七年级下学期数学期末试卷参考答案

合集下载

河北省石家庄市新华区2023-2024学年七年级下学期期末数学试题(含答案)

河北省石家庄市新华区2023-2024学年七年级下学期期末数学试题(含答案)

2023—2024学年第二学期期末学业质量监测七年级数学(冀教版)注意事项:1.本试卷共6页,满分100分,考试时长90分钟。

2.答卷前将密封线左侧的项目填写清楚。

3.答案须用黑色字迹的签字笔书写。

一、精心选择(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项只有一项是正确的)1.如图,CF,CE,CD分别是△ABC的中线、角平分线、高,下列线段中,长度最短的是()A.CF B.CE C.CD D.CB2.2−3可以表示为()A.2×2×2B.(−2)×(−2)×(−2)C.2÷2÷2D.12×2×23.如图.∠1与∠2是()A.同位角B.内错角C.同旁内角D.对顶角4.我国陆地上风能储量约为253,000兆瓦,将253,000用科学记数法表示为2.53×10n,则n的值为()A.4B.5C.6D.−55.一款晾衣架的示意图如图所示,支架OP=OQ=30cm(连接处的长度忽略计),则点P,Q之间的距离可以是()A.50cm B.65cm C.70cm D.80cm6.下列运算中,结果正确的是()A.a4⋅a3=a12B.(a3)2=a6C.a6÷a2=a3D.(−3x)2=−9x27.数轴上表示数m,n的点的位置如图所示,则下列结论不正确的是()A.m−n<0B.m+1<n−1C.−3m<−3n D.m2<n28.如图,将长方形纸片按如图方式折叠,已知∠DQP=50∘,则∠CPM=()A.40∘B.50∘C.60∘D.80∘9.等式“☐a2−b2=−(2a−b)(2a+b)”中的“□”表示的数是()A.4B.−4C.16D.−1610.如图,已知直线m平移后得到直线n,∠1=108∘,∠2=35∘.则∠3的度数为()A.98∘B.103∘C.107∘D.143∘11.【问题】已知关于x,y的方程组{3x+5y=4k−2x−3y=2的解满足2x+y=3.求k的值.嘉嘉同学有如下两种解题思路和部分步骤:Ⅰ.将方程组中的两个方程相加并整理,可得到2x+y=2k,再求k的值;Ⅱ.解方程组{2x+y=3,x−3y=2,得到{x=117,y=−17.再代入3x+5y=4k−2中,可求k的值.下列判断正确的是()A.Ⅰ的解题思路不正确B.Ⅱ的解题思路不正确C.Ⅱ的解题思路正确,求解不正确D.Ⅰ与Ⅱ的解题思路与求解都正确12.阅读下面的数学问题:如图,在△ABC中,AE⊥BC于点E,CD⊥AB于点D,AE,CD交于点P,AQ平分∠CAE,CQ平分∠ACD.甲、乙两人经过研究,分别得到如下结论:甲:∠APC+∠ABC=180∘;乙:∠AQC+12∠ABC=180∘.其中判断正确的是()A.甲、乙两人的结论都正确B.甲、乙两人的结论都错误C.甲的结论错误,乙的结论正确D.甲的结论正确,乙的结论错误二、准确填空(本大题共4个小题,每小题3分,共12分.其中16小题第一个空2分,第二个空1分)13.写出一个满足不等式x−6>0的x的整数值为 .14.整式a2−a和(a−1)2的公因式为 .15.命题“若△ABC中的∠A:∠B:∠C=1:2:3,则△ABC是直角三角形”是 .(填“真命题”或“假命题”)16.几何验证:如图1,可验证公式(a+b)2=a2+2ab+b2.(1)公式应用:若m+n=5,mn=6,则m2+n2的值为;,则S1+S2的(2)拓展延伸:如图2,四边形ACDE和四边形BCFG是两个正方形,若DF=6,S△ACF=92值为 .图2三、细心解答(本大题共8个小题,共52分.解答应写出文字说明、说理过程或演算步骤)17.(本小题满分5分)小明在解方程组{x−3y=3,①2x−5y=4②的过程如下:解:由①×2,得2x−6y=6③,…………第一步②−③,得−y=−2,…………第二步得y=2.…………第三步把y=2代入①,得x=9,…………第四步所以原方程组的解为{x=9,y=2.(1)小明的解题过程从第步开始出现错误;(2)请你写出正确的解方程组的过程.18.(本小题满分5分)已知不等式组{2(x−1)≥−3,①4x−2<1+3x.②(1)解该不等式组,并把解集在下面的数轴上表示出来;(2)写出该不等式组的所有正整数解.19.(本小题满分6分)如图,△ABC的顶点都在正方形网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC向左平移7个单位长度得到△A′B′C′.(1)在网格中画出△A′B′C′及A′B′边上的中线C′H和高线C′G;(2)直接写出线段BC所扫过的面积.20.(本小题满分6分)已知A=(a+2b)(a−b)−a5÷a3−(2b)2.(1)先化简A,再求当a=1,b=−3时,A的值;(2)若a=6b,求A的值.21.(本小题满分6分)如图,△ABC中,∠A=70∘,∠ABC=75∘,点D为线段AC上的点(不与点A,C重合),点E在AB的延长线上,连接DE,∠E=40∘,DF平分∠ADE.(1)求∠C的度数;(2)说明BC//DF的理由.22.(本小题满分7分)有三个连续奇数,最小的奇数为2n−1(n为正整数).(1)用含n的代数式表示另外两个奇数;(2)判断这三个奇数的平方和是否是12的倍数.若是,请说明理由;若不是,请写出被12除的余数是多少.23.(本小题满分8分)某校欲租用租赁公司的甲、乙两种型号的大巴车共8辆(两种车型都要租用),将部分师生送去植物园游玩,相关的租车信息如下:信息一:若租用3辆甲型大巴、5辆乙型大巴,共可载客435人;若租用6辆甲型大巴、2辆乙型大巴,共可载客390人。

山东省德州市德城区2023-2024学年七年级下学期期末考试数学试卷(含详解)

山东省德州市德城区2023-2024学年七年级下学期期末考试数学试卷(含详解)

山东省德州市德城区2023-2024学年七年级下学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图案中,可以由一个基本图形通过平移得到的是( )A. B. C. D..实数 3.1415,,( )A.3.1415 B. D.3.如图,小手盖住的点的坐标可能为( )A. B. C. D.4.如图,将直尺与等腰直角三角形叠放在一起,如果,那么的度数为( )A. B. C. D.5.下列调查方式,最适合全面调查的是( )A.检测某品牌鲜奶是否符合食品卫生标准32-57-(2,3)--(2,3)-(2,3)(2,3)-132∠=︒2∠32︒48︒58︒52︒B.了解某班学生一分钟跳绳成绩C.了解德州市中学生视力情况D.调查某批次汽车的抗撞击能力6.将一个长方形的长减少,宽变成现在的2倍,就成为了一个正方形,设这个长方形的长为,宽为,则下列方程中正确的是( )A. B. C. D.7.在平面直角坐标系中,点,,若直线AB 与y 轴垂直,则m 的值为( )A.0B.3C.4D.78.如图,将边长分别为1和2的两个正方形剪拼成一个较大的正方形,该大正方形的边长最接近的整数是( )A.1B.2C.3D.49.如果关于x 的一元一次不等式的所有解都是的解,那么m 的取值范围是( )A. B. C. D.10.如果是方程的解,a ,b 是正整数,则的最小值是( )A.3 B.4 C.5 D.611.如图为小雨和小欧依次进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已知当电梯乘载的重量超过400千克时警示音响起,且小丽、小欧的重量分别为50千克、70千克.若小丽进入电梯前,电梯内已乘载的重量为x 千克,则x 的取值范围是( )5cm cm x cm y 52x y +=52x y +=+52x y -=52x y -=+(1,5)A (2,1)B m m -+x m <215x +≤2m ≤2m <3m ≥3m >21x y =⎧⎨=⎩213ax by +=a b +A. B. C. D.12.定义为不超过x 的最大整数,如,,,对于任意实数x ,下列式子中正确的是( )A. B.C.(n 为整数)D.二、填空题13.16的算术平方根是____________.14.如图,已知直线,,,则的度数为____________°.15.已知,是平面直角坐标系xOy 中的两点,那么线段AB 长度的最小值为____________.16.下图是根据某初中校为贫困山区学校捐书的情况而制作的统计图,已知该校共有300名学生,请根据统计图计算该校初二年级共捐书____________本.17.已知方程组的一个解为,则的值为____________.18.若是方程组的解,当时,对于x 的每一个值,的值大于的值,则m 的值为____________.三、解答题19.(1)解方程组330400x <≤330350x <≤280400x <≤280350x <≤[]x [4]4=[0.1]0=[ 5.9]6-=-3=[][][]x y x y +≤+[][]n x n x +>+0[]1x x ≤-<//a b 125∠=︒268∠=︒A ∠(0,)A a (1,2)B (1)(3)11,(2)7m x n y mx n y +--=⎧⎨++=⎩12x y =⎧⎨=-⎩m n +12p q =⎧⎨=⎩04ap q ap bq -=⎧⎨-=⎩1x <-x -ax b m ++20,238.x y x y +=⎧⎨+=⎩(2)解不等式组并写出它的所有整数解.,求的值;(2)已知,求x 的值.21.按要求完成下列证明:已知:如图,在中,于点是AC 上一点,且.求证:.证明:(已知),____________(____________).(已知)____________(____________).(____________).22.为某次知识竞赛活动做准备,我校举办选拔赛后,随机抽取了部分学生的成绩,按成绩(百分制)分为A ,B ,C ,D 四个等级,并绘制了如下不完整的统计图表.根据图表信息,回答下列问题:4127,281,3x x x x +≤+⎧⎪+⎨>-⎪⎩|3|0b +=2a b +24250x -=ABC △CD AB ⊥,D E 1290∠+∠=︒//DE BC CD AB ⊥ 1∴∠+90=︒1290∠+∠︒= ∴2=∠DE BC ⊥∴(1)表中____________;扇形统计图中,B 等级所占百分比是____________;C 等级对应的扇形圆心角为____________度;(2)若全校有800人参加了此次选拔赛,则估计其中成绩为A 等级的共有多少人?23.如图,在平面直角坐标系xOy 中,三角形ABC 三个顶点的坐标分别是,,.将三角形ABC 先向左平移5个单位长度,再向下平移4个单位长度后得到三角形DEF ,其中点D ,E ,F 分别为点A ,B ,C 的对应点.(1)在图中画出三角形DEF ;(2)求三角形ABC 的面积;(3)若三角形ABC 内一点P 经过上述平移后的对应点为,直接写出点P 的坐标(用含m ,n 的式子表示).24.围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.某商家销售A 、B 两种材质的围棋,每套进价分别为200元、170元,下表是近两个月的销售情况:m =(3,4)A (2,1)B (5,1)C -(,)Q m n(2)若商家准备用不多于5400元的金额再采购A 、B 两种材质的围棋共30套,求A 种材质的围棋最多能采购多少套?(3)在(2)的条件下,商店销售完这30套围棋能否实现利润为1300元的目标?请说明理由.25.将三角形ABC 和三角形DEF 按图1所示的方式摆放,其中,,,,点D ,A ,F ,B 在同一条直线上.(1)将图1中的三角形ABC 绕点B 逆时针旋转,且点A 在直线DF 的下方.①如图2,当时,求证:;②当时,直接写出的度数;(2)将图1中的三角形DEF 绕点E 逆时针旋转,如图3,当点D 首次落在边BC 上时,过点E 作,作射线DM 平分,作射线EN 平分交DM 的反向延长线于点N ,依题意补全图形并求的度数.90ACB DFE ∠=∠=︒45DEF EDF ∠=∠=︒30ABC ∠=︒60BAC ∠=︒//AC DF //EF BC //AC DE FBA ∠//EG BC FDB ∠GED ∠END ∠参考答案1.答案:D解析:A 、利用旋转可以得到,故此选项错误B 、不能利用平移得到,故此选项错误C 、利用轴对称可得到,故此选项错误,D 、是由一个基本图形通过平移得到的,故此选项正确故选:D2.答案:B故选:B.3.答案:D解析:如图,小手盖住的点的坐标可能为,故选:D.4.答案:C解析:过M 作,,,,,,,,故选:C.5.答案:B解析:A 、检测某品牌鲜奶是否符合食品卫生标准最适合抽样调查,故A 不符合题意:B 、了解某班学生一分钟跳绳成绩,最适合全面调查,故B 符合题意;C 、了解北京市中学生视力情况,最适合抽样调查,故C 不符合题意;D 、调查某批次汽车的抗撞击能力,最适合抽样调查,故D 不符合题意;故选:B.(2,3)-//MN AB //AB CD //MN CD ∴132BMN ∴∠=∠=︒2NMD ∠=∠90BMD =︒∠ 903258NMD ∴∠=︒-︒=︒258∴∠=︒6.答案:C解析:由题意,得:.故选:C.7.答案:C 解析:点,,若直线AB 与y 轴垂直,解得,故选:C.8.答案:B 解析:较大正方形的面积为,,,较大正方形的边长应该大于2.2,小于2.3,即该大正方形的边长最接近的整数是2.故选:B.9.答案:A 解析:由得:,关于x 的一元一次不等式的所有解都是的解,故选:A.10.答案:B解析:由题意得:.又、b 是正整数,,或,或,.当,时,当,时,当,时,最小值为4故选:B.11.答案:D 解析:12.答案:D解析:A.,故此选项错误;52x y -= (1,5)A (2,1)B m m -+15,m ∴+=4m =22125+=22.2 4.84= 22.3 5.29=∴215x +≤2x ≤ x m <215x +≤2m ∴≤413a b +=a 1a ∴=9b =2a =5b =3a =1b =1a =9b =10a b +=2a =5b =7a b +=3a =1b =4a b +=a b ∴+2=B.设,,则,,设,,则,,,故此选项错误;C.设,,则,,(n 为整数),故此选项错误;D.定义为不超过x 的最大整数,,故此选项正确.故选:D.13.答案:4解析:16的算术平方根是4.14.答案:43解析:,,直线,,,,故答案为:43.15.答案:1解析:当时,AB 取最小值,最小值为1,故答案为:1.16.答案:768解析:2.1x =3.1y =[][5.2]5x y +==[][]235x y +=+=2.5x = 3.6y =[][6.1]6x y +==[][]235x y +=+=[][][]x y x y ∴+≥+2.1x =2n =[][4.1]4n x +==[]224n x +=+=[][]n x n x ∴+=+[]x 0[]1x x ∴≤-<125∠=︒ 125ADB ∴∠=∠=︒ //a l 268∠=︒268DBC ∴∠=∠=︒682543A DBC ADB ∴∠=∠-=-︒=︒∠︒AB ==∴2a =解析:18.答案:4解析:把,代入方程组,,得,,的值大于的值,即,解得因为,.解得.19.答案:(1)(2)0,1,2,3解析:(1)②-①得,把代入①中得,所以方程组的解是;(2)解不等式①得,解不等式②得,所以,不等式组的解集为,所有整数解为:0,1,2,3.20.答案:(1)(2)1p =2q =0ap q -=4ap bq -=2a =1b =-x -ax b m ++21x x m ->-+x <1x <-1=-4m =24x y =-⎧⎨=⎩24x y =-⎧⎨=⎩28y =4y =4y =240x +=2x =-24x y =-⎧⎨=⎩3x ≤1x >-13x -<≤21a b +=-52x =±30+=∴,∴,当,时,.(2)∴21.答案:证明见解析解析:证明: (已知),(垂直的定义).(已知),(同角的余角相等).(内错角相等, 两直线平行).故答案为: ;垂直的定义; ; 同角的余角相等; 内错角相等, 两直线平行.22.答案:(1)12;40%;84(2)共有160人解析:(1)随机抽取的学生人数为(人),C 等级对应的扇形圆心角为,故答案为:12,,84;≥30+≥=0=10a -=30b +=1a =3b =-1a =3b =-21a b +=-24250x -=2254x =x =CD AB ⊥ 190EDC ∴∠+∠=︒1290∠+∠︒= 2EDC ∴∠=∠//DE BC ∴EDC ∠EDC ∠601060360÷=6024141012,m ∴=---=100%40%=143608460︒⨯=︒40%(2)答:估计其中成绩为A 等级的共有160人.23.答案:(1)图见解析(3)解析:(1)如图;(2)如图所示,作点,构造图中的四边形,辅助线则(3)∵三角形内一点P 经过先向左平移5个单位长度,再向下平移4个单位长度后得到,∴.1280016060⨯=()5,4P m n ++()3,0P -PEFO ABC DEF PED DFOPEFO S S S S S ==--四边形△△△△()1113531325222=⨯+⨯-⨯⨯-⨯⨯=ABC (),Q m n ()5,4P m n ++24.答案:(1)(2)A 种材质的围棋最多能采购10套(3)能,理由见解析解析:(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,由题意得:,解得:.A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;(2)设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,由题意得:,解得:,所以a 的最大值为10,A 种材质的围棋最多能采购10套;(3)方法一:商店销售完这30套围棋能实现利润为1300元的目标;理由:设A 种材质的围棋采购b 套(),则B 种材质的围棋采购套,解得:,满足即商店销售完这30套围棋能实现利润为1300元的目标.方法二:商店销售完这30套围棋能实现利润为1300元的目标;理由:A 每套利润为元,B 每套利润为元因为A 每套利润比较高,所以A 采购最多时,利润最大,即时,总利润为,即商店销售完这30套围棋能实现利润为1300元的目标.方法三:商店销售完这30套围棋能实现利润为1300元的目标;理由如下:设A 种材质的围棋采购b 套,则B 种材质的围棋采购套,解得:250210x y =⎧⎨=⎩3518004103100x y x y +=⎧⎨+=⎩250210x y =⎧⎨=⎩()30a -()200170305400a a +-≤10a ≤10b ≤()30b -()()()250200210170301300b b -+--=10b =10b ≤25020050-=21017040-=10a =501020401300⨯+⨯=()10b ≤()30b -()()()250200210170301300b b -+--≥10b ≥由(2)知,所以时,商店销售完这30套围棋能实现利润为1300元的目标.25.答案:(1)①证明见解析②(2)解析:(1)①证明:∵,∴.∵,∴.∵,∴∴.∴.②过点B 作,如下图所示,∵,∴,∴,,∴.(2)补全图形,如图.·10b ≤10b =105︒22.5︒//AC DF 180FBC C ∠+∠=︒90C ∠=︒90FBC ∠=90EFD ∠=︒90EFB ∠=︒EFB FBC ∠=∠//EF BC //BG DE //AC DE ////AC DE BG 45DBG EDB ∠=∠=︒60GBA BAC ∠=∠=︒105FBA DBG GBA ∠=∠=∠=︒过点N 作,设.∵,∴.∴.∵平分,平分,∴,.∴.∵,∴.∴.∵,∴.∴.//NH EG MDB α∠=//EG BC //NH BC DNH MDB α∠=∠=DM FDB ∠EN GED ∠22FDB MDB α∠=∠=12GEN GED ∠=∠245EDB FDB EDF α∠=∠+∠=+︒//EG BC 245GED EDB α∠=∠=+︒22.5GEN α∠=+︒//NH EG 22.5ENH GEN α∠=∠=+︒22.5END ENH DNH ∠=∠-∠=︒。

数学七年级下学期《期末测试卷》含答案

数学七年级下学期《期末测试卷》含答案

人 教 版 数 学 七 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A. 2- B. 0 C. 1 D. 382. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生视力情况,采用抽样调查的方式4. 如图,将△ABC 平移后得到△DEF ,若∠A =44°,∠EGC =70°,则∠ACB 的度数是( )A. 26°B. 44°C. 46°D. 66°5. 若(m –2018)x |m|–2017+(n+4)y |n|–3=2018是关于x ,y 的二元一次方程,则( )A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=46. 对于任意实数m,点P(m-2,9-3m)不可能()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -119. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤010. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.) 13. 3-7的相反数是____;|2-3|=____.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19. (1)2(32)32--(2)25{342x y x y -=+= 20. 解不等式组323(1){12123x x x x x +≥---+->-,并把解集数轴上表示出来. 21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22. 如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.23. 已知在平面直角坐标系中有A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A, B, C 的位置. (2)画出ABC关于直线x=-1对称的111A B C∆,并写出111A B C∆各点坐标. (3)在y轴上是否存在点P,使以A,B, P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A.B. 0C. 1D. 【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:01<<<最小的数为:故选A.【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 【答案】D【解析】【分析】利用不等式的性质判断即可得到结果.【详解】解:若x >y ,则有x-3>y-3;33x y >;-2x <-2y ; 3-x <3-y 故选D .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解本题的关键.3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB 的度数是()A. 26° B. 44° C. 46° D. 66°【答案】A【解析】【分析】由平移前后对应角相等及三角形的一个外角等于与它不相邻的两个内角的和得出.【详解】∵△ABC平移后得到△DEF,∴∠EDF=∠A=44°,∴∠ACB=∠EGC−∠EDF=26°.故选:A.【点睛】本题主要考查了平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.同时考查了三角形的外角性质.5. 若(m–2018)x|m|–2017+(n+4)y|n|–3=2018是关于x,y的二元一次方程,则()A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=4【分析】依据二元一次方程的定义求解即可.【详解】解:()()m 2017n 3m 2018x n 4y 2018---++=是关于x ,y 的二元一次方程,20180201714031m m n n -≠⎧⎪-=⎪∴⎨+≠⎪⎪-=⎩, 解得:m 2018=-、n 4=,故选D .【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.依据二元一次方程的定义求解即可.6. 对于任意实数m ,点P (m -2,9-3m )不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【详解】A 、当点在第一象限时 20930m m -⎧⎨-⎩>>,解得2<m <3,故选项不符合题意; B 、当点第二象限时20930m m -⎧⎨-⎩<>,解得m <3,故选项不符合题意; C 、当点在第三象限时,20930m m -⎧⎨-⎩<<,不等式组无解,故选项符合题意; D 、当点在第四象限时20930m m -⎧⎨-⎩><,解得m >0,故选项不符合题意. 故选:C .【点睛】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°【答案】C【解析】【分析】先由对顶角及直角三角形两锐角互余求出∠CFM=40°,再由折叠的性质求出∠EFC′的度数,进而求出∠EFD的度数,然后根据两直线平行内错角相等即可求出结论.【详解】∵∠B′MD=50°,∴∠C′FM=40°,∴∠EFC=∠EFC′=(180°+40°) ÷2=110°,∴∠EFD=110°-40°=70°.∵AB∥CD,∴∠BEF=∠EFD=70°.故选C.【点睛】本题主要考查了矩形性质,折叠的性质,及平行线的性质,熟练掌握相关的性质是解题的关键.8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -11 【答案】A【解析】【分析】由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.【详解】解:由题意得:y= -x,代入方程组得:33221x x mx x m-++⎧⎨-⎩=①=②,消去x得:32123m m+-=,即3m+9=4m-2,解得:m=11.故选A.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤0【答案】A【解析】【分析】首先解关于x的不等式,不等式在实数范围内有解,则两个不等式的解集有公共部分,据此即可列出关于a的不等式,从而求得a的范围.【详解】解1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩①②,解①得:x≤3a+1,解②得:x>1.根据题意得:3a+1>1,解得:a>0.故选:A.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.10. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°【答案】B【解析】【详解】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x个,根据题意得5500×60+5000(x-60)>550000∴5000(x-60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D.【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式.12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)【答案】B【解析】【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),∵2017÷4=504…1,∴点A2017在第四象限,点A2016在第三象限,∵20164=504,∴A2016是第三象限的第504个点,∴A2016的坐标为(−504,−504),∴点A2017的坐标为(505,-504).故选:B.【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果.卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.)13. 3-7的相反数是____;2____.【答案】(1). 37(2). 2【解析】【详解】分析:根据相反数的定义,绝对值的性质和立方根的定义分别计算即可求解. 详解:3-7的相反数是37;因为2 1.4143≈< ,所以|2-3|=-(2-3),故答案为 (1).37 (2). 3-2. 点睛:本题考查了实数的性质,主要利用了绝对值的性质,相反数的定义,属于基础题.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC ∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.【答案】80°【解析】【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD =∠CAD =50︒,进而得出答案.【详解】∵∠BAC 的平分线交直线b 于点D ,∴∠BAD =∠CAD ,∵直线a ∥b ,∠1=50︒,∴∠BAD =∠CAD =50︒,∴∠2=180︒−50︒−50︒=80︒故答案为:80︒.【点睛】此题主要考查了平行线的性质,正确得出∠BAD =∠CAD =50︒是解题关键.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 【答案】126【解析】【分析】两式相加求出+a b =5,两式相减求出-a b =1,代入即可求解.【详解】解32132312a b a b +=⎧⎨+=⎩①②,①+②得5a+5b=25 ∴+a b =5,①-②得-a b =1∴3100()()a b a b ++-=53+1100=126.【点睛】此题主要考查二元一次方程的求解,解题的关键是熟知加减消元法的运用.16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 【答案】≥-1【解析】 【详解】分析:根据题意中的不等关系,列不等式可求解.详解:由题意可得-53x +1≤12x +-1 解不等式可得x≥-1故答案为≥-1.点睛:此题主要考查了一元一次不等式的应用,解不等式即可求出x 的范围,关键是根据题目的不等关系列不等式.17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.【答案】2【解析】【分析】根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【详解】由题意,得-3+m+1=0,解得m =2,故答案为:2.【点睛】本题考查了点的坐标,利用第二象限角平分线上的点的横坐标与纵坐标互为相反数得出方程是解题关键.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.【答案】12【解析】【分析】由条件可得到|x−2|+|y−1|=3,分四种情况:①x−2=±3,y−1=0,②x−2=±2,y−1=±1,③x−2=±1,y−1=±2,④x−2=0,y−1=±3,进行讨论即可求解.【详解】依题意有|x−2|+|y−1|=3,①x−2=±3,y−1=0,解得11xy-⎧⎨⎩==,51xy⎧⎨⎩==;②x−2=±2,y−1=±1,解得xy⎧⎨⎩==,2xy⎧⎨⎩==,4xy⎧⎨⎩==,42xy⎧⎨⎩==;③x−2=±1,y−1=±2,解得11xy⎧⎨-⎩==,13xy⎧⎨⎩==,31xy⎧⎨-⎩==,33xy⎧⎨⎩==;④x−2=0,y−1=±3,解得22xy⎧⎨-⎩==,24xy⎧⎨⎩==.故满足条件的点P有12个.故答案为:12.【点睛】考查了两点间的距离公式,本题为新概念题目,理解题目中所给新定义是解题的关键,注意分类讨论思想的应用.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤)19. (1)2-(2)25 {342 x yx y-=+=【答案】(1)2(2)21 xy=⎧⎨=-⎩【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据加减消元法即可求解.【详解】(1)2-2=2(2)解:25 342 x yx y-=⎧⎨+=⎩①②①×4,得:8x-4y=20③③+②,得11x=22,x=2将x=2代入①,得y=-1所以方程组的解是21 xy=⎧⎨=-⎩.【点睛】此题主要考查实数的运算及二元一次方程的求解,解题的关键是熟知实数的运算及二元一次方程的求解方法.20. 解不等式组323(1) {12 123x xx xx+≥---+->-,并把解集数轴上表示出来.【答案】x≥0;作图见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:323(1)12123x xx xx+≥--⎧⎪⎨-+->-⎪⎩①②解不等式①,得:x≥0解不等式②,得x>-5把不等式组的解集在数轴上表示如下:∴不等式组的解集为x≥0.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】【详解】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°, 故答案为120; ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230 =70人. 点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22. 如图,已知BC∥GE ,AF∥DE ,∠1=50°.(1)求∠AFG 的度数;(2)若AQ 平分∠FAC ,交BC 于点Q,且∠Q=15°,求∠ACB 的度数.【答案】(1)50°;(2)80°.【解析】【分析】(1)先根据BC ∥EG 得出∠E=∠1=50°,再由AF ∥DE 可知∠AFG=∠E=50°;(2)作AM ∥BC ,由平行线的传递性可知AM ∥EG ,故∠FAM=∠AFG ,再根据AM ∥BC 可知∠QAM=∠Q ,故∠FAQ=∠AFM+∠FAQ ,再根据AQ 平分∠FAC 可知∠MAC=∠QAC+∠QAM=80°,根据AM ∥BC 即可得出结论.【详解】(1)∵BC ∥EG ,∴∠E=∠1=50°.∵AF ∥DE ,∴∠AFG=∠E=50°;(2)作AM ∥BC ,∵BC ∥EG ,∴AM ∥EG ,∴∠FAM=∠AFG=50°.∵AM ∥BC ,∴∠QAM=∠Q=15°,∴∠FAQ=∠AFM+∠MAQ=65°.∵AQ 平分∠FAC ,∴∠QAC=∠FAQ=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM ∥BC ,∴∠ACB=∠MAC=80°.考点:平行线的性质.23. 已知在平面直角坐标系中有 A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 的位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P 点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A 、B 、C 三点位置,然后再连接即可;(2)首先确定A 、B 、C 三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△ABC 即为所求;(2)如图:111A B C ∆即为所求;各点坐标分别为:1A (0,1),1B (-51),,1C (43)-,; (3)解:设P (0,y ),∵A(-2,1),B(3,1),∴AB=5, ∴151=122ABP S AB y y ∆=⨯--, ∵ABP S ∆=10, ∴51=102y -, ∴1=4y -,∴y=5或y=-3;∴P(0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【答案】(1)清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元(2)方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【解析】【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40−m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【详解】解:(1)设清理养鱼网箱和捕鱼网箱的人均支出费用分别为x元、y元.根据题意,得15957000 101668000x yx y+=⎧⎨+=⎩解得20003000 xy=⎧⎨=⎩答:清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元.(2)设分配a人清理养鱼网箱,则分配(40-a)人清理捕鱼网箱.根据题意,得20003000(40)102000 40a aa a+-⎧⎨<-⎩解得18≤a<20.∵a为正整数,∴a=18或19∴一共有2种分配方案,分别为:方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【点睛】本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解析;(3)105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行解答即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α, ∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】此题考查平行线的判定与性质,余角和补角,解题关键在于作出辅助线,灵活运用所学知识进行求解.。

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。

(完整版)七年级数学下册期末测试题及答案(共五套)

(完整版)七年级数学下册期末测试题及答案(共五套)

李庄七年级数学下册期末测试题及答案姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A 。

16=±4B 。

±16=4 C.327-=-3 D 。

2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B ) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为12x y =⎧⎨=⎩的方程组是( )A 。

135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C 。

331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210。

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)

七年级下学期期末考试数学试卷(带答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个图形中,不是轴对称图形的为()A. B.C. D.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、π是变量,R为常量C.V、R是变量,、π为常量D.以上都不对3.下列事件中是不可能事件的是()A.从一副扑克牌中任抽一张牌恰好是“红桃”B.在装有白球和黑球的袋中摸球,摸出了红球C.2022年大年初一早晨艳阳高照D.从两个班级中任选三名学生,至少有两名学生来自同一个班级4.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣65.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为()A.a+b+c B.﹣a+b﹣3c C.a+2b﹣c D.﹣a+b+3c6.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对7.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1 B.3 C.5 D.78.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在以下条件中不能选择的是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.已知(x﹣2019)2+(x﹣2021)2=34,则(x﹣2020)2的值是()A.4 B.8 C.12 D.16二、填空题(本题共6小题,每小题3分,共18分.)11. 2-的相反数是_____.12. 如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点BC=,EC=2,那么线段CF的长是_______.C与点F是对应点.如果513. 已知点P (2a −2,a +5),点Q (4,5),且直线PQ ∥y 轴,则点P 的坐标为________.14. 如图a ∥b,∠1+∠2=75°,则∠3+∠4=______________.15. 方程组{4x +3y =1,mx +(m −1)y =3的解x 和y 的值相等,则m =___.16. 已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____.三、解答题(本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:||﹣+﹣(﹣1)2019.18.(6分)解方程组:.19.(6分)解不等式组.20.(8分)如图,在平面直角坐标系中,有三点A (1,0),B (3,0),C (4,﹣2).(1)画出三角形ABC ;(2)将三角形ABC 先向左平移4个单位长度,再向上平移3个单位长度,画出平移后的三角形DEF ,并写出D、E、F三点的坐标;(3)求三角形ABC的面积.21.(8分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在什么范围内?22.(8分)实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?23.(10分)已知,如图,∠CDG=∠B,AD⊥BC于点D,∠1=∠2,EF分别交AB、BC于点E、F,试判断EF与BC的位置关系,并说明理由.24.(10分)某业主贷款18920元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每个月能生产、销售2000个产品.(1)问每个月所获得利润为多少元?(2)问至少几个月后能赚回这台机器的贷款?25.(10分)已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一、选择题1.选:C.2.选:C.3.选:B.4.选:B.5.选:D.6.选:B.7.选:D.8.选:B.9.选:B.10.选:D.二、填空题11、【答案】√5-212、【答案】313、【答案】(4,8)14、【答案】105°15、【答案】1116、【答案】16三、解答题17.【解答】解:原式=﹣1﹣2+2+1=.18.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【解答】解:∵由①得:x≤3,由②得:x>﹣4,∴不等式组的解集为﹣4<x≤3.20.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;其中D(﹣3,3),E(﹣1,3),F(0,1);(3)三角形ABC的面积=×2×2=2.21.【解答】解:(1)测量的总人数是:3÷0.06=50(人),则m=50×0.28=14,n==0.26.补全频数分布直方图:故答案为14,0.26.(2)观察表格可知中位数在 161≤x<164范围内.22.【解答】解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.23.【解答】解:EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=∠2(已知),∴∠2=∠DAB(等量代换),∴EF∥AD(同位角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,∴EF与BC的位置关系是垂直(垂直的定义).24.【解答】解:(1)每个月总收入为:2000×8=16000(元),则应付的税款和其他费用为:16000×10%=1600(元),利润=16000﹣2000×5﹣1600=4400(元),答:每个月所获得利润为4400元;(2)设需要x个月后能赚回这台机器贷款,依题意,得:4400x≥18920,解得:x≥43.答:至少43个月后能赚回这台机器贷款.25.【解答】解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。

七年级下学期期末考试数学试卷(附有答案)

七年级下学期期末考试数学试卷(附有答案)

a b七年级下学期期末考试数学试卷(附有答案)一 、选择题(每小题4分,共40分)1、点P (-2021,12+a )所在象限为( )A 第一象限B 第二象限C 第三象限D 第四象限2、一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人,准备同时租用这三种客房共7间,如果每个房间都住满租房方案有 ( ) A 4种 B 3种 C 2种 D 1种3、点A (-3,-5)向上平移4个单位,再向左平移3个单位到点B ,则点B 的坐标为 ( ) A.(1,-8) B. (1, -2) C. (-6,-1 ) D. ( 0,-1)4、如右图,下列能判定AB ∥CD 的条件的个数为( ) (1)∠B+∠BCD=0180 (2)∠1=∠2;(3)∠3=∠4 ;(4)∠B=∠5 . A.1 B.2 C.3 D.45、如图和,生活中,将一个宽度相等的纸条按右图所示折叠一下; 如果∠1=140°,那么∠2的度数为( ) A 140° B 120° C 110° D 100°6、如果表示a ,b 两个实数的点在数轴上的位置如图测所示,那么化简│a-b │+2()a b +的结果等于( )A -2bB 2bC -2aD 2a7、已知五个命题,正确的有 ( )(1)有理数与无理数之和是无理数; ⑵有理数与无理数之积是无理数; (3)无理数与无理数之积是无理数; ⑷无理数与无理数之积是有理数;(5)所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。

A. 1个 B. 2个 C. 3个 D.4个8、为了了解参加某运动会的2000名运动员的年龄情况,从中抽取了100名运动员的年龄,就这个问题来说,下面说法正确的是 ( )A .2000名运动员是总体B .100名运动员是所抽取的一个样本C .样本容量为100名D .抽取的100名运动员的年龄是样本第4第5题9、若x 是49的算术平方根,则x 等于 ( )A. 7B. -7C. 49D.-4910、已知点A (-1,0),点B (2,0),在y 轴上存在一点C ,使得△ABC 的面积为6,则点C 的坐标为 ( )A (0,4)B (0,2)C (0,2)或(0,-2)D (0,4)或(0,-4) 二 、填空题(每小题4分,共40分)11、点P在第二象限,P到x 轴的距离为4,P到y 轴距离为3,则点P的坐标为 12 、4的平方根是 .13、若不等式组⎩⎨⎧>>2x mx 解集为2>,则m 取值范围是 .14 、在自然数范围内,方程的解是 .15 、把“同角的余角相等,改写成如果……那么……的形式为 。

新人教版七年级数学下册期末考试卷(参考答案)

新人教版七年级数学下册期末考试卷(参考答案)

新人教版七年级数学下册期末考试卷(参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)5.如图所示,点P到直线l的距离是()A.线段PA的长度 B.线段PB的长度C.线段PC的长度 D.线段PD的长度6.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A .点MB .点NC .点PD .点Q7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .l 1B .l 2C .l 3D .l 410.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .3C .6D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.正五边形的内角和等于______度.4.若+x x-有意义,则+1x=___________.5.对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是________.6.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)x﹣7=10﹣4(x+0.5) (2)512136x x+--=12.化简求值:()1已知a是13的整数部分,3b=,求54ab+的平方根.()2已知:实数a,b在数轴上的位置如图所示,化简:22(1)2(1)a b a b++---.3.如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.4.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、B6、C7、B8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x (x+2)(x ﹣2)2、203、5404、15、16、54°三、解答题(本大题共6小题,共72分)1、(1)3x ;(2)x=38.2、(1)±3;(2)2a +b ﹣1.3、(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;4、(1)∠BOD =138°;(2)∠COE=21°.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)A 种商品的单价为16元、B 种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m ﹣4=20 即购买A 商品的件数为12件,则购买B 商品的件数为20件;方案(2):m=13,2m ﹣4=22 即购买A 商品的件数为13件,则购买B 商品的件数为22件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1=242.
63 1.
2
抚州市2018-2019学年度下学期学生学业发展水平测试
七年级数学试题参考答案
一、选择题(本大题共6小题,每小题3分,共18分)
1.A
2.B
3.C
4.D
5.B
6.B
二、填空题(本大题共6小题,每小题3分,共18分)
7. 5.97×10-5 8. 5 9.15 10. 37° 11.130° 12. 10°、25°、40°(写3个答案以内(含3个)
的对几个给几分,超过3个答案对1个给1分,对2个给2分,对3个也给2分)
三、(本大题共5小题,每小题6分,共30分)
(2)解:原式=-1+1+
12 5分
6分
14.解:原式=a 2+4a +4-1+a 2=2a 2+4a +3 4分
当a = -1时,原式=2×(﹣1)2+4×(﹣1)+3 =2﹣4+3=1. 6分
15.(每画对一个得2分)
解:如图所示:
6分
16.解:AE ∥BF ,理由如下:
∵AC ∥BD ,
∴∠A=∠DOE , 2分
∵∠A=∠B ,
∴∠DOE=∠B , 4分
∴AE ∥BF . 6分
17.解:(1)自由转动转盘,当它停止转动时,指针指向数字的结果总共有6种,指针指向
奇数区的结果有3种,所以指针指向奇数区的概率是 3分 (2)自由转动转盘,当它停止转动时,指针指向数字的结果总共有6种,指针指向
的数小于或等于4的结果有4种,所以指针指向的数不大于4的概率是 6分
AFE CFD E D
AE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩
四、(本大题共3小题,每小题8分,共24分)
18.解:(1)∵AE =DB
∴DE +AD =AB +AD
∴AB =DE 1分
∵BC ∥EF
∴∠B =∠E 2分
(2)y =2.5n -0.8(n -1) 7分
∵将长方形ABCD 沿对角线AC 翻折,点B 落在点E 处,
∴∠E =∠B ,AB =AE ,
∴AE =CD ,∠E =∠D , 2分
在△AEF 与△CDF 中,
∴△AEF≌△CDF(AAS);4分
(2)根据(1)得:△AEF≌△CDF,EF=3
∴DF=EF=3
∵AB=4,BC=8,
∴AD=BC=8, CD=AB=46分
∴阴影部分的面积=S△ADC-S△FDC=AD·DC-FD·DC=×8×4-×3×4=16-6=10
五、(本大题共2小题,每小题9分,共18分)
21.解:(1)兔子,乌龟2分
(2)结合图象得出:兔子在起初每分钟跑700米,1500÷30=50(米)
∴乌龟每分钟爬50米;5分(3)∵48千米=48000米
∴48000÷60=800(米/分)
(1500﹣700)÷800=1(分钟)
30+0.5﹣1×2=28.5(分钟)
∴兔子在途中一共睡了28.5分钟. 9分
22.解:(1)A;2分
(2)解:∵x2-y2=16,
∴由(1)知x2-y2=(x+y)(x-y)=16
∵x+y=8,
∴x-y=25分
11111111
(3)原式
=(1-)(1+)(1-)(1+)(1-)(1+)(1-)(1+) 22332018201820192019 132432017201920182020
=⨯⨯⨯⨯⨯⨯⨯⨯⨯
223342018201820192019
12020
=⨯
22019
1010
=9分
2019
图1
六、(本大题共1小题,共12分)
23.解:(1)设射线AM 的旋转速度为x 度/秒、则BQ 的旋转速度(6-x )度/秒,依题意得:
10x =10×(6-x )+40
解得x =5
∴6-x =1
答:射线AM 、BQ 的旋转速度分别为5度/秒、1度/秒. 3分
(2)①∵AM′⊥BQ′
∴∠AHB =90°
∴∠HAB +∠ABH =90°
∵MN //PQ
∴∠BAN+∠ABQ=180°
∴∠HAN +∠HBQ =90°
∴∠BAN -α+90°-β=90°
∴∠BAN=α+β,
∴当AM′⊥BQ′时,∠BAN=α+β 6分
②由(1)知射线AM 、BQ 的旋转速度分别为5度/秒、1度/秒
当射线AM 、BQ 同时转动t 秒后,
∠MAM ′=5t ,∠QBQ ′=t ,
∴∠HAN =180°-5t,∠HAN+α=45°,
∴α=45°-(180°-5t )=5t -135°,
∵HC ⊥PQ ,
∴β+∠QBQ ′=90°
∵∠QBQ ′=t ,
∴β=90°-t ,又α=5t -135° ∴+13590-=5αβ︒
︒, 10分
即α+5β=315°. 12分
图2。

相关文档
最新文档