH,∵BD=2EF,AC=2EH,∴AC=BD,AC⊥BD,即四边形ABCD满足对角线相等且垂直,选项D满足题意.故选:D.【点评】本题考查了利用三角形中位线定理得到新四边形各边与相应线段之间的数量关系和位置.熟练掌握特殊四边形的判定是解题的关键.7.(3分)如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【解答】解:由图象得:①关于x的方程kx+b=0的解为x=2,正确;②关于x的方程kx+b=3的解为x=0,正确;③当x>2时,y<0,正确;④当x<0时,y>3,错误;故选:A.【点评】本题主要考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.8.(3分)如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=16,则HE等于()A.32B.16C.8D.10【分析】根据三角形中位线定理求出AC,根据直角三角形的性质计算即可.【解答】解:∵D,F分别为BC,AB边的中点,∴AC=2DF=32,∵AH⊥BC,∴∠AHC=90°,又E为AC边的中点,∴HE=AC=16,故选:B.【点评】本题考查的是三角形中位线定理,直角三角形的性质,三角形的中位线平行于第三边,并且等于第三边的一半.9.(3分)若A(x1,y1)、B(x2,y2)是一次函数y=(a﹣1)x+2图象上的不同的两个点,当x1>x2时,y1<y2,则a的取值范围是()A.a>0B.a<0C.a>1D.a<1【分析】根据一次函数的图象y=(a﹣1)x+2,当a﹣1<0时,y随着x的增大而减小分析即可.【解答】解:因为A(x1,y1)、B(x2,y2)是一次函数y=(a﹣1)x+2图象上的不同的两个点,当x1>x2时,y1<y2,可得:a﹣1<0,解得:a<1.故选:D.【点评】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b的性质:当k<0时,y随着x的增大而减小;k>0时,y随着x的增大而增大;k=0时,y的值=b,与x没关系.10.(3分)某地2017年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2019年在2017年的基础上增加投入资金1600万元.设从2017年到2019年该地投入异地安置资金的年平均增长率为x,则下列方程正确的是()A.1280(1+x)=1600B.1280(1+2x)=1600C.1280(1+x)2=2880D.1280(1+x)+1280(1+x)2=2880【分析】设年平均增长率为x,根据:2017年投入资金给×(1+增长率)2=2019年投入资金,列出方程即可;【解答】解:设该地投入异地安置资金的年平均增长率为x,根据题意得:1280(1+x)2=2880,故选:C.【点评】本题主要考查一元二次方程的应用,由题意准确抓住相等关系并据此列出方程是解题的关键.11.(3分)如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线l:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中b的值为()A.5B.4C.3D.2【分析】先根据△AEF为等腰直角三角形,可得直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,再根据BD的长即可得到b的值.【解答】解:如图1,直线y=x﹣3中,令y=0,得x=3;令x=0,得y=﹣3,即直线y=x﹣3与坐标轴围成的△OEF为等腰直角三角形,∴直线l与直线BD平行,即直线l沿x轴的负方向平移时,同时经过B,D两点,由图2可得,t=2时,直线l经过点A,∴AO=3﹣2×1=1,∴A(1,0),由图2可得,t=12时,直线l经过点C,∴当t=+2=7时,直线l经过B,D两点,∴AD=(7﹣2)×1=5,∴等腰Rt△ABD中,BD=5,即当a=7时,b=5.故选:A.【点评】本题考查了动点问题的函数图象,一次函数图象与几何变换,用图象解决问题时,要理清图象的含义即会识图.解决问题的关键是掌握正方形的性质以及平移的性质.12.(3分)如图,已知直线l1:y=x+与直线l2:y=﹣2x+16相交于点C,直线l1,l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=()A.1:3B.8:9C.9:16D.32:35【分析】把y=0代入l1解析式求出x的值便可求出点A的坐标.令x=0代入l2的解析式求出点B的坐标.然后可求出AB的长.联立方程组可求出交点C的坐标,继而求出三角形ABC的面积,再利用x D=x B=8易求D点坐标.又已知y E=y D=8可求出E点坐标.故可求出DE,EF的长,即可得出矩形面积.【解答】解:由y=x+,得当y=0时,x=﹣4.∴A点坐标为(﹣4,0),由﹣2x+16=0,得x=8.∴B点坐标为(8,0),∴AB=8﹣(﹣4)=12,由,解得,∴C点的坐标为(5,6),∴S△ABC=×12×6=36.∵点D在l1上且x D=x B=8,∴y D=×8+=8,∴D点坐标为(8,8),又∵点E在l2上且y E=y D=8,∴﹣2x E+16=8,∴x E=4,∴E点坐标为(4,8),∴DE=8﹣4=4,EF=8.∴矩形面积为:4×8=32,∴S矩形DEFG:S△ABC=32:36=8:9.答:S矩形DEFG与S△ABC的比值是8:9.故选:B.【点评】此题主要考查了一次函数交点坐标求法以及图象上点的坐标性质等知识,根据题意分别求出C,D两点的坐标是解决问题的关键.二、填空题:本大题共6小题,每小题3分,共18分,请将答案直接填在答题纸中对应的横线上13.(3分)某中学人数相等的甲、乙两班学生参加了同一次数学测验,两班平均分和方差分别为甲=82分,乙=82分,S甲2=245,S乙2=190.那么成绩较为整齐的是乙班(填“甲”或“乙”).【分析】根据方差的意义,方差反映了一组数据的波动大小,故可由两班的方差得到结论.【解答】解:∵S2甲>S2乙∴成绩较为稳定的是乙.故填乙.【点评】本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)如图,已知▱ABCD中,AD=8cm,AB=6cm,DE平分∠ADC交边BC于点E,则BE=2cm.【分析】由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,根据等角对等边得CE=CD,则BE可求解.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=6cm,BC=AD=8cm,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CD=CE=AB=6,cm∴BE=BC﹣EC=8﹣6=2(cm).故答案为:2.【点评】本题考查了平行四边形性质、平行线的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证明CE=CD是解决问题的关键.15.(3分)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为﹣3.【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值.【解答】解:把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+3k=0,解得k1=0,k2=﹣3,因为k≠0,所以k的值为﹣3.故答案为﹣3.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.(3分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为5或3.【分析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.【解答】解:有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD==1,CD==4,∴BC=BD+CD=4+1=5;②如图2同理得:CD=4,BD=1,∴BC=BD﹣CD=4﹣1=3,综上所述,BC的长为6或3;故答案为:5或3.【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.17.(3分)如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为.【分析】根据翻折变换的性质可得AN=AB,∠BAE=∠NAE,再根据两直线平行,内错角相等可得∠BAE=∠F,从而得到∠NAE=∠F,根据等角对等边可得AM=FM,设CM =x,表示出DM、AM,然后利用勾股定理列方程求出x的值,从而得到AM的值,最后根据NM=AM﹣AN计算即可得解.【解答】解:∵△ABE沿直线AE翻折,点B落在点N处,∴AN=AB=8,∠BAE=∠NAE,∵正方形对边AB∥CD,∴∠BAE=∠F,∴∠NAE=∠F,∴AM=FM,设CM=x,∵AB=2CF=8,∴CF=4,∴DM=8﹣x,AM=FM=4+x,在Rt△ADM中,由勾股定理得,AM2=AD2+DM2,即(4+x)2=82+(8﹣x)2,解得x=4,所以,AM=4+4=8,所以,NM=AM﹣AN=8﹣8=.故答案为:【点评】本题考查了翻折变换的性质,正方形的性质,勾股定理,翻折前后对应线段相等,对应角相等,此类题目,关键在于利用勾股定理列出方程.18.(3分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.△ABC的三个顶点都在格点上.(Ⅰ)请你借助网格,使用无刻度的直尺在线段AC上找一点P,使得PC2﹣P A2=AB2,画出点P的位置,并简要说明画法取格点M,N,作直线MN交AC于点P,点P即为所求.(Ⅱ)直接写出(Ⅰ)中线段P A的长.【分析】(Ⅰ)取格点M,N(使得MN⊥BC),作直线MN交AC于点P,点P即为所求.(Ⅱ)由作图可知:PC=PB,设PC=PB=x,在Rt△ABP中,根据P A2+AB2=PB2,构建方程即可解决问题.【解答】解:(Ⅰ)如图点P即为所求.故答案为:取格点M,N(使得MN⊥BC),作直线MN交AC于点P,点P即为所求.(Ⅱ)由作图可知:PC=PB,设PC=PB=x,在Rt△ABP中,∵P A2+AB2=PB2,∴(6﹣x)2+42=x2,∴x=,∴P A=6﹣=,故答案为.【点评】本题考查作图﹣复杂作图,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.(8分)解方程:(Ⅰ)(3x﹣1)2=(x﹣1)2(Ⅱ)3x(x﹣1)=2﹣2x【分析】(Ⅰ)两边开方得到3x﹣1=±(x﹣1),然后解两个一元一次方程即可;(Ⅱ)先变形得到3x(x﹣1)+2(x﹣1)=0,然后利用因式分解法解方程.【解答】解:(Ⅰ)3x﹣1=±(x﹣1),即3x﹣1=x﹣1或3x﹣1=﹣(x﹣1),所以x1=0,x2=;(Ⅱ)3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0或3x+2=0,所以x1=1,x2=﹣.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).20.(7分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m).绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图①中a的值为25;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定10人能进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.【分析】(Ⅰ)用整体1减去其它所占的百分比,即可求出a的值;(Ⅱ)根据平均数、众数和中位数的定义分别进行解答即可;(Ⅲ)根据中位数的意义可直接判断出能否进入复赛.【解答】解:(1)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图,∵=1.61,∴这组数据的平均数是1.61.∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数为1.65,∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60,有∴这组数据的中位数为1.60,(Ⅲ)能.∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前10名;∵1.65m>1.60m,∴能进入复赛.【点评】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.21.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.【分析】(Ⅰ)令m=0,用公式法求出一元二次方程的根即可;(Ⅱ)根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可.【解答】解:(Ⅰ)当m=0时,方程为x2+x﹣1=0.△=12﹣4×1×(﹣1)=5>0.∴x=,∴x1=,x2=.(Ⅱ)∵方程有两个不相等的实数根,∴△>0即(﹣1)2﹣4×1×(m﹣1)=1﹣4m+4=5﹣4m>0∵5﹣4m>0∴m<.【点评】本题考查了一元二次方程的解法、根的判别式.一元二次方程根的判别式△=b2﹣4ac.22.(8分)如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,(Ⅰ)连接CC′,判断四边形CBA′C′的形状并进行证明.(Ⅱ)D为线段BC′上一动点,求AD+CD的最小值.【分析】(1)由已知可得BC∥A'C',BC=A'C',BC=BA',即可证明四边形CBA′C′是菱形;(2)可知C与A'关于BC'对称,AD+CD的最小值为AA'的长;【解答】解:(1)正△ABC,△ABC与△A′BC′关于直l对称,∴∠CBA=∠D'A'B=60°,∴BC∥A'C',BC=A'C',∴四边形CBA′C′是平行四边形,∵BC=BA',∴四边形CBA′C′是菱形;(2)∵C与A'关于BC'对称,∴AD+CD的最小值为AA'的长,∵正△ABC的边长为2,∴AA'=4,∴AD+CD的最小值为4;【点评】本题考查菱形的性质,轴对称求最短距离;熟练掌握特殊平行四边形的判定定理,利用轴对称求最短距离,将AD+CD的最小值转化为AA'的长是解题的关键.23.(8分)某商场为了抓住夏季来临,衬衫热销的契机,决定用46000元购进A、B、C三种品牌的衬衫共300件,并且购进的每一种衬衫的数量都不少于90件.设购进A种型号的衬衣x件,购进B种型号的衬衣y件,三种品牌的衬衫的进价和售价如表所示:(Ⅰ)直接用含x、y的代数式表示购进C种型号衬衣的件数,其结果可表示为300﹣x ﹣y.(Ⅱ)求y与x之间的函数关系式.(Ⅲ)如果该商场能够将购进的衬衫全部售出,但在销售这些衬衫的过程中还需要另外支出各种费用共计1000元①求利润P(元)与x(件)之间的函数关系式;②求商场能够获得的最大利润.【分析】(Ⅰ)总数300减去A、B两种的件数即可;(Ⅱ)根据三种衬衫的总进价为46000元,可以得到y与x的函数关系式;(Ⅲ)①根据表格中提供进价、售价可以求出每件衬衫的销售利润,再乘以相应的数量即可求出总利润,从而得出总利润P与x的函数关系式;②根据每种衬衫的数量均不低于90件,可列不等式组,先确定自变量的取值范围,再依据函数的增减性,确定何时利润最大.【解答】解:(Ⅰ)∵A、B、C三种品牌的衬衫共300件,购进A种型号的衬衣x件,购进B种型号的衬衣y件,∴购进C种型号衬衣的件数为(300﹣x﹣y)件;故答案为:300﹣x﹣y(Ⅱ)由题意得:100x+200y+150(300﹣x﹣y)=46000,∴y=x+20;∴y与x之间的函数关系式为y=x+20.(Ⅲ)①P=(200﹣100)x+(350﹣200)y+(300﹣150)(300﹣x﹣y)﹣1000=﹣50x+44000;答:利润P(元)与x(件)之间的函数关系式为P=﹣50x+44000;②由题意得:解得:90≤x≤95又∵P=﹣50x+44000;y随x的增大而减小,∴当x=90时,P最大=﹣50×90+44000=39500元;答:市场能获得的最大利润为39500元.【点评】考查一次函数的性质、一元一次不等式组的应用等知识,理清题中数量关系,合理用一个未知数表示另一个未知数是解决问题的关键.24.(8分)如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.(Ⅰ)若△APD为等腰直角三角形①直接写出此时P点的坐标:(1,2);直线AP的解析式为y=﹣x+3.②在x轴上另有一点G的坐标为(2,0),请在直线AP和y轴上分别找一点M、N,使△GMN的周长最小,并求出此时点N的坐标和△GMN周长的最小值;(Ⅱ)如图2,过点E作EF∥AP交x轴于点F,若以A、P、E、F为顶点的四边形是平行四边形,求直线PE的解析式.【分析】(Ⅰ)①根据题意可求P(1,2),用待定系数法可求直线AP解析式②作点G关于y轴的对称点G'(﹣2,0),作点G关于直线AP的对称点G''(3,1),连接G'G''交y轴于点N,交AP于M,根据两点之间线段最短,可得此时△GMN的周长最小,求出G'G''解析式,可求N点坐标和△GMN周长的最小值.(Ⅱ)作PM⊥AD于M,可证AM=DM,由题意可证△DOE≌△DOM,可求EO=DM =2,OD=DM=AM=1,即可得E点,P点坐标,即可求直线EP解析式.【解答】解:(Ⅰ)①∵矩形OABC,OA=3,OC=2∴A(3,0),C(0,2),B(3,2),AO∥BC,AO=BC=3,∠B=90°,CO=AB=2∵△APD为等腰直角三角形∴∠P AD=45°∵AO∥BC∴∠BP A=∠P AD=45°∵∠B=90°∴∠BAP=∠BP A=45°∴BP=AB=2∴P(1,2)设直线AP解析式y=kx+b,过点A,点P∴,∴,∴直线AP解析式y=﹣x+3.故答案为(1,2),y=﹣x+3.②作G点关于y轴对称点G'(﹣2,0),作点G关于直线AP对称点G''(3,1)连接G'G''交y轴于N,交直线AP于M,此时△GMN周长的最小.∵G'(﹣2,0),G''(3,1)∴直线G'G''解析式y=x+,当x=0时,y=,∴N(0,)∵G'G''=,∴△GMN周长的最小值为.(Ⅱ)如图:作PM⊥AD于M∵BC∥OA∴∠CPD=∠PDA且∠CPD=∠APB∴PD=P A,且PM⊥AD∴DM=AM∵四边形P AEF是平行四边形∴PD=DE又∵∠PMD=∠DOE,∠ODE=∠PDM∴△PMD≌△ODE(AAS),∴OD=DM,OE=PM∴OD=DM=MA∵PM=2,OA=3∴OE=2,OM=2∴E(0,﹣2),P(2,2)设直线PE的解析式y=mx+n,则有,∴,∴直线PE解析式y=2x﹣2【点评】本题属于一次函数综合题,考查了待定系数法,全等三角形判定和性质,平行四边形的性质,灵活运用这些性质解决问题是本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点 ,连接 、 ,下列结论:①
≌
;②
;③
,其中正确的结论的为
.(请将所有正确的序号都填上)
A
交于 ;④
D F
EP
B
C
【答案】 ①②③④
【解析】 ∵正方形
,
,
,
A
D
F
EP
B
C
∴
,
,
∵
,
∴
,
,
∵
,
∴
≌
,
∴①正确;
∴
,
,
∴
,
取 的中点 ,连接 ,
∴
,
,
∴
,
∵
,
∴
,
∴
,
∴
,
∵
,
,
∴
≌
,
∴
,
∴②正确;
∴
,
∵
学校所在的位置在点 和点 处,
于,
于 ,已知
,
,
,试问:图书室 应该建在距点 多少 处,才能使它到两所学校
的距离相等.
【答案】 图书室 应该建在距 点
处,才能使它到两所学校的距离相等.
【解析】 设
,则
在
中,
由勾股定理得:
同理可得:
若
,则
解得:
.
答:图书室 应该建在距 点
.
. .
.
处,才能使它到两所学校的距离相等.
. .
15. 直线
与直线
的交点坐标为
.
【答案】
【解析】
,
解得:
,
∴交点坐标为
.
16. 如图,在边长为 的正方形
中, 为
最小值的是
.
的中点, 为对角线
上的一个动点,则
【答案】
【解析】 连接 ,
∵四边形
是正方形,
∴
,
,
∵
,
∴
≌
,
∴
,
∴
,
若使
最小,则使 , , 三点共线即
,
∵ 为 的中点,正方形
的边长为 ,
,
,
∴
,
,
∴
,
∵
,
∴
,
∴
,
∵
,
,
∴
≌
,
∴
,
,
∴③正确;④正确.
故答案为:①②③④.
三、解答题(本大题共46分)
19. 已知 与 成正比例,且当
时,
.
( 1 ) 求 与 之间的函数关系式.
( 2 ) 若点 在这个函数图象上,求 .
【答案】( 1 )函数解析式为
.
( 2 ) 的值为 .
【解析】( 1 )由题意知:
,
,则 的长为( ) .
A.
B.
C.
D.
【答案】 B
【解析】 根据折叠性质可得
≌
,
∴
,
,
∵四边形
是长方形,
∴
,
,
,
∴
,
在
中,
,
∴
,
设
,则
,
在
中,
,
∴
,
∴
,
.
故选 .
8. 如图,把菱形 为( ).
沿 折叠,使 点落在 上的 点处,若
,则
的大小
A.
B.
C.
【答案】 B
【解析】 ∵四边形
是菱形,
∴
,
,
由折叠的性质可知
中, .
, 、 分别为 、 的中点,点 在 的延长线上,
( 1 ) 求证:
( 2 )若
,
. ,求四边形
的面积.
【答案】( 1 )证明见解析. (2) .
【解析】( 1 )∵ 、 分别为 、 的中点,
∴是
的中位线,
∴
,
∵
,
∴
,
∴
,
∴
≌
,
∴
.
( 2 ) 由( )知
,
,
∴四边形
为平行四边形,
∵在
中,
,
,
,
∴直线 的解析式是
,
∵点
,点
,
点 是 的中点,
∴点 的坐标是
,
设直线 的解析式是
,
则
,
解得
,
∴直线 的解析式是
,
由
,
解得
,
∴点 的坐标是
.
.
二、填空题(本大题共6小题,每小题3分,共18分)
13. 如图,在
长
.
中, 是斜边 上的中线,若
的两条边分别为 和 ,则 的
【答案】 或
【解析】 ①斜边长为 ,
∵在
中,
是斜边 上的中线,
∴
.
②直角边长为 ,
∵在
中,
∴
,
∴
∴
.
, ,
,
14. 直线
向上平移 个单位长度得到直线
.
【答案】 【解析】
故答案为:
,
∴
,
∴
,
∴
,
∴
.
D. .
9. 将 个边长为 的正方形按如图所示摆放,点 , , , 分别是正方形的中心,则这 个正方形重叠部分的面积和为 ( ).
A.
B.
C.
D.
【答案】 C
【解析】 在正方形
中,作
,
,
即可证明:
≌
,
∴四边形
的面积 四边形
的面积 正方形
的面积.
同理可证,另外三个阴影四边形的面积都等于 正方形
的面积.
∴图中重叠部分(阴影部分)的面积和 正方形
的面积
.
故选 .
10. 矩形
在平面直角坐标系中的位置如图所示,点 的坐标为
上,当
的周长最小时,点 的坐标为( ).
, 是 的中点,点 在
y
x
O
A.
B.
C.
D.
【答案】 B
【解析】 如图,作点 关于直线 的对称点 ,连接 与 的交点为 ,此时
的周长最小.
∴
,
∴
,
又∵ 、 分别为 、 的中点,
∴
,
∵
,
∴ 平行四边形
.
22. 如图, 点.设
中,点 是 边上的一个动点,过点 作直线
交
的平分线于点 ,交
的平分线于点 .
, 为 延长线上一
( 1 ) 求证:
.
( 2 ) 当点 运动何处时,四边形
是矩形?证明你的结论.
【答案】( 1 )证明见解析. ( 2 ) 当点 运动到 的中点时,四边形
C.
D.
【答案】 C
【解析】 ∵
的函数值随 的增大而减小,
∴
,故①正确;
∵
的图象与 轴交于负半轴,
∴
;
当
时,相应的 的值, 图象均高于 的图象,
∴
,故③正确.
故选 .
6. 如图,在矩形
中, 、 分别是 和 上的点, 、 分别是 和
在 上从点 向点 移动,而点 不动时,下列结论正确的是( ).
的中点,当点
24.
如图,在平面直角坐标系中, 为原点,点 在第一象限.
,点
,四边形
是正方形,点
( 1 ) 求直线 的解析式.
备用图
( 2 ) 已知点 是 的中点, , 是直线 上的两点,
,点 在直线
且点 在直线 上,当
,且
时,求点 的坐标.
下方,
【答案】( 1 )
.
(2)
.
【解析】( 1 )∵点
,点
,
∴
,
∵四边形
,
当
时,
代入函数,
则有
,
,
∴函数解析式为
.
( 2 ) 点 在这个函数上则有
,解得
,
故 的值为 .
20. 如图所示,已知等腰
的底边
, 是腰 上一点,且
,
,求
的周长.
【答案】 .
【解析】 ∵
∴ ∴ ∴ 设
, ,
是直角三角形, , ﹐则:
中,由勾股定理得: ,
, , ,
,
∴
,
周长为 .
故答案为: .
21. 在
A. 线段 C. 线段
的长逐渐增长 的长始终不变
【答案】 C 【解析】 连接 ,
B. 线段 D. 线段
的长逐渐减小 的长与点 的位置有关
∵矩形
固定不变, 在 的位置不变,
∴ 和 不变,
∵由勾股定理得:
∴ 的长不变,
∵ 、 分别为 、 的中点,
∴
,
即线段 的长始终不变.
7. 如图所示,折叠长方形的一边 ,使点 落在 边的点 处,如果
【解析】( 1 )∵
,
为矩形.
∴
,
又
,
∴
,
∴
,同理
,
∴
.
( 2 ) 当点 运动到 的中点时,四边形
是矩形,证明如下:
∵ 、 分别是
、
的平分线,
∴
,即
,
∵
,
∴当点 运动到 的中点时,即
时,四边形
是平行四边形,
又
,
∴四边形
为矩形,
∴当点 运动到 的中点时,四边形
为矩形.
23. 为了丰富少年儿童的业余生活,某社区要在如图所示 所在的直线建一图书室,本社区有两所