信息光学第一章习题-2-2015
《光学信息处理》习题解答

第 2 页 共 61 页
Q
a
<
1 L
,
b
<
1 W
《光学信息技术原理及应用》习题解答
∴ 1 > L, 1 > W ab
Q
1 a
是
H(
fx,
fy)
在
fx
方向的宽度,
1 b
是
H(
fx,
fy)
在
fy
方向的宽度,
L
、W
分别是输入函数
f ( x, y) 在频域上的频带宽。
∴ H( fx, fy) 在 fx 、 fy 方向的宽度大于 F( fx, fy) ,即 F( fx, fy) 能完全通过系统传递函数为
解:对于线性空间不变系统,设系统的脉冲响应为 h( x) ,输入函数表示式为 g( x) ,输出函数表示式为
g ' ( x) ,则
g'(x) = g(x) ∗h(x) 或 G'( f ) = G( f ) ⋅ H ( f )
+∞
∑ 由 g(x) = comb(x) 知, G( f ) = comb( f ) = δ ( f − n) ,所以 n=−∞
第 6 页 共 61 页
《光学信息技术原理及应用》习题解答
图 1.4(a)
(1)由 H 1 (
f
)
=
rect
(
f 2
)
得 h1 ( x )
=
2 sin
c(2 x)
,函数图形如图
1.4(b)所示
图 1.4(b)
+16
∑ g1(x) = gi (x) ∗ h1(x) = Λ( x − 3n) * h1( x) ,函数图形如图 1.4(c)所示。 n=−16 +16 ∑ 如果考虑到系统为线性不变系统,对上式的卷积可以先计算 Λ(x) * 2sinc(2x) 。 Λ(x − 3n) 表 n=−16
信息光学习题答案

信息光学习题答案信息光学习题答案第一章线性系统分析简要说明以下系统是否有线性和平移不变性. g?x??df?x?;g?x???f?x?dx; dx?g?x??f?x?;g?x??????f????h?x????d?;2???f???exp??j2????d? 解:线性、平移不变;线性、平移不变;非线性、平移不变;线性、平移不变;线性、非平移不变。
证明comb(x)exp(j?x)?comb(x) ???comb????x? ?x??1?证明:左边=comb???????n?????(x?2n)??2??(x?2n) ?2?n????2?n????2?n??????x??2?右边?comb(x)?comb(x)exp(j?x)?? ?n?????(x?n)??exp(j?x)?(x?n)n?????n???? ??(x?n)??exp(jn?)?(x?n)n???? n?????(x?n)??(?1)n???n?(x?n)?当n为奇数时,右边=0,当n为偶数时,右边=2所以当n为偶数时,左右两边相等。
n?????(x?2n) (x) 证明??(sin?x)?comb证明:根据复合函数形式的δ函数公式?[h(x)]??i?1n?(x?xi)h?(xi ),h?(xi)?0 式中xi是h(x)=0的根,h?(xi)表示h(x)在x?xi处的导数。
于是??(sin?x)??n?????(x?n)???co mb(x) 1 计算图题所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x≤0时,如图题(a)所示,g(x)??1?x0(1??)(1?x??)d??111?x?x3 326 图题当0 2??2?2??2?2?2?x?2设卷积为g(x),当x≤0时,如图题(a)所示,g(x)??0d??x?2 当0 2 图题g(x)??d??2?x x2?x?1?2,x?0 g(x)?2?x?1?,x?0?2即g(x)?2??? ?x??2?(x)?rect(x)?1已知exp(??x2)的傅立叶变换为exp(???2),试求?exp?x2???exp?x2/2?2解:设y??????????? ?x,z??? 即??exp(??y2)??exp(???2) 1????F?,? 得ab?ab?2坐标缩放性质??f(ax,by)???exp?x2???????exp(?y2/??? exp(??z2)??exp(??2?2)2??exp?x/2???2?????exp??y?/2??2 ? ??2??exp(?2??2z2)?2??exp(?2??2?2)计算积分.????sinc?x?dx?? 4??2?x?cos?xdx?? sinc?解:应用广义巴塞伐定理可得? sinc(x)sinc(x)dx?????2222 ?(?)?(?)d??(1?? )d??(1??)d??????103??021???1?1?1?????s inc(x)cos?xdx????(?)?????d????(?)?????d ??2???2?2????????2?1??1??1??1 ??????????? 2??2??2?? 应用卷积定理求f?x??sinc?x?sinc?2x?的傅里叶变换. 3解:??sinc(x)sinc(2x)????sinc(x)????sinc( 2x)??1???rect(?)?rect?? 2?2?当?31????时,如图题(a)所示,2211??3 G(?)??2du??? 2?12当?11???时,如图题(b)所示,2211??2 G(?)??1du?1 2??2当13???时,如图题(c)所示,22113 G(?)??1du??? 2??222G(ξ)的图形如图题(d)所示,图可知G(?)?3???1?????????? 4?3/2?4?1/2? 图题 4 设f?x??exp??x,??0,求??f?x????解:?exp(??x)???????f?x?dx?? ?0?? ?0??exp(?x)exp(?j2??x)dx??exp(??x)exp(? j2??x)dx ?2??2??(2??)2??? exp(??x)dx?2??2?(2??)2???02? 设线性平移不变系统的原点响应为h?x??exp??x?step?x?,试计算系统对阶跃函数step?x?的响应. 解:阶跃函数定义step(x)??线性平移不变系统的原点响应为h?x??exp??x?step?x??exp??x?,所以系统对解阶跃函数step?x?的响应为g(x)?step(x)?h(x)??1,?0,x?0得x?0x?0 ??0exp[?(x??)]d??1?exp(?x), x?0 有两个线性平移不变系统,它们的原点脉冲响应分别为h1?x??sinc?x?和h2?x??sinc?3x?.试计算各自对输入函数f?x??cos2?x的响应g1?x?和g2?x?. 解:已知一平面波的复振幅表达式为U(x,y,z)?Aexp[j(2x?3y?4z)] 试计算其波长λ以及沿x,y,z方向的空间频率。
信息光学基础2-1光波的数学描述 -2015 [兼容模式]
![信息光学基础2-1光波的数学描述 -2015 [兼容模式]](https://img.taocdn.com/s3/m/af5a75f44028915f804dc292.png)
2015/11/18§2‐1 二维光场分析1. 光振动的复振幅表示单色光场中某点在某一时刻的光振动可表示成:()()(),cos 2πνφu P t A P t P =-⎡⎤⎣⎦(){}[2πνφ()],Re ()j t P u P t A P e--=用复指数函数表示上式:{}φ()2πνRe ()j P j tA P ee-=2015/11/18令-—复振幅()()()exp φU P A P j P =⎡⎤⎣⎦复振幅包含了点P处光振动的振幅和初相位,——是位置坐标的复值函数,与时间无关——定态光场(){}φ()2πν,=Re ()j P j tu P t A P ee-00注:平方根二项式展开1 112b b +=+-2015/11/18)]cos cos (exp[),(βαy x jk A y x U +=线性位相因子和球面波表达式类似,平面波复振幅可分成与坐标有关和与坐标无关的两部分。
Cy x =+βαcos cos 等相位线方程为可见,等位相线是一些平行直线。
2015/11/18π2yx-虚线表示相位值相差的一组波面与平面的交线,——等相位线.2015/11/18如何理解空间频率、空间周期?2015/11/18若假设波矢k位于平面0x z exp[cos ]A jkx α=)]cos cos (exp[),(βαy x jk A y x U +=——一列沿波矢k方向传播的平面波2015/11/18空间频率与平面波的传播方向有关,——波矢量与轴的夹角越大,则λ在轴上的投影就越大,即在某方向上的空间频率就越小,——空间频率的最大值是波长的倒数。
2015/11/18尽管各方向的空间频率不同——沿波的传播方向波场的空间周期恒为。
空间频率恒为λλ/1=f。
信息光学课后习题解答 苏显渝主编 61页PPT文档

g1(x) -1 G1() 0
G 2 () H 2 ()1 2 ( 1 ) ( 1 ) 1re (c ) t1 ( 1 ) ( 1 )
3 32
1(1)(1)
6
g2(x)
-1G2()
1 cos2
3
x
1.12 已知一平面波的复振幅表达式为
试计算各自对输入函数 f(x)co 2 sx的响应
g1( x) 和 g2( x)
解: H 1()re(c )t H2()1 3rec(t3)
F ()1(1)(1)
2
G 1 ()H 1 ()1 2 ( 1 ) ( 1 )
re(c)1 t(1 )(1 ) 0
0x2
0
1 x 2
=2 1 x 2
0
其它 2x0
0x2 其它
g(x) 2( x) 2
(3 )co(m x)rbe(x c)t(xn)rec(xt)
com(xb)
n
com (x)b re(c x)t
rect( x)
=
1.6 已知 exp( x2) 的傅里叶变换为 exp(2) 试求
f () 1
h(x-)
0x
g(x)0 xf()h (x)d x1e-(x)d
0
x1e-(x)d 1ex 0
g( x)
g( x0 )
0 x0
x
1.11 有两个线性平移不变系统,它们的原点脉冲响应分别为
h 1(x)sicn (x) 和 h 2(x )sic n (3x )
ex x p 2 ) (?
exp(x2ຫໍສະໝຸດ 22)
信息光学理论与应用第四版答案第一章

信息光学理论与应用第四版答案第一章牛顿在人类科学史上的贡献是多方面的,他的成就涉及力学、光学、数学、热学、哲学、神学等。
他最主要的贡献是在力学上提出了三大运动定律和万有引力定律;在光学研究上,提出了光是由七色光组成的观点,发现并解释了“牛顿环”的干涉现象,制造出反射望远镜,同时,还继承和发展了“光的微粒学说”;在数学方面,他发现并运用微积分运算方法和无限级数理论等。
他的代表著作有《自然哲学的数学原理》、《光学》等。
下面,我们主要来看看牛顿在光学史上的研究,其伟大成就主要体现在三方面:(1)白光是由各种不同颜色的光组成的。
牛顿曾经致力于光的本质和颜色现象的研究。
1666年,他用三棱镜研究日光,通过实验提出以下光学观点:①白光是由不同颜色即不同波长的光混合而成的,光的波长不同,其折射率也会不同。
②在可见光谱中,红光波长最长,因而折射率最小;紫光波长最短,则折射率最大。
牛顿在光学史上的这一重要发现,揭示了光色的秘密,奠定了光谱分析的基础。
(2)第一架反射望远镜样机和牛顿环。
牛顿喜欢自己动手制造出各种试验设备并进行实验。
公元1668年,他制成了世界上第一架反射望远镜样机。
公元1671年,牛顿把通过改进后的反射望远镜献给了皇家学会,由此名声大振,当选为英国皇家学会会员。
反射望远镜的发明为现代大型光学天文望远镜奠定了基础。
另外,“牛顿环”的发明是牛顿在光学中的另一成就。
三棱镜用来研究日光(3)光的微粒说的继承和发展。
牛顿创立和发展了笛卡儿的微粒学说。
他认为,光是由微粒形成的,且以最快的速度沿直线传播。
光的微粒学说与稍后的光的波动说一起构成了光的两大基本理论。
迈克耳孙-麦克斯韦-是19世纪伟大的英国物理学家、数学家.麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究.尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果。
信息光学习题答案及解析

信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。
1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。
1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。
于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。
信息光学原理第一章习题答案

信息光学 补充习题0-1. 已知函数U (x )=A exp(j 2πf 0x ),求下列函数,并作出函数的图形(1) | U (x ) |2 (2) U (x ) + U*(x ) (3) | U (x ) + U*(x ) |20-2. 已知函数 f (x )=rect (x +2)+rect (x -2),求下列函数,并作出函数的图形.(1) f (x-1) (2) f (x )sgn(x )0-3. 画出下列函数的图形(1) ⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛=2rect 4rect )(x x x f (2))tri(2tri 2)(x x x g -⎪⎭⎫⎝⎛= (3))tri(22tri 2)(x x x h -⎪⎭⎫ ⎝⎛=(4) ))step(tri()(x x x p = 0-4计算:(1) sinc(x )δ (x ) (2) sinc(x )δ (x-0.5) (3) sinc(x )δ (x-1) (4) (3x +5) δ (x+3)0-5:已知连续函数f (x ),若x 0 > b > 0, 利用δ 函数可筛选出函数在x = x 0 + b 的值,试写出运算式。
0-6:f (x )为任意连续函数, a > 0, 求函数g (x ) = f (x )[δ(x +a )- δ(x -a )], 并作出示意图。
0-7:已知连续函数f (x ), a > 0和b > 0 。
求出下列函数(写出最简式并画出示意图):(1) h (x ) = f (x )δ (ax -x 0) (2) g (x ) = f (x )comb[(x - x 0)/b]0-8:画函数图形(1) (2)0-9:若)()()(x g x h x f =*,证明:)()()(00x x g x h x x f -=*-0-10利用梳函数与矩形函数的卷积表示线光栅的透过率。
假定缝宽为a ,光栅常数为d ,缝数为N .0-11 利用包含脉冲函数的卷积表示下图所示 双圆孔屏的透过率。
信息光学教程全书习题及参考答案

理想成像系统、光波在自由空间的传播都具有线性光学系统的性质。 输入函数在输入面上的平移仅对应输出函数在输出面上的相应平移,即系统传输特性满 足线性平移不变的光学系统称为线性不变光学系统。用公式可以表示为:
L{ } a1 f1 (x − x1, y − y1 ) + a2 f 2 (x − x2 , y − y2 ) = a1g1 (ξ − ξ1,η −η1 ) + a2 g 2 (ξ − ξ2 ,η −η2 )
(x,
y)
=
exp( jkd0
jλd0
)∞ ∞
−∞−∞
U0
(x0
,
y0
)exp⎨⎧
⎩
j
k 2d0
(x0 − x)2 + (y0 − y)2
⎫ ⎬dx0dy0 ⎭
∫ ∫ ( ) [ ] U2
(x,
y)
=
exp( jkd1
jλd1
)∞ ∞
−∞−∞
U1
(x1,
y1
)
exp⎢⎡− ⎣
jk 2 f1
x12 + y12
−∞
a
比较以上两式有δ (at) = 1 δ (t) 。 a
(2)
按二维 δ 函数的定义:
∞∞
∫ ∫ δ (x, y)dxdy = 1
−∞ −∞
∞
∞
= ∫ δ (x)dx ∫ δ (y)dy
−∞
−∞
∞
∞
= ab ∫ δ (ax)dx ∫ δ (by)dy
−∞
−∞
∞∞
= ab ∫ ∫ δ (ax,by)dxdy