导数解析几何练习题

合集下载

高二期末复习导数解析几何概率北京丰台二中张健

高二期末复习导数解析几何概率北京丰台二中张健

导数题1.已知函数()y f x =的图象如图所示,设函数()y f x =从-1到1的平均变化率为1v ,从1到2的平均变化率为2v ,则1v 与2v 的大小关系为 (A )12v v > (B )12v v = (C )12v v < (D )不确定2. 在平面直角坐标系中,已知点 是函数的图象上的动点,该图象在 处的切线交 轴于点,过点 作 的垂线交 轴于点 ,设线段的中点的纵坐标为,则 的最大值是 .3. 已知函数()ln(1)ln(1)f x x x =+--,有如下结论:①()1,1x ∀∈-,有()()f x f x -=;②()1,1x ∀∈-,有()()f x f x -=-; ③()12,1,1x x ∀∈-,有1212()()0f x f x x x ->-;④()12,0,1x x ∀∈,有1212()()()22x x f x f x f ++≤. 其中正确结论的序号是 .(写出所有正确结论的序号)4. 已知函数2()ln f x x a x =-的图象上,且'(1)0f =.(Ⅰ)求实数a 的值;(Ⅱ)是否存在实数m ,当(0,1]x ∈时,函数2()()(1)g x f x x m x =-+-的最小值为0,若存在求出m 的取值范围;若不存在,说明理由;(Ⅲ)若120x x <<,求证数212122ln ln x x x x x -<-.5. 已知函数ln ()()xf x mx m R x=-∈. (1)当m =0时,求函数f (x )零点的个数;(2)当m ≥0时,求证函数f (x )有且只有一个极值点; (3)当b >a >0时,总有()()1f b f a b a->-成立,求实数m 的取值范围.6. 已知函数f (x ) =ln x -a 2x 2+ax (a ∈R ).( I ) 当a =1时,求函数f (x )的单调区间;( II ) 若函数f (x )在区间 (1,+∞)上是减函数,求实数a 的取值范围.7. 已知22()(0)(1)ax f x a x +=>+.(Ⅰ)若1a =,求)(x f 在1x =处的切线方程;(Ⅱ)确定函数)(x f 的单调区间,并指出函数()f x 是否存在最大值或最小值.8. 已知函数()e 1x f x x -=+-.(Ⅰ)求函数()f x 的极小值;(Ⅱ)如果直线1y kx =-与函数()f x 的图象无交点,求k 的取值范围.导数题答案:4.解:(Ⅰ)当1a =时,2()ln f x x x x =-+,定义域是(0,)+∞.'1()21f x x x=-+, 由'()0f x >,解得01x <<;由'()0f x <,解得1x >;所以函数()f x 的单调递增区间是()0,1,单调递减区间是()1,+∞. …………………5分 (Ⅱ)(法一)因为函数()f x 在区间(1,)+∞上是减函数,所以'()0f x ≤在()1,+∞上恒成立, 则'21()20f x a x a x=-+≤,即22()210g x a x ax =--≥在()1,+∞上恒成立. …………………7分 ① 当a =时,()10g x =-<,所以0a =不成立. …………………9分② 当0a ≠时,22()21g x a x ax =--,290a ∆=>,对称轴24a x a =. 2(1)014g a a ≥⎧⎪⎨<⎪⎩,即22(1)2104g a a a a ⎧=--≥⎪⎨<⎪⎩,解得112104a a a a ⎧≤-≥⎪⎪⎨⎪<>⎪⎩或或 所以实数a 的取值范围是1,12a a ≤-≥. …………………13分(法二)'21()2f x a x a x =-+2221a x ax x-++=,定义域是(0,)+∞.①当0a =时,()ln f x x =在区间(1,)+∞上是增函数,所以0a =不成立. …………………8分②0a ≠时,令'()0f x =,即22210a x ax --=,则1211,2x x a a=-=, …………………9分(i )当0a >时,由'()0f x <,解得1x a>, 所以函数()f x 的单调递减区间是1,a ⎛⎫+∞⎪⎝⎭.因为函数()f x 在区间(1,)+∞上是减函数,+所以11a≤,解得1a ≥. …………………11分(ii )当0a <时,由'()0f x <,解得12x a>-, 所以函数()f x 的单调递减区间是1,2a ⎛⎫-+∞ ⎪⎝⎭. 因为函数()f x 在区间(1,)+∞上是减函数,所以112a -≤,解得12a ≤-. 综上实数a 的取值范围是112a a ≤-≥或. 5. 解:(1)当m =0时,ln ()xf x x=(x>0). /1ln ()xf x x-=, 令/()0f x =,得x e =.∴函数f ( x )在区间(0,e )上单调递增,在(e,+∞)上单调递减. 2分 ∴max 1()()0f x f e e==>. 又当取1x e =时,1()0f e e=-<.∴函数()f x 在区间(0,e)内有且只有一个零点;又当x e >时,ln ()0xf x x=>恒成立, ∴函数函数()f x 在区间(e ,+∞)内没有零点。

导数复习题(含答案)

导数复习题(含答案)
所以函数 在 上是增函数,
因为 ,所以 ,即 ,
所以 化为 ,
当 时,不等式 等价于 ,即 ,解得 ;
当 时,不等式 等价于 ,即 ,解得 ;
综上,不等式 的解集为 .
点睛:本题考查了与函数有关的不等式的求解问题,其中解答中涉及到利用条件构造新函数和利用导数研究函数的单调性,以及根据单调性和奇偶性的关系对不等式进行转化,解答中一定要注意函数值为零是自变量的取值,这是题目的一个易错点,试题综合性强,属于中档试题.
A. B. C. D.
【答案】A
【解析】由题意得 ,令
,选A.
点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.
故答案为B。
11.已知函数 有两个零点,则 的取值范围是()
A. B. C. D.
【答案】D
【解析】函数 的定义域为 ,因为 ,当 时, ,则函数 在 上单调递增,不满足条件;当 时,令 ,得 ,所以 在 上单调递减,在 上单调递增,所以 为极小值点,要使 有两个零点,即要 ,即 ,则 的取值范围是 ,故选D.
6.函数 的图象是()
A. B.
C. D.
【答案】A
【解析】由函数 ,则 ,所以函数 为奇函数,
图象关于原点对称,
又 时, ,
所以当 时, 单调递增,当 时, 单调递减,
综上,函数的图象大致为选项A,故选A.
7.已知函数 是函数 的导函数, ,对任意实数都有 ,设 则不等式 的解集为()

2-3-23函数、导数与不等式、解析几何、数列型解答题

2-3-23函数、导数与不等式、解析几何、数列型解答题

高考专题训练二十三函数、导数与不等式、解析几何、数列型解答题班级_______ 姓名_______ 时间:45分钟 分值:72分 总得分________1.(12分)(2011·成都市高中毕业班第二次诊断性检测)设△ABC 的三内角A 、B 、C 所对应的边长分别为a 、b 、c ,平面向量m =(cos A ,cos C ),n =(c ,a ),p =(2b,0),且m ·(n -p )=0.(1)求角A 的大小;(2)当|x |≤A 时,求函数f (x )=sin x cos x +sin xsin ⎝ ⎛⎭⎪⎫x -π6的值域. 解:(1)m ·(n -p )=(cos A ,cos C )·(c -2b ,a ) =(c -2b )cos A +a cos C =0⇒(sin C -2sin B )cos A +sin A cos C =0⇒-2sin B cos A +sin B =0. ∵sin B ≠0,∴cos A =12⇒A =π3.(2)f (x )=sin x cos x +sin x sin ⎝ ⎛⎭⎪⎫x -π6=12sin x cos x +32sin 2x =14sin2x +32·1-cos2x 2=34+14sin2x - 34cos2x =34+12sin ⎝ ⎛⎭⎪⎫2x -π3.∵|x |≤A ,A =π3,∴-π3≤x ≤π3-π≤2x -π3≤π3∴-1≤sin ⎝ ⎛⎭⎪⎫2x -π3≤32⇒3-24≤34+12sin ⎝ ⎛⎭⎪⎫2x -π3≤32.∴函数f (x )的值域为[3-24,32].2.(12分)(2011·正定)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB =2EF =2,EF ∥AB ,EF ⊥FB ,∠BFC =90°,BF =FC ,H 为BC 的中点.(1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求四面体B —DEF 的体积.分析:本题考查空间线面平行、线面垂直、面面垂直、体积的计算等基础知识,同时考查空间想象能力与推理论证能力.解:(1)证明:设AC 与BD 交于点G ,则G 为AC 的中点.连接EG 、GH ,由于H 为BC 的中点,故GH 綊12AB .又EF 綊12AB ,∴EF 綊GH ,∴四边形EFHG 为平行四边形,∴EG ∥FH ,而EG ⊂平面EDB ,∴FH ∥平面EDB . (2)证明:由四边形ABCD 为正方形,有AB ⊥BC .又EF ∥AB ,∴EF ⊥BC .而EF ⊥FB ,∴EF ⊥平面BFC ,∴EF⊥FH ,∴AB ⊥FH .又BF =FC ,H 为BC 的中点,∴FH ⊥BC . ∴FH ⊥平面ABCD .∴FH ⊥AC .又FH ∥EG ,∴AC ⊥EG .又AC ⊥BD ,EG ∩BD =G , ∴AC ⊥平面EDB .(3)∵EF ⊥FB ,∠BFC =90°,∴BF ⊥平面CDEF . ∴BF 为四面体B -DEF 的高.∵BC =AB =2,∴BF =FC = 2.又EF =1, ∴V B -DEF =13×12×1×2×2=13.3.(12分)(2011·预测题)小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为45,34,23,且每个问题回答正确与否相互独立.(1)求小王过第一关但未过第二关的概率;(2)用X 表示小王所获得奖品的价值,写出X 的概率分布列,并求X 的数学期望.解:(1)设小王过第一关但未过第二关的概率为P 1,则P 1=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫14+34×14=725.(2)X 的取值为0,1000,3000, 6000, 则P (X =0)=15+45×15=925,P (X =1000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫14+34×14=725,P (X =3000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫232-C 12⎝ ⎛⎭⎪⎫232×13=775, P (X =6000)=⎝ ⎛⎭⎪⎫452⎝ ⎛⎭⎪⎫342⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232+C 12⎝ ⎛⎭⎪⎫232×13=415, ∴X 的概率分布列为∴X 的数学期望E (X )=0×25+1000×25+3000×75+6000×415=2160.4.(12分)(2011·天津卷)已知a >0,函数f (x )=ln x -ax 2,x >0.(f (x )的图象连续不断)(1)求f (x )的单调区间;(2)当a =18时,证明:存在x 0∈(2,+∞),使f (x 0)=f ⎝ ⎛⎭⎪⎫32;(3)若存在均属于区间[1,3]的α,β,且β -α≥1,使f (α)=f (β),证明:ln3-ln25≤a ≤ln23.分析:本小题主要考查导数的运算、利用导数研究函数的单调性、解不等式、函数的零点等基础知识,考查运算能力、分类讨论的思想、分析解决问题的能力.解:(1)f ′(x )=1x -2ax =1-2ax 2x ,x ∈(0,+∞).令f ′(x )=0,解得x =2a2a.当x 变化时,f ′(x )、f (x )的变化情况如下表:⎝⎭⎝ ⎛⎭⎪⎫2a 2a ,+∞. (2)证明:当a =18时,f (x )=ln x -18x 2,由(1)知f (x )在(0,2)内单调递增,在(2,+∞)内单调递减.令g (x )=f (x )-f ⎝ ⎛⎭⎪⎫32.由于f (x )在(0,2)内单调递增, 故f (2)>f ⎝ ⎛⎭⎪⎫32,即g (2)>0.取x ′=32e>2,则g (x ′)=41-9e 232<0.所以存在x 0∈(2,x ′),使g (x 0)=0,即存在x 0∈(2,+∞),使f (x 0)=f ⎝ ⎛⎭⎫32.(说明:x ′的取法不唯一,只要满足x ′>2,且g (x ′)<0即可.)(3)证明:由f (α)=f (β)及(1)的结论知α<2a2a<β,从而f (x )在[α,β]上的最小值为f (α),又由β-α≥1,α,β∈[1,3],知1≤α≤2≤β≤3.故⎩⎪⎨⎪⎧ f (2)≥f (α)≥f (1),f (2)≥f (β)≥f (3).即⎩⎪⎨⎪⎧ln2-4a ≥-a ,ln2-4a ≥ln3-9a . 从而ln3-ln25≤a ≤ln23.5.(12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B ,已知点A 的坐标为(-a,0),点Q (0,y 0)在线段AB 的垂直平分线上,且QA →·QB →=4.求y 0的值.分析:本题主要考查椭圆的标准方程和几何性质、直线的方程、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查运算能力和推理能力.解:(1)由e =c a =32,得3a 2=4c 2,再由c 2=a 2-b 2,得a =2b .由题意可知12×2a ×2b =4,即ab =2.解方程组⎩⎪⎨⎪⎧a =2b ,ab =2,得a =2,b =1.所以椭圆的方程为x 24+y 2=1.(2)由(1)可知A (-2,0),设B 点的坐标为(x 1,y 1),直线l 的斜率为k ,则直线l 的方程为y =k (x +2).于是A ,B 两点的坐标满足方程组⎩⎨⎧y =k (x +2),x 24+y 2=1.由方程组消去y 并整理,得 (1+4k 2)x 2+16k 2x +(16k 2-4)=0. 由-2x 1=16k 2-41+4k 2,得 x 1=2-8k 21+4k 2,从而y 1=4k 1+4k 2.设线段AB 的中点为M ,则M 的坐标为⎝ ⎛⎭⎪⎫-8k 21+4k 2,2k 1+4k 2. 以下分两种情况:①当k =0时,点B 的坐标为(2,0),线段AB 的垂直平分线为y 轴,于是QA →=(-2,-y 0),QB →=(2,-y 0).由QA →·QB →=4,得y 0=±2 2.②当k ≠0时,线段AB 的垂直平分线的方程为 y -2k 1+4k =-1k ⎝ ⎛⎭⎪⎫x +8k 21+4k 2. 令x =0,解得y 0=-6k 1+4k2. 由|QA →|=(-2,-y 0),QB →=(x 1,y 1-y 0), QA →·QB →=-2x 1-y 0(y 1-y 0)=-2(2-8k 2)1+4k 2+6k 1+4k 2⎝ ⎛⎭⎪⎫4k1+4k 2+6k 1+4k 2=4(16k 4+15k 2-1)(1+4k 2)2=4,整理得7k 2=2,故k =±147,所以y 0=±2145.综上,y 0=±22或y 0=±2145.6.(12分)(2011·湖北卷)已知数列{a n }的前n 项和为S n ,且满足:a 1=a (a ≠0),a n +1=rS n (n ∈N *,r ∈R ,r ≠-1).(1)求数列{a n }的通项公式;(2)若存在k ∈N *,使得S k +1,S k ,S k +2成等差数列,试判断:对于任意的m ∈N *,且m ≥2,a m +1,a m ,a m +2是否成等差数列,并证明你的结论.分析:本小题主要考查等差数列、等比数列等基础知识,同时考查推理论证能力,以及特殊与一般的思想.解:(1)由已知a n +1=rS n ,可得a n +2=rS n +1,两式相减可得 a n +2-a n +1=r (S n +1-S n )=ra n +1,即a n +2=(r +1)a n +1,又a 2=ra 1=ra ,所以当r =0时,数列{a n }为:a,0,…,0,…;当r ≠0,r ≠-1时,由已知a ≠0,所以a n ≠0(n ∈N *), 于是由a n +2=(r +1)a n +1,可得a n +2a n +1=r +1(n ∈N *),∴a 2,a 3,…,a n ,…成等比数列, ∴当n ≥2时,a n =r (r +1)n -2a .综上,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧a ,n =1,r (r +1)n -2a ,n ≥2. (2)对于任意的m ∈N *,且m ≥2,a m +1,a m ,a m +2成等差数列,证明如下:当r =0时,由(1)知,a n =⎩⎪⎨⎪⎧a ,n =1,0,n ≥2.∴对于任意的m∈N*,且m≥2,a m+1,a m,a m+2成等差数列.当r≠0,r≠-1时,∵S k+2=S k+a k+1+a k+2,S k+1=S k+a k+1.若存在k∈N*,使得S k+1,S k,S k+2成等差数列,则S k+1+S k+2=2S k,∴2S k+2a k+1+a k+2=2S k,即a k+2=-2a k+1.由(1)知,a2,a3,…,a m,…的公比r+1=-2,于是对于任意的m∈N*,且m≥2,a m+1=-2a m,从而a m+2=4a m,∴a m+1+a m+2=2a m,即a m+1,a m,a m+2成等差数列.综上,对于任意的m∈N*,且m≥2,a m+1,a m,a m+2成等差数列.。

全国卷高考数学导数、解析几何大题专项训练含答案(二)

全国卷高考数学导数、解析几何大题专项训练含答案(二)

全国卷高考数学导数、解析几何解答题专项训练(二)一、解答题1.设函数32()2f x x a x b x a =+++,2()32gx x x =-+,其中x R ∈,a 、b 为常数,已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l 。

(I ) 求a 、b 的值,并写出切线l 的方程;(II )若方程()()f x g x m x +=有三个互不相同的实根0、x 、x ,其中12x x <,且对任意的[]12,x x x ∈,()()(1)fxg x m x +<-恒成立,求实数m 的取值范围。

2.(本小题满分12分) 已知函数22()ln axf x x e=-,(a e R,∈为自然对数的底数). (Ⅰ)求函数()f x 的递增区间;(Ⅱ)当1a =时,过点(0, )P t ()t ∈R 作曲线()y f x =的两条切线,设两切点为111(,())P x f x ,222(,())P x f x 12()≠x x ,求证12x x +为定值,并求出该定值。

3.若函数()x f 满足:在定义域内存在实数0x,使()()()k f x f k x f +=+00(k 为常数),则称“f (x )关于k 可线性分解”.(Ⅰ)函数()22x x f x+=是否关于1可线性分解?请说明理由;(Ⅱ)已知函数()1ln +-=ax x x g ()0>a 关于a 可线性分解,求a 的取值范围;(Ⅲ)证明不等式:()()12e 321-≤⨯⨯⨯⨯n n n Λ()*∈N n . 4.已知x=1是()2ln bf x x x x =-+的一个极值点(1)求b 的值; (2)求函数()f x 的单调增区间;(3)设x x f x g 3)()(-=,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由。

5.已知函数2()x f x e x ax =--,如果函数()f x 恰有两个不同的极值点1x ,2x ,且12x x <.(Ⅰ)证明:1ln 2x <;(Ⅱ)求1()f x 的最小值,并指出此时a 的值.6.设函数2()ln 4f x a x x =-,2()(0,0,,)g x bx a b a b R =≠≠∈.(Ⅰ)当32b =时,函数()()()h x f x g x =+在1x =处有极小值,求函数()h x 的单调递增区间;(Ⅱ)若函数()f x 和()g x 有相同的极大值,且函数()()()g x p x f x x =+在区间2[1,]e 上的最大值为8e -,求实数b 的值(其中e 是自然对数的底数) 7.(本小题满分12分)已知函数()ln f x x a x =-,1(), (R).ag x a x +=-∈(Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间; (Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.8.已知函数2()(0)f x ax kbx x =+>与函数()ln ,、、g x ax b x a b k =+为常数,它们的导函数分别为()y f x '=与()y g x '=(1)若()g x 图象上一点(2,(2))p g 处的切线方程为:22ln 220x y -+-=,求、a b 的值;(2)对于任意的实数k,且、a b 均不为0,证明:当0ab >时,()y f x '=与()y g x '=的图象有公共点;(3)在(1)的条件下,设112212(,),(,),()A x yB x y x x <是函数()y g x =的图象上两点,21021()y y g x x x -'=-,证明:102x x x <<9.(本小题满分13分)已知函数21()ln (,0).2f x x ax a R a =-∈≠(I )求函数()f x 的单调区间;(II )已知点1111(1,),(,)(1):()2A a x y x C y f x ->=设B 是曲线图角上的点,曲线C上是否存在点00(,)M x y 满足:①1012x x +=;②曲线C 在点M 处的切线平行于直线AB ?请说明理由。

导数专题训练(含答案)

导数专题训练(含答案)

导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。

高中数学解析几何大题专项练习

高中数学解析几何大题专项练习

高中数学解析几何大题专项练习1、已知椭圆G:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的两个焦点为F1、F2,短轴两端点B1、B2,已知F1、F2、B1、B2四点共圆,且点N(x,y)到椭圆上的点最远距离为52.1)求此时椭圆G的方程;2)设斜率为k(k≠0)的直线m与椭圆G相交于不同的两点E、F,Q为EF的中点,问E、F两点能否关于直线对称?若能,求出k的取值范围;若不能,请说明理由。

2、已知双曲线x-y=1的左、右顶点分别为A1、A2,动直线l:y=kx+m与圆x+y=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1)、P2(x2,y2)。

Ⅰ)求k的取值范围,并求x2-x1的最小值;Ⅱ)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么,k1×k2是定值吗?证明你的结论。

3、已知抛物线C:y=ax^2的焦点为F,点K(-1,0)为直线l与抛物线C准线的交点,直线l与抛物线C相交于A、B两点,点A关于x轴的对称点为D。

1)求抛物线C的方程。

2)证明:点F在直线BD上;3)设FA×FB=9,求△BDK的面积。

4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为1/2,中点T在直线OP上,且A、O、B三点不共线。

I)求椭圆的方程及直线AB的斜率;Ⅱ)求△PAB面积的最大值。

5、设椭圆(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的焦点分别为F1(-1,0)、F2(1,0),直线l:x=a(b^2/a)交x轴于点A,且AF1=2AF2.Ⅰ)试求椭圆的方程;Ⅱ)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E(如图所示),若四边形DMENE的面积为27,求DE 的直线方程。

6、已知抛物线P:x^2=2py(p>0)。

Ⅰ)若抛物线上点M(m,2)到焦点F的距离为3.ⅰ)求抛物线P的方程;ⅱ)设抛物线P的准线与y轴的交点为E,过E作抛物线P的切线,求此切线方程;Ⅱ)设过焦点F的动直线l交抛物线于A、B两点,连接AO,BO并延长分别交抛物线的准线于C、D。

2-3-23函数、导数与不等式、解析几何、数列型解答题

2-3-23函数、导数与不等式、解析几何、数列型解答题

前 n 项和.
数学(理) 第8页 新课标· 高考二轮总复习
[分析] 本题主要考查等比数列的通项公式、 数列求 和及对数运算. 考查灵活运用基本知识解决问题的能力、 运算求解能力和创新思维能力.对于通项公式,可以利 用基本量法求出首项和公比;对于数列求和,可通过对 数运算求出 bn,然后利用裂项法求和.
第二部分
高考题型解读
数学(理) 第1页 新课标· 高考二轮总复习
题型三
解答题
数学(理) 第2页 新课标· 高考二轮总复习
第二十三讲
函数、导数与不等式、
解析几何、数列型解答题
数学(理) 第3页 新课标· 高考二轮总复习
好方法好成绩
1.函数与不等式型解答题一直是高考的压轴题之 一,这类解答题的命题方式灵活多变,其主要特点有两 个:一是涉及的知识面广泛,从简单的一次函数到复杂 的复合后的指数、对数函数及导数等;二是试题中蕴含 着丰富的数学思想方法,考生必须对数学思想方法有较 为深刻的领会,才能做出正确的解答.这类试题中值得 注意的题型是:函数、导数与不等式恒成立问题,利用
1 h(x)>0,可得 2h(x)<0.与题设矛盾. 1-x (ⅲ)设 k≥1.此时 h′(x)>0, h(1)=0, 而 故当 x∈(1, 1 +∞)时,h(x)>0,可得 2h(x)<0.与题设矛盾. 1-x 综合得,k 的取值范围为(-∞,0].
数学(理) 第17页 新课标· 高考二轮总复习
【热点例 3】 (2011· 新课标全国卷)在平面直角坐标 系 xOy 中,已知点 A(0,-1),B 点在直线 y=-3 上, → → → → → → M 点满足MB∥OA,MA· =MB· ,M 点的轨迹为曲 AB BA 线 C. (1)求 C 的方程; (2)P 为 C 上的动点,l 为 C 在 P 点处的切线,求 O 点到 l 距离的最小值.

解析几何典型大题

解析几何典型大题

解析几何典型大题几何学是数学中的一个重要分支,而解析几何则是几何学中的一个重要研究方向。

在高中数学课程中,解析几何往往占据了重要的篇幅,而典型大题则是解析几何中学生必须掌握的一部分内容。

下面将对几个典型的解析几何大题进行解析,分别从直线、圆、抛物线和椭圆四个方面进行讨论。

一、直线直线是解析几何中最基础的图形之一,其中最常见的问题是求两直线的交点或判断直线的位置关系。

例如,已知直线L1的方程为y=2x+3,直线L2经过点(-1,5)且与L1垂直,我们需要求L2的方程和L1与L2的交点。

解题步骤如下:首先,由L1的斜率为2可得L2的斜率为-1/2。

接着,由L2过点(-1,5)可得到L2的方程为y=-1/2x+3/2。

最后,将L2的方程与L1的方程联立,解方程组可得到交点的坐标为(4,-1)。

二、圆圆是解析几何中的另一个基本图形,问题类型多样,常见的有求圆的方程和圆与直线的位置关系等。

例如,已知圆的圆心为(-2,3),半径为4,我们需要求圆的方程及圆与直线y=2x-1的位置关系。

解题步骤如下:首先,由圆的圆心坐标可得到圆的方程为(x+2)^2+(y-3)^2=16。

接着,将直线的方程y=2x-1代入圆的方程,解方程组可得判别式为D=4(2√5+⅘),由判别式的正负可以判断两者的位置关系。

三、抛物线抛物线是解析几何中的另一个重要图形,经常涉及到求焦点、顶点、方程以及切线等问题。

例如,已知抛物线的焦点为(2,3)且过点(-1,5),我们需要求抛物线的方程及过给定点的切线方程。

解题步骤如下:首先,由焦点可得抛物线的对称轴为x=2。

接着,由对称轴和焦点可确定抛物线的顶点为(2,3)。

再根据顶点和焦点可得到抛物线的方程为(y-3)^2=4(x-2)。

最后,将给定点(-1,5)代入抛物线的方程,求导数并带入切线的一般方程y-y0=f'(x0)(x-x0),可求得过给定点的切线方程为y=-5x+0。

四、椭圆椭圆是解析几何中的一种特殊曲线,需要掌握求椭圆的方程以及判断其性质等问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学文科晚辅导
1、设a ,b
都是非零向量,下列四个条件中,使成立的充分条件是( ).
A .a =-b
B .a ∥b
C .a =2b
D .a ∥b 且|a|=|b|
2、下列说法正确的是( )
A .函数的极大值就是函数的最大值
B .函数的极小值就是函数的最小值
C .函数的最值一定是极值
D .在闭区间上的连续函数一定存在最值
3、若(2,+∞)为函数y=2x-错误!未找到引用源。

的递增区间,则a 的取值范围为 ( )
A.a ≥-8
B.-8<a<0
C.a<-8
D.a>0
4、已知命题任意;命题.则下列判断正确的是( )
A .是真命题
B .
是真命题 C .是真命题 D .是真命题 5、已知直线y =x +1与曲线y =ln(x +a)相切,则a 的值为 ( ).
A .1
B .2
C .-1
D .-2
6、已知双曲线22221x y a b
-=的一条渐近线方程为43y x =,则双曲线的离心率为( ) A .53 B .213 C .54 D .72
7、2{||1|1,},{|log 1,},A x x x R B x x x R =-≥∈=>∈则“x ∈A ”是“x ∈B ”的( )
A .充分非必要条件
B .必要非充分条件
C .充分必要条件
D .既非充分也非必要条件
8、已知函数()y xf x '=-的图象如图(其中()f x '是函数()f x 的导函数),下面四个图象中,()y f x =的图象可能是
9、F 1、F 2分别是双曲线22
221x y a b
-=的左、右焦点,A 是其右顶点,过F 2作x 轴的垂线||||=a b a b :p 1,2->∈x x R x :q ,R x ∈存在p ⌝q q p 且q p ⌝且11=+x
x
与双曲线的一个交点为P ,G 是12PF F ∆的重心,若120GA F F ⋅=,则双曲线的离心率是
A .2
B .2
C .3
D .3
10、与曲线相切于点处的切线方程是( ) A . B . C . D .
11、已知双曲线116
92
2=-y x 的左右焦点分别为21,F F ,定点)3,1(A ,点P 在双曲线的右支上运动,则PA PF +1的最小值等于________.
12、已知点B 为双曲线22
221(0,0)y x a b a b
-=>>的左准线与x 轴的交点,点A 坐标为(0,b),若满足3AP AB =点P 在双曲线上,则双曲线的离心率为_____________
13、已知点M 与双曲线
-=1的左,右焦点的距离之比为2:3,则点M 的轨迹方
程为 . 14、双曲线22
1412
x y -=的焦点到渐近线的距离为 15、已知函数()1ln (0).f x x a x a =--<
(1)确定函数()y f x =的单调性;
(2)若对任意(]12,0,1x x ∈,且12x x ≠,都有121211|()()|4|
|f x f x x x -<-,求实数a 的取值范围.
16、已知椭圆)0(122
22
>>=+b a b y a x ,直线l 与椭圆交于A 、B 两点,M 是线段AB 的中点,
21y x e =
(,)P e e 2y ex =-2y ex =+2y x e =+2y x e =-
连接OM 并延长交椭圆于点C .直线AB 与直线OM 的斜率分别为k 、m ,且21a km -=.
(Ⅰ)求b 的值;
(Ⅱ)若直线AB 经过椭圆的右焦点F , 问:对于任意给定的不等于零的实数k ,是否存在a ∈[2,)+∞,使得四边形OACB 是平行四边形,请证明你的结论。

O
x y
A
B
C M
F。

相关文档
最新文档