第37-38节 梁的应力计算与强度校核(二)

合集下载

梁的应力计算公式全部解释

梁的应力计算公式全部解释

梁的应力计算公式全部解释应力是材料受力时产生的内部力,它是描述材料内部抵抗外部力的能力的物理量。

在工程领域中,计算材料的应力是非常重要的,可以帮助工程师设计和选择合适的材料,以确保结构的安全性和稳定性。

梁的应力计算公式是计算梁在受力时产生的应力的公式,它可以帮助工程师了解梁在不同条件下的应力情况,从而进行合理的设计和分析。

梁的应力计算公式是由弹性力学理论推导而来的,它可以根据梁的几何形状、受力情况和材料性质来计算梁的应力。

在工程实践中,梁的应力计算公式通常包括弯曲应力、剪切应力和轴向应力三种类型的应力。

下面将分别对这三种类型的应力计算公式进行详细解释。

1. 弯曲应力计算公式。

梁在受到外部力的作用时,会产生弯曲应力。

弯曲应力是由于梁在受力时产生的弯曲变形所引起的,它可以通过以下公式进行计算:σ = M c / I。

其中,σ表示梁的弯曲应力,单位为N/m^2;M表示梁的弯矩,单位为N·m;c表示梁截面内的距离,单位为m;I表示梁的惯性矩,单位为m^4。

弯曲应力计算公式可以帮助工程师了解梁在受力时产生的弯曲应力大小,从而进行合理的设计和分析。

在工程实践中,通常会根据梁的几何形状和受力情况选择合适的弯曲应力计算公式进行计算。

2. 剪切应力计算公式。

梁在受到外部力的作用时,会产生剪切应力。

剪切应力是由于梁在受力时产生的剪切变形所引起的,它可以通过以下公式进行计算:τ = V Q / (I b)。

其中,τ表示梁的剪切应力,单位为N/m^2;V表示梁的剪力,单位为N;Q 表示梁的截面偏心距,单位为m;I表示梁的惯性矩,单位为m^4;b表示梁的截面宽度,单位为m。

剪切应力计算公式可以帮助工程师了解梁在受力时产生的剪切应力大小,从而进行合理的设计和分析。

在工程实践中,通常会根据梁的几何形状和受力情况选择合适的剪切应力计算公式进行计算。

3. 轴向应力计算公式。

梁在受到外部力的作用时,会产生轴向应力。

轴向应力是由于梁在受力时产生的轴向变形所引起的,它可以通过以下公式进行计算:σ = N / A。

梁的应力和强度计算

梁的应力和强度计算

梁的应力和强度计算1.梁的基本假设梁的基本假设包括:梁材料是均匀各向同性的,梁截面是平面截面,梁的纵向伸缩变形可以忽略,梁的横向收缩变形可以忽略,梁截面平面保持平直。

2.梁的受力分析在进行梁的应力和强度计算之前,需要对梁的受力进行分析。

常见的梁的受力包括弯曲、剪切和轴向拉压等。

2.1弯曲弯曲是梁的一种主要受力状态,发生在梁受到弯矩作用时。

对于弯曲受力的梁,可以运用梁弯曲理论进行应力和强度计算。

常见的梁弯曲理论包括欧拉-伯努利梁理论和延性梁理论。

2.2剪切剪切是梁的另一种重要受力状态,发生在梁上部分截面受到剪力作用时。

剪切力引起梁截面上的剪应力,可以通过剪切变形理论进行计算。

2.3轴向拉压轴向拉压发生在梁上部分截面受到轴向拉力或压力作用时。

轴向拉力或压力引起梁截面上的轴向应力,可以通过轴向变形理论进行计算。

3.梁的应力分析根据梁的基本假设和受力分析,可以进行梁的应力分析。

梁的应力分析包括黄金区和非黄金区的判断、应力分布的计算和强度设计的确定。

3.1黄金区和非黄金区判断黄金区是指梁截面上应力最大的区域,通常位于材料的纤维处。

在黄金区内,应力达到梁材料的屈服强度。

非黄金区则是指其他区域,应力小于屈服强度。

3.2应力分布计算根据梁的受力和应力分析,可以计算出梁截面上的应力分布。

应力分布的计算可以通过梁的几何形状、外力和边界条件以及材料的性质来确定。

常见的应力分布包括弯曲应力、剪切应力和轴向应力等。

4.梁的强度设计梁的强度设计是根据计算得到的应力分布进行的。

根据材料的强度,可以确定梁的尺寸和形状,以满足梁的极限状态和使用状态的要求。

总结起来,梁的应力和强度计算是梁力学中的基本问题,包括梁的受力分析、应力分布计算和强度设计等内容。

通过合理的计算和设计,可以确保梁的安全和可靠性,提高结构的性能。

梁的应力及强度计算

梁的应力及强度计算

梁的应力及强度计算梁是一种常见的结构元件,用于承受或分配荷载。

在设计和分析梁的过程中,计算梁的应力及强度是非常重要的。

本文将详细介绍梁的应力及强度计算方法。

首先,梁的应力定义为单位面积上的力,用公式表示为:σ=M*y/I其中,σ表示梁的应力,M表示梁的弯矩,y表示距离中性轴的垂直距离,I表示梁的截面惯性矩。

梁的应力通常包括弯曲应力、剪切应力和轴向应力。

弯曲应力是由于弯曲力引起的应力,计算公式为:σ_b=M*y/I其中,σ_b表示弯曲应力。

剪切应力是由于纵向剪力引起的应力,计算公式为:τ=V*Q/(b*t)其中,τ表示剪切应力,V表示纵向剪力,Q为形状系数,b为梁的宽度,t为梁的厚度。

轴向应力是由于轴向力引起的应力,计算公式为:σ_a=N/A其中,σ_a表示轴向应力,N表示轴向力,A表示梁的截面积。

梁的强度是指在给定的荷载下梁能够承受的最大应力。

在计算梁的强度时,通常需要将不同种类的应力进行合并。

弯曲强度是指梁在弯曲荷载下的抗弯矩能力。

根据材料的弯曲性能和形状,可以采用破坏理论或变形理论计算梁的弯曲强度。

剪切强度是指梁在剪切荷载下的抗剪切能力。

根据材料的剪切性能和梁的几何形状,可以计算出梁的剪切强度。

轴向强度是指梁在轴向荷载下的抗轴向力能力。

轴向强度的计算通常基于材料的抗拉性能。

在进行梁的应力及强度计算时,还需要考虑其他因素,如材料的弹性模量、断裂韧性和安全系数等。

总之,梁的应力及强度计算是结构设计和分析中必不可少的一部分。

通过合理的计算方法,可以确保梁在荷载下的正常工作和安全使用。

梁的应力和强度计算

梁的应力和强度计算

z dA dM z y dA
dM y
( Stresses in Beams) 将应力表达式代入(1)式,得
FN

A
E
y

dA 0
E

A
ydA 0
待解决问题:
中性轴的位置
中性层的曲率半径ρ
S z ydA 0 A
y M y zE dA 0 A
中性轴通过横截面形心
伽利略(G.Galiieo, 1564-1642)的研究中认为: 弯曲应力是均匀分布的 (《两门新科学的对话》1638 年出版 ) , 因而得不到正确的公式,大科学家有时 也弄错。
( Stresses in Beams)
C C
Z 中性轴
Z
y

C M M
y 拉
C
Z
Z 两部分。
?
( Stresses in Beams)
横截面的 对称轴
横截面
y σ Eε E ρ
M
中性层
中性轴
1、中性轴的位置(Location of the neutral axis) 2、中性层的曲率半径 (Curvature radius of the neutral surface)
?
中性轴
( Stresses in Beams)
强度条件(strength condition):
梁内的最大工作应力不超过材料的许用应力
1、数学表达式(mathematical formula)
max
M max [ ] W
2、强度条件的应用(application of strength condition)
M max (1) 强度校核 [ ] W M max (2)设计截面 W [ ] (3)确定许可核载 M max W [ ]

梁的应力计算课件

梁的应力计算课件

高性能计算机的应用
云计算 随着云计算技术的发展,未来将更多地使用云计算资源进 行梁的应力计算。云计算资源具有高计算能力和可扩展性, 可以处理大规模的计算任务。
并行计算 并行计算可以同时处理多个计算任务,提高计算效率。未 来将发展更高效的并行算法,以更快地计算梁的应力响应。
高性能GPU加速 高性能GPU可以加速数值计算过程。未来将更多地使用 GPU加速技术,提高梁的应力计算的效率。
边界元法
边界积分方程
根据弹性力学的基本方 程,建立梁的边界积分 方程。
边界元离散
将梁的边界离散化为多 个小的单元。
单元应力计算
对每个单元进行应力计 算,得到每个单元的应 力分布。
整体应力合成
将所有单元的应力进行 合成,得到整个梁的应 力分布。
梁的应力计算实例
04
简支梁的应力计算
计算跨中截面
在跨中截面处,弯矩为零,因此可以计算出该截面的应力。需要使用挠曲线近似 法或弹性力学公式进行计算。
梁的应力计算课件
目录
• 梁的应力概述 • 梁的应力计算原理 • 梁的应力计算方法 • 梁的应力计算实例 • 梁的应力计算中的问题和挑战 • 梁的应力计算的未来发展
梁的应力概述
01
梁的应力定义
正应力
梁横截面上的内力,垂直于横截 面且指向材料内部。
剪应力
梁横截面上的内力,与横截面相 切且垂直于指向材料内部的直线。
简支边界
当梁的两端简支时,两端的位移和转角均不受限 制,但梁的跨中位置会产生较大的弯曲应力。
材料非线性的影响
弹性非线性
材料在弹性阶段内的应力-应变关系是非线性的,需要考虑这种非线性对梁的应力分布的影响。
塑性非线性

梁的应力和强度计算

梁的应力和强度计算

剪切应力的计算步骤和实例
实例 1. 一根简支梁,跨度为$L$,在跨中受到集中力$F$的作用。求该梁的剪切应力。
2. 一根连续梁,跨度为$L$,在中间支座受到集中力$F$的作用。求该梁的剪切应力。
05
梁的强度计算
强度计算的原理和方法
极限应力法
根据梁的极限应力进行计算,确保梁在承受最大 载荷时不会发生断裂或屈服。
实例
假设有一根简支梁,跨度为L,承受均布载荷q,截面面积为A。根据正应力的计算公式,可以得出正应力的大小 为σ=q*L/2A。如果已知梁的材料和截面尺寸,可以通过查找或试验得到材料的屈服强度或极限强度,并与计算 出的正应力进行比较,以判断梁的强度是否满足要求。
04
梁的剪切应力计算
剪切应力的定义和计算公式
建立梁的力学模型
根据梁的几何形状、材料属性和载荷条件, 建立相应的力学模型。
强度校核
将计算得到的最大应力与材料的许用应力进 行比较,判断是否满足强度要求。
强度计算的注意事项和限制条件
材料属性
了解所用材料的机械性能,如弹性模 量、泊松比、屈服强度等。
支承条件
考虑梁的实际支承条件,如固定、简 支或滑动支承,对计算结果的影响。
剪切应力
在梁的剪切区域,由于相邻截面发生相对错动而产生的应力。
计算公式
剪切应力的大小与作用在剪切面上的外力成正比,与剪切面的面积成反比。公式为:$tau = frac{F}{A}$, 其中$tau$为剪切应力,$F$为作用在剪切面上的外力,$A$为剪切面的面积。
剪切应力的分布和影响
分布
剪切应力在梁的剪切面上是均匀分布的,但在剪切区域之外,由于弯曲应力的存在,剪 切应力会发生变化。
梁的应力和强度计算

梁的强度计算有哪些内容

梁的强度计算有哪些内容

梁的强度计算是梁设计中的重要环节,主要包括以下几个方面:
抗弯强度计算:梁在弯曲载荷作用下,会产生弯曲变形。

为了确保梁的安全使用,需要计算其抗弯强度。

抗弯强度通常通过材料力学中的弯曲应力公式进行计算,公式中考虑了载荷大小、梁的截面尺寸和材料属性等因素。

剪切强度计算:梁在剪切载荷作用下,会产生剪切变形。

剪切强度同样需要考虑载荷大小、梁的截面尺寸和材料属性等因素。

在某些情况下,剪切强度可能成为梁设计的关键因素,因此需要进行精确计算。

局部强度计算:在梁的某些部位,如支座、集中载荷作用点等,可能存在应力集中的现象。

这些部位的局部强度需要单独进行计算,以确保梁在这些部位不会发生破坏。

稳定性计算:在某些情况下,梁可能会受到稳定性问题的影响。

例如,当梁的长度过长或者截面尺寸过小,或者受到侧向载荷的作用时,都可能导致梁的失稳。

因此,在梁的设计过程中,需要进行稳定性计算,以确保梁在使用过程中保持稳定。

疲劳强度计算:对于承受循环载荷的梁,如车辆、飞机等结构中的梁,需要考虑疲劳强度。

疲劳强度与材料的疲劳性能、载荷的大小和循环次数等因素有关。

在疲劳强度计算中,通常采用疲劳极限公式或者疲劳曲线进行计算。

综上所述,梁的强度计算涉及多个方面,包括抗弯强度、剪切强度、局部强度、稳定性和疲劳强度等。

在进行梁的设计时,需要根据具体情况选择合适的计算方法和控制标准,以确保梁的安全使用。

梁的应力和强度计算

梁的应力和强度计算

将应力表达式代入(2)式,得
E
E
y


A
yzdA 0
FN dA
A
0 (1)
I yz A yzdA 0
M yE dA
A
M y
自然满足
Mz
zdA 0 (2)
A
将应力表达式代入(3)式,得
ydA M(3)
A
y

M
E

A
y dA
2
M
E

Iz
z dA dM z y dA
dM y
( Stresses in Beams) 将应力表达式代入(1)式,得
FN

A
E
y

dA 0
E

A
ydA 0
待解决问题:
中性轴的位置
中性层的曲率半径ρ
S z ydA 0 A
y M y zE dA 0 A
中性轴通过横截面形心
只有与正应力有关的法向内力元素 d FN = dA 才能合成弯矩
剪力FS 内力 切应力
所以,在梁的横截面上一般
既有 正应力(normal stresses ),
弯矩M
正应力
又有 切应力(shear Stresses)
( Stresses in Beams)
纯弯曲(pure bending)
强度条件(strength condition):
梁内的最大工作应力不超过材料的许用应力
1、数学表达式(mathematical formula)
max
M max [ ] W
2、强度条件的应用(application of strength condition)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
王晓平
梁的应力计算及强度校核
(一) 梁的强度计算 1.梁的正应力强度条件: (1)塑性材料梁
(2)脆性材料梁(通常采用与中性轴不对称的截面形状)
式中W1、W2分别为针对计算受拉区和受压区正应力的抗 弯截面系数。
王晓平
梁的应力计算及强度校核
2.梁的剪应力强度条件:
(1)一般形式:
(2)简化形式: k为截面形状系数。矩形、圆形、圆环形和工字形截面 的k值分别为1.5、4/3、2、1; A为横截面面积。但对于工字形截面,A为其腹板部分的 面积。
工程力学
第七章 梁的应力计算及强度校核之 剪应力与强度校核
பைடு நூலகம்
王晓平
梁的应力计算及强度校核
知识目标:
1.梁横截面剪应力作用形式、分布规律及最大剪应力的 计算方法。 2.梁的强度计算方法和提高梁弯曲强度的主要措施。
能力目标:
应用强度条件解决梁的强度计算问题。
王晓平
梁的应力计算及强度校核
三、梁横截面上的剪应力
王晓平
梁的应力计算及强度校核
矩形截面梁横截面上的最大剪应力计算公式
由公式 轴上)处,t = tmax,且
知,在y = 0(即中性
王晓平
梁的应力计算及强度校核
2.非矩形截面梁横截面最大剪应力
一般公式 对于工程中较为常见的圆形、圆环形、工字形截面梁,其 横截面最大剪应力计算公式分别为 圆形截面 圆环形截面 工字形
王晓平
梁的应力计算及强度校核
【例5-8】图a所示矩形截面悬臂梁的截面尺寸为高度 h=20cm,宽度b=10cm,许用正应力和许用剪应力分别为 [s]=40MPa,[t]=12MPa。试校核此梁的强度。
王晓平
梁的应力计算及强度校核
【例5-9】 工字形截面外伸梁如图a所示,已知材料的许 用正应力和许用剪应力分别为[s]=160MPa,[t]=100MPa 。试为此梁选定工字钢型号。
王晓平
梁的应力计算及强度校核
如果梁是由型钢构成,则查附表3得到d、Ix、Sx后,由下 式计算其最大剪应力:
王晓平
梁的应力计算及强度校核
【例5-7】 计算图5-36(a)所示矩形截面简支梁危险截面
上的最大剪应力。图中的截面尺寸为mm。
王晓平
梁的应力计算及强度校核
四、梁的强度计算 在梁的强度计算中,除下面指出的几种特殊形式的梁必须 注意其剪应力强度问题外,通常是以正应力作为控制条件 ,而对剪应力只作(或不作)强度校核。 几种特殊形式的梁是: (1)高跨比较大的短粗梁,或在支座附近有较大集中荷载 作用的梁; (2)自行焊接的组合截面钢梁; (3)木梁(顺纹方向)。
1.矩形截面梁横截面上剪应力计算公式 矩形截面梁横截面上的剪应力计算公式基于以下两条假 定: (1)假定横截面上剪应力的方向都与该截面上剪力的方 向相同。 (2)假定距中性轴等距离处各点的剪应力相等。
王晓平
梁的应力计算及强度校核
矩形截面上任意点剪应力计算公式为
由此可见,矩形截面梁横截面上的剪应力沿截面高度成抛 物线分布
王晓平
王晓平
相关文档
最新文档