高中数学选择填空压轴题精选(解析几何1)资料

合集下载

高中数学选择填空压轴题精选(解析几何1)

高中数学选择填空压轴题精选(解析几何1)

已知椭圆E :22142x y +=,O 为坐标原点,A 、B 是椭圆E 上两点,且△AOB,则11||||OA OB +的最小值是 . 解法一(利用椭圆参数方程)设(2cos ), (2cos )A B ααββ,因为AOB S ∆=,所以12211||2AOB S x y x y ∆=-=,cos sin sin cos |αβαβ-=|sin()|1βα∴-=, cos()0βα∴-=,()2k k Z πβαπ=++∈,222222||||4cos 2sin 4cos ()2sin ()622OA OB ππαααα∴+=+++++=.下面求11||||OA OB +的最小值,有如下方法: ①均值不等式22||||||||32OA OB OA OB +⋅≤=,11||||3OA OB ∴+≥≥=. ②平方平均大于等于调和平均21111a b a b≥⇒+≥+,11||||OA OB +≥== ③权方和不等式33322211122222221111(11)||||(||)(||)(||+||)OA OB OA OB OA OB ++=+≥==当且仅当||||OA OB ==,等号成立,min 11()||||3OA OB ∴+=. ④权方和不等式+柯西不等式2211423||||||+||3122(||+||)OA OB OA OB OA OB +≥≥==. 点评:本解法利用椭圆的参数方程,得到了一个很重要的中间结论:|sin()|1βα-=. 一般地, 有如下结论:若11(,)A x y ,22(,)B x y 为椭圆2222:1(0)x y E a b a b+=>>上的动点, 且满足2AOB abS ∆=,则有:(1)22212x x a +=, 22212y y b +=;(2)22OA OBb k k a⋅=-. 解法二:(利用柯西不等式)设11(,)A x y ,22(,)B x y ,由12211||22AOB S x y x y ∆=-=得 2222222221221121212128()()()[82()]()x y x y x x y y y y y y =-≤++=-++,(当且仅当12120x x y y +=时等号成立).22212(2)0y y ∴+-=,22122y y ∴+=又221124x y +=,222224x y +=,则22221122228x y x y +++=,22124x x ∴+=, 进而222212126x x y y +++=,221123||||33||||2OA OB OA OB ∴+≥==+ 当且仅当||||3OA OB ==,11||||OA OB +取得最小值233.点评:本解法利用柯西不等式,实现等与不等的相互转化,相当精彩!解法三:(利用仿射变换,椭圆变圆)设伸缩变换2:2x x y τ'=⎧⎪⎨'=⎪⎩,则221x y ''+=,在该变换下,1122(,),(,)A x y B x y 的对应点分别为1122(,),(,)A x y B x y '''''', 而12211||2A OB S x y x y ''∆'''=-,122112211||2|2AOB S x y x y x y x y ∆'''=-=-, 所以12222AOB A OB A OB S S S ''''∆∆∆===,OA OB ''∴⊥,21||||x y ''∴=,21||||y x ''= ,2221x y ''∴=,2221y x ''=,22222222112211||||42426()6OA OB x y x y x y ''''''∴+=+++=+=,33322211122222221111(11)||||3(||)(||)(||+||)OA OB OA OB OA OB +∴+=+≥==当且仅当||||OA OB ==,11||||OA OB +取得最小值3.点评:本解法利用仿射变换,椭圆变圆,关键是发现OA OB ''⊥ .游数玩形,妙在转化!解法四:(齐次化)由12211||2AOB S x y x y ∆=-=及221124x y +=,222224x y +=,得22222122111222()(2)(2)x y x y x y x y -=++.(1)当直线OA 与OB 的斜率都存在时,两边同时除以2212x x ,得2222()(12)(12)OA OB OAOB k k k k -=++, 化简得2(21)0OA OB k k +=,12OA OB k k ∴=-,设:OA y kx =,则1:2OB y x k=-, 由222222244,121224A A y kx k x y k k x y =⎧⇒==⎨+++=⎩,22244||12k OA k +∴=+, 同理(将k 换成12k-),得22228||21k OB k +=+,22|||| 6.OA OB ∴+=(2)当直线OA 或OB 的斜率为0或不存在时,也有22|||| 6.OA OB +=于是11||||3OA OB +≥==,当且仅当||||OA OB ==,等号成立, 因此11||||OA OB +的最小值为3.点评:本解法利用齐次化,得出OA 与OB 的斜率关系,接下来便顺理成章了.解法五:常规思路当直线OA 与OB 的斜率都存在时,设直线1:OA y k x =,直线1:OB y k x =,1122(,),(,)A x y B x y ,由221142x y y k x⎧+=⎪⎨⎪=⎩解得2121412x k =+,同理2222412x k =+.点B 到直线OA 的距离1222122211|||()|11k x y x k k d k k --==++, 因为2AOB S ∆=,所以221211121221|()|1111|||()|2221AOB x k k S OA d k x x x k k k ∆-=⋅=+⋅=-+,即122212122||221212k k k k -=++,即2212122||(12)(12)k k k k -=++, 所以212(21)0k k +=,即1212k k =-. 下同解法四.点评:与上述方法相比,本解法相对复杂一些,熟悉以下二级结论的话,过程会大大简化.【结论】椭圆2222:1(0)x y C a b a b+=>>,A ,B 为椭圆C 上的动点,11(,)A x y ,22(,)B x y ,且满足22OA OBb k k a⋅=-,则有: (1)22212x x a +=,22212y y b +=,2222||||OA OB a b +=+;(2)2AOB ab S ∆=; (3)若M 为椭圆上一点,且OM OA OB λμ=+,则221λμ+=.相似题1(2011年山东卷理22题)已知动直线l 与椭圆22:132x y C +=交于11(,)P x y 、22(,)Q x y 两不同点,且OPQ △的面积2OPQS ∆=,其中O 为坐标原点.(Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅰ)(Ⅰ)略.答案:22123x x +=,22122y y +=.相似题2已知椭圆E :2212412x y +=,O 为坐标原点,A 、B 是椭圆E 上两点,OA ,OB 的斜率存在并分别记为,OA OB k k ,且12OA OB k k ⋅=-,则11||||OA OB +的最小值是( )A.6B.13C.3D.2答案:C.相似题3已知A ,B 是椭圆C :221259x y +=上关于原点对称的两个点,P 、M 、N 是椭圆上异于AB 的点,且//AP OM ,//BP ON ,则MON ∆的面积为( )A.32 B. 32 C. 152 D.252答案:C.相似题4:如图所示,12,A A 分别是椭圆2212x y +=,的长轴的左右端点,O 为坐标原点,,,S Q T 为椭圆上不同于12,A A 的三点,直线12,,,QA QA OS OT 围成一个平行四边形OPQR ,则22||||OS OT +等于( )A. 4B. 3C.32 D.52答案:B.相似题5:在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>,其焦点到相应准线的距离为3,离心率为12.(1)求椭圆C 的标准方程;(2)如图所示,A ,B 是椭圆C 上两点,且射线OA ,OB 的斜率满足34OA OB k k =-,延长OA 到M ,使得OM =3OA ,且MB 交椭圆C 于Q ,设OQ OA OB λμ=+,求证:①221λμ+=;②BMBQ 为定值.答案:5.。

2020年高考选择题填空题压轴系列1---解析几何部分

2020年高考选择题填空题压轴系列1---解析几何部分

2020年高考选择题填空题压轴系列1----解析几何部分1、12,F F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,若双曲线上存在点P 满足212PF PF a ⋅=-uu u r uu u r ,则双曲线的离心率的取值范围为( )A. )+∞B. )+∞C.D.分析:求离心率的取值范围从题目中找出关于,,a b c 的不等式,不等式可以是题目存在的范围(例如,x y 或角的范围等等)解析:由已知得12,(,0)F c F c (-,0),设点P (m,n),则1=PF uu u r (-c-m,-n),1=PF uu u r (c-m,-n),222m n a +≥,222212m PF PF c n a ⋅=-+=-uu u r uu u r ,得2222m n c a +=-所以22222m n c a a +=-≥,22222c a e e ≥⇒≥⇒≥故选B方法点睛:通过题目中现有范围(如,x y ,焦半径的范围等等),转化成,,a b c 的不等式,进而转化成离心率的范围2、已知F 是双曲线22221(0,0)x y a b a b-=>>的右焦点,过F 点作垂直于x 轴的直线交该双曲线的一条渐近线于点M ,若2FM a =,记该双曲线的离心率为e ,则2e =( )A. 2B.4C. 2D. 4分析:求离心率题目,根据题目的条件构建一个,,a b c 的等式,本题2FM a =就是等式,只需转化为,,a b c 的等式即可.解析:由题意得,0)F c (,双曲线的方程为b y x a =±,不妨设M 在b y x a =上,则,)bc M c a ( 则2bc FM a a==,即22bc a =,由222b c a =-得2224)4c a c a -=(即22421)440e e e e -=⇒--=(,解得2e ,故选A 方法点睛:根据题目条件构建一个,,a b c 的等式,进而求出离心率.3、已知椭圆的方程为22+194x y =,过椭圆中心的直线交椭圆于,A B 两点,2F 是椭圆的右焦点,则三角形2ABF 的周长的最小值为______,三角形2ABF 的面积的最大值为_____. 分析:要熟悉椭圆的的几何性质,结合题目条件,与焦点有关的性质,尤其是椭圆的定义及焦点三角形的性质.解析:如图因为椭圆的对称性得,四边形12F BF A 为平行四边形,显然2212+=2=6BF F A AF F A a +=,所以要使三角形2ABF 周长最小,只需=24AB b =,所以三角形2ABF 的周长的最小值为10. 因为212125252ABF F F A A S S c y ==⨯⨯== 方法点睛:遇到与焦点有关问题一定联系椭圆的定义及焦点三角形,注意两个焦点可以相互转换.4、已知F 是抛物线2:2(0)C y px p =>的焦点,抛物线C 上的点,A B 满足4AF FB =uu u r uu r,若,A B 在准线上的射影分别为,M N ,且MFN ∆的面积为5,则AB =A. 94B. 134C. 214D. 254分析:本题是抛物线涉及到焦点弦的问题,设出焦点弦,用常规方法可以解决,也可以用平面几何的方法解决该问题.解析:(法一)由已知得,设过焦点F 的直线为()2p y k x =-,代入抛物线2:2(0)C y px p =>得22222(2)04p k k x pk p x -+-=,设1122(,),(,)A x y B x y ,则212=y y p -,又4AF FB =uu u r uu r 所以12=4y y -,又因为221251052MFN S p MN p MN y y p ∆==⇒==⇒=- 则1121281252,4,44y p x x AB x x p p =⇒===⇒=++=,故选D(法二)如图过点B 作x 轴的垂线,交x 轴的于G ,交AM 于H ,设BF a =,由4=4AF FB AF a =⇒uu u r uu r ,由抛物线的定义得BF BN a ==,=4AF AM a = 所以GF p a =-,43AH a a a =-= 由三角形相似得1833555p a p a GF a a -=⇒=⇒= 由勾股定理得4MN a =,由185255422544MFN S a a a p AB ∆==⋅⋅⇒=⇒==, 故选D方法点睛:焦点弦问题注意利用定义,特别还可用平面几何来解决会更加简单.5、已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,以12,F F 为直径的圆与双曲线在第一象限和第三象限的交点分别为,M N ,设四边形12F NF M 的周长为p ,面积S 为232S p =,且满足,则双曲线的渐近线方程为( )A. 12y x =± B. 22y x =± C. 32y x =± D. 223y x =± 分析:根据双曲线的定义和性质,找到,a b 的关系,特别是焦点三角形的特点. 解析:由已知得,122MF MF a -=,且122p MF MF +=,所以得12=,44p p MF a MF a +=-因为以12,F F 为直径的圆,所以四边形12F NF M为矩形,所以2212=()()4416p p p S MF MF a a a =⋅+-=-,即2222232)3216p a p p a -=⇒=( 因为22222212+4c 248p MF MF a c =⇒+=, 所以2222222222244322222b a ac a c a b a b a +=⇒==+⇒=⇒=± 故选BF AB M N xyG O H方法点睛:要重视双曲线定义和焦点三角形的性质.6、已知抛物线2:4C y x =的焦点为F ,过点F 且斜率为1的直线与抛物线C 交于两点,A B ,若在以线段AB 为直径的圆上存在两点,M N ,在直线:0l x y a ++=上存在点Q ,使得90MQN ︒∠=,则实数a 的取值范围( )A. [13,3]-B. [3,3]-C. [3,13]-D. [13,13]- 分析:本题的关键是把90MQN ︒∠=转化为点D 到点Q 的距离的范围,进而转化成点3,2)D (到直线:0l x y a ++==解析:设点,A B 两点的横坐标分别为12,x x ,线段AB 的中点为D ,过点F (1,0)且斜率为1的直线方程为1y x =-,联立得2216104y x x x y x =-⎧⇒-+=⎨=⎩,所以12+=6x x所以的中点坐标为3,2)D(,12++2=8,AB x x =所以以线段AB 为直径的圆的圆心为3,2)D (,半径为4,所以圆的方程为22(3)+(2)=16x y --,因为在圆上存在两点,M N ,在直线:0l x y a ++=上存在点Q ,使得90MQN ︒∠=,所以在直线上存在点Q ,使得点Q 到3,2)D(=,所以使得点Q 到3,2)D (的距离小于或等于=只需点3,2)D (到直线:0l x y a ++=的距离小于或等于即可,即133a ≤⇒-≤≤,故选A方法点睛:注意用极限位置法找出界点的取值,本题中使得点Q 到3,2)D(的距离小于或等=就是个极限位置。

高考解析几何压轴题精选

高考解析几何压轴题精选

1、 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A 、若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。

(3分)2 、已知m >1,直线2:02m l x my --=,椭圆222:1x C y m +=,1,2F F 分别为椭圆C 的左、右焦点、 (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H 、若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围、(6分) 3已知以原点O 为中心,)5,0F为右焦点的双曲线C 的离心率5e =(I )求双曲线C 的标准方程及其渐近线方程;(II )如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2x x ≠)的直线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。

(8分)4、如图,已知椭圆22221(0)x y a b a b +=>>2,以该椭圆上的点与椭圆的左、右焦点12,F F 为顶点的三角形的周长为4(21)、一等轴双曲线的顶点就是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 与2PF 与椭圆的交点分别为B A 、与C D 、、(Ⅰ)求椭圆与双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)就是否存在常数λ,使得·AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由、(7分)5、在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左、右顶点为A 、B,右焦点为F 。

设过点T(m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。

高考数学选择填空压轴题45道(附答案)

高考数学选择填空压轴题45道(附答案)

,
D.
1,
27 e4
21.已知方程
e x 1
x
e2 x1 x aex1
有三个不同的根,则实数
a

取值范围为( )
A. 1,e
B.
e,
1 2
C. 1,1
D.
1,
1 2
22.函数 f (x) ex1 ex1 a sin (x x R ,e 是自然对数的底数,
a 0 )存在唯一的零点,则实数 a 的取值范围为( )
38.若不等式 x e2x a x ln x 1恒成立,则实数 a 的取值范
围是__________.
39.已知函数 f x ln x e a x b ,其中 e 为自然对数的底
数.若不等式
f
x
0
恒成立,则
b a
的最小值为_______.
40.已知函数
f
(x)
x
2 cos
x
,在区间上
0,
4
A.
0,
2
B.
0,
2
C. (0,2]
D. (0,2)
23.已知 a 0 ,b R ,且 ex a(x 1) b 对 x R 恒成立,则 a2b 的 最大值为( )
A. 1 e5
2
B. 1 e5
3
C. 1 e3
2
D. 1 e3
3
k
24.若关于
x
的不等式
1 x
x
1 27
有正整数解,则实数
16 12
7
4
x
x
3y 6 y
的最小值为________.
8
参考答案,仅供参考

解析几何填空选择压轴题(含答案)解析-

解析几何填空选择压轴题(含答案)解析-

2015解析几何填空选择压轴题(含答案)一.选择题(共15小题)1.(2015•潍坊模拟)椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A. B.C.D.2.(2015•绥化一模)已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I,且有(其中λ为实数),椭圆C的离心率e=()A.B.C. D.3.(2015•鹰潭二模)已知点A(﹣1,0),B(1,0)及抛物线y2=2x,若抛物线上点P满足|PA|=m|PB|,则m的最大值为()A. 3B. 2C. D.4.(2015•大庆校级模拟)已知双曲线的标准方程为,F为其右焦点,A1,A2是实轴的两端点,设P为双曲线上不同于A1,A2的任意一点,直线A1P,A2P与直线x=a分别交于两点M,N,若,则a的值为( )A. B. C. D.5.(2014•瓦房店市校级二模)已知抛物线y2=2px(p>0)与椭圆有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,则椭圆的离心率为()A.B. C. D.6.(2014•江北区校级模拟)如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()A. 22 B.20 C.18D. 16 7.(2013•东城区模拟)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()A. 3 B.4C. 6 D. 98.(2013•重庆)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是( )A. B.C.D.9.(2011•江西)如图,一个“凸轮”放置于直角坐标系X轴上方,其“底端”落在远点O处,一顶点及中心M在Y轴的正半轴上,它的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成今使“凸轮”沿X轴正向滚动过程中,“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放置,应大致为()A . B.C.D.10.(2010•陕西)已知抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=16相切,则p 的值为( )A.B.1 C. 2 D. 411.(2010•重庆)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )A.直线 B. 椭圆 C. 抛物线 D. 双曲线12.(2009•天津)设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()A.B.C.D.13.(2008•四川)已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且,则△AFK的面积为()A. 4 B. 8 C. 16D.3214.(2008•海南)已知点P在抛物线y2=4x上,那么点P到点Q(2,﹣1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A. B.C. (1,2) D. (1,﹣2)15.(2008•福建)双曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()A.(1,3) B. (1,3]C.(3,+∞)D. [3,+∞]二.填空题(共15小题)16.(2015•鞍山一模)已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF2为底边的等腰三角形.若|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是.17.(2015•上饶二模)以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为.18.(2015•射阳县校级模拟)已知椭圆,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若=.19.(2014•福建模拟)若函数f(x)=log2(x+1)﹣1的零点是抛物线x=ay2焦点的横坐标,则a=.20.(2013•建邺区模拟)过抛物线y2=2px(p>0)的对称轴上的定点M(m,0)(m>0),作直线AB与抛物线相交于A,B两点.(1)试证明A,B两点的纵坐标之积为定值;(2)若点N是定直线l:x=﹣m上的任一点,试探索三条直线AN,MN,BN的斜率之间的关系,并给出证明.21.(2012•湖北)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值=.22.(2013•沈河区校级模拟)+=1上有一动点P,圆E:(x﹣1)2+y2=1,过圆心E任意做一条直线与圆E交于A、B两点,圆F:(x+1)2+y2=1,过圆心任意做一条直线交圆F于C、D两点,则•+•的最小值为.23.(2012•庐阳区校级模拟)如图,椭圆的长轴为A1A2,短轴为B1B2,将坐标平面沿y轴折成一个二面角,使点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,则此二面角的大小为.24.(2013•江西)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B两点,若△ABF为等边三角形,则p= .25.(2013•湖南)设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为.26.(2011•浙江)设F1,F2分别为椭圆+y2=1的焦点,点A,B在椭圆上,若=5;则点A的坐标是.27.(2010•湖北)已知椭圆C:的两焦点为F1,F2,点P(x0,y0)满足,则|PF1|+PF2|的取值范围为,直线与椭圆C的公共点个数.28.(2011•重庆)动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过点.29.(2010•上海)在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为,、分别是两条渐近线的方向向量.任取双曲线Γ上的点P,若(a、b∈R),则a、b满足的一个等式是 .30.(2007•重庆)过双曲线x2﹣y2=4的右焦点F作倾斜角为1050的直线,交双曲线于P、Q两点,则|FP|•|FQ|的值为.2015解析几何填空选择压轴题(含答案)参考答案与试题解析一.选择题(共15小题)1.(2015•潍坊模拟)椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是() A. B. C. D.考点:椭圆的简单性质.专题: 计算题;压轴题;圆锥曲线的定义、性质与方程.分析:分等腰三角形△F1F2P以F1F2为底和以F1F2为一腰两种情况进行讨论,结合以椭圆焦点为圆心半径为2c的圆与椭圆位置关系的判断,建立关于a、c的不等式,解之即可得到椭圆C的离心率的取值范围.解答:解:①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰△F1F2P;②当△F1F2P构成以F1F2为一腰的等腰三角形时,以F2P作为等腰三角形的底边为例,∵F1F2=F1P,∴点P在以F1为圆心,半径为焦距2c的圆上因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2P,在△F1F2P1中,F1F2+PF1>PF2,即2c+2c>2a﹣2c,由此得知3c>a.所以离心率e>.当e=时,△F1F2P是等边三角形,与①中的三角形重复,故e≠同理,当F1P为等腰三角形的底边时,在e且e≠时也存在2个满足条件的等腰△F1F2P这样,总共有6个不同的点P使得△F1F2P为等腰三角形综上所述,离心率的取值范围是:e∈(,)∪(,1)点评:本题给出椭圆的焦点三角形中,共有6个不同点P使得△F1F2P为等腰三角形,求椭圆离心率e的取值范围.着重考查了椭圆的标准方程和简单几何性质等知识,属于基础题.2.(2015•绥化一模)已知椭圆,F1,F2为其左、右焦点,P为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I,且有(其中λ为实数),椭圆C的离心率e=()A. B. C.D.考点:椭圆的简单性质.专题:压轴题.分析:在焦点△F1PF2中,设P(x0,y0),由三角形重心坐标公式,可得重心G的纵坐标,因为,故内心I的纵坐标与G相同,最后利用三角形F1PF2的面积等于被内心分割的三个小三角形的面积之和建立a、b、c的等式,即可解得离心率解答:解:设P(x0,y0),∵G为△F1PF2的重心,∴G点坐标为G(,),∵,∴IG∥x轴,∴I的纵坐标为,在焦点△F1PF2中,|PF1|+|PF2|=2a,|F1F2|=2c∴=•|F1F2|•|y0|又∵I为△F1PF2的内心,∴I的纵坐标即为内切圆半径,内心I把△F1PF2分为三个底分别为△F1PF2的三边,高为内切圆半径的小三角形∴=(|PF1|+|F1F2|+|PF2|)||∴•|F1F2|•|y0|=(|PF1|+|F1F2|+|PF2|)||即×2c•|y0|=(2a+2c)||,∴2c=a,∴椭圆C的离心率e==故选A点评:本题考查了椭圆的标准方程和几何意义,重心坐标公式,三角形内心的意义及其应用,椭圆离心率的求法3.(2015•鹰潭二模)已知点A(﹣1,0),B(1,0)及抛物线y2=2x,若抛物线上点P满足|PA|=m|PB|,则m的最大值为( )A.3B. 2 C.D.考点:抛物线的简单性质.专题:计算题;压轴题.分析:由题意可得m2====1+≤3,可得m≤.解答:解:设P(,y),由题意可得m2====1+≤1+=3,∴m≤,当且仅当y2=2时,等号成立,故选C.点评:本题考查抛物线的标准方程,以及简单性质,基本不等式的应用,运用基本不等式求出m2≤3,是解题的关键.4.(2015•大庆校级模拟)已知双曲线的标准方程为,F为其右焦点,A1,A2是实轴的两端点,设P为双曲线上不同于A1,A2的任意一点,直线A1P,A2P与直线x=a分别交于两点M,N,若,则a的值为()A.B.C.D.考点: 双曲线的简单性质.专题:综合题;压轴题.分析:双曲线,右焦点F(5.0),A1(﹣3,0),A2(3,0),设P(x,y),M(a,m),N(a,n),由P,A1,M三点共线,知,故m=,由P,A2,N三点共线,知,故n=,由,和,能求出a的值.解答:解:∵双曲线,右焦点F(5,0),A1(﹣3,0),A2(3,0),设P(x,y),M(a,m),N(a,n),∵P,A1,M三点共线,∴m=,∵P,A2,N三点共线,∴,∴n=,∵,∴,∴,,,∴=(a﹣5)2+=(a﹣5)2+,∵,∴(a﹣5)2+=0,∴25a2﹣90a+81=0,∴a=.故选B.点评:本题考查双曲线的性质和应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.解题时要认真审题,注意向量知识的合理运用.5.(2014•瓦房店市校级二模)已知抛物线y2=2px(p>0)与椭圆有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,则椭圆的离心率为( )A.B.C. D.考点: 圆锥曲线的共同特征;抛物线的简单性质.专题: 计算题;压轴题.分析:设点A坐标为(x0,y0)依题意可知=,把x0=代入椭圆方程求得关于y0的等式,根据抛物线定义可知y0=2c代入等式整理可得关于离心率e的一元二次方程求得e.解答:解:设点A坐标为(x0,y0)依题意可知=,x0=代入椭圆方程得(*)根据抛物线定义可知y0=p=2=2c∴y20=4c2,代入(*)式整理得a2﹣c2﹣2ac=0两边除以a2得e2+2e﹣1=0,解得e=或﹣﹣1(排除)故选D点评:本题主要考查了圆锥曲线的共同特征.考查了学生对圆锥曲线知识的综合把握.6.(2014•江北区校级模拟)如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA 的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()A.22 B. 20C.18 D.16考点: 圆与圆锥曲线的综合;抛物线的定义.专题: 计算题;压轴题.分析:先以AT的中点O为坐标原点,AT的中垂线为y轴,可得半圆方程为(x﹣12)2+y2=100,根据条件得出M,N在以A为焦点,PT为准线的抛物线上,联立半圆方程和抛物线方程结合根与系数的关系,利用抛物线的定义即可求得答案.解答:解:以AT的中点O为坐标原点,AT的中垂线为y轴,可得半圆方程为(x﹣12)2+y2=100又,设M(x1,y1),N(x2,y2),M,N在以A为焦点,PT为准线的抛物线上;以AT的垂直平分线为y轴,TA方向为x轴建立坐标系,则有物线方程为y2=8x(y≥0),联立半圆方程和抛物线方程,消去y得:x2﹣16x+44=0∴x1+x2=16,|AM|+|AN|=|MP|+|NQ|=x1+x2+4=20.故选:B.点评:本小题主要考查抛物线的定义、圆的方程、圆与圆锥曲线的综合等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.7.(2013•东城区模拟)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为( )A. 3 B.4 C. 6 D. 9考点:抛物线的简单性质;向量的模.专题: 计算题;压轴题.分析:先设A(x,y1),B(x2,y2),C(x3,y3),根据抛物线方程求得焦点坐标和准线方程,1再依据=0,判断点F是△ABC重心,进而可求x1+x2+x3的值.最后根据抛物线的定义求得答案.解答:解:设A(x1,y1),B(x2,y2),C(x3,y3)抛物线焦点坐标F(1,0),准线方程:x=﹣1∵=,∴点F是△ABC重心则x1+x2+x3=3y1+y2+y3=0而|FA|=x1﹣(﹣1)=x1+1|FB|=x2﹣(﹣1)=x2+1|FC|=x3﹣(﹣1)=x3+1∴|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6故选C点评:本题主要考查了抛物线的简单性质.解本题的关键是判断出F点为三角形的重心.8.(2013•重庆)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C的交点,则该双曲线的离心率的取值范围是()A. B.C.D.考点:双曲线的简单性质.专题:计算题;压轴题;圆锥曲线的定义、性质与方程.分析:不妨令双曲线的方程为,由|A1B1|=|A2B2|及双曲线的对称性知A1,A2,B1,B2关于x轴对称,由满足条件的直线只有一对,得,由此能求出双曲线的离心率的范围.解答:解:不妨令双曲线的方程为,由|A1B1|=|A2B2|及双曲线的对称性知A1,A2,B1,B2关于x轴对称,如图,又∵满足条件的直线只有一对,当直线与x轴夹角为30°时,双曲线的渐近线与x轴夹角大于30°,双曲线与直线才能有交点A1,A2,B1,B2,若双曲线的渐近线与x轴夹角等于30°,则无交点,则不可能存在|A1B1|=|A2B2|,当直线与x轴夹角为60°时,双曲线渐近线与x轴夹角小于60°,双曲线与直线有一对交点A1,A2,B1,B2,若双曲线的渐近线与x轴夹角等于60°,也满足题中有一对直线,但是如果大于60°,则有两对直线.不符合题意,∴tan30°,即,∴,∵b2=c2﹣a2,∴,∴,∴,∴双曲线的离心率的范围是.故选:A.点评:本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.9.(2011•江西)如图,一个“凸轮”放置于直角坐标系X轴上方,其“底端”落在远点O处,一顶点及中心M在Y轴的正半轴上,它的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成今使“凸轮”沿X轴正向滚动过程中,“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放置,应大致为()A .B.C.D.考点:圆锥曲线的轨迹问题.专题: 作图题;综合题;压轴题.分析:解答本题宜用排除法,本题中图形的中心M到三个顶点的距离最远,到三段弧的中点的距离最近,随着凸轮的滚动,M点离X轴的距离由小变大再由大变小,作周期性的变化,由图形可以看出,三角形的三个顶点到相对弧的中点位置是相等的,故当M在最高点与最低点时,凸轮最高点到X轴的距离相等,由这些特征即可排除错误选项.解答:解:令图中最高点为A,根据题意,可令三角形边长为1,即AO=1,由于M是中心,故可得AM=>,故中心M的位置并非是处于凸轮最低与最高中间的位置,而是稍微偏下,随着转动,M的位置会先变高,当点C为最低点时,M最高,由此排除CD 选项,而对于最高点,当M最高时,最高点的高度应该与旋转开始前相同都是1,因此排除B,故选A点评:本题考点是圆锥曲线的问题,考查根据实物的特征,探究其上某一点的位置变动规律,由此得出其轨迹的大体形状,本题轨迹方程不易求出,直接求解有困难,故根据其变化特征选择用排除法求解,做题时要根据题设条件的特征选择合适的方法解题.10.(2010•陕西)已知抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=16相切,则p的值为()A.B.1C. 2 D. 4考点:抛物线的简单性质.专题: 计算题;压轴题.分析:根据抛物线的标准方程可知准线方程为,根据抛物线的准线与圆相切可知求得p.解答:解:抛物线y2=2px(p>0)的准线方程为,因为抛物线y2=2px(p>0)的准线与圆(x﹣3)2+y2=16相切,所以;故选C.点评:本题考查抛物线的相关几何性质及直线与圆的位置关系.11.(2010•重庆)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()A.直线B.椭圆C.抛物线D.双曲线考点:抛物线的定义;双曲线的标准方程.专题:计算题;压轴题;分类讨论.分析:先做出两条异面直线的公垂线,以其中一条直线为x轴,公垂线与x轴交点为原点,公垂线所在直线为z轴,过x且垂直于公垂线的平面为xoy平面,建立空间直角坐标系,则两条异面直线的方程可得,设空间内任意点设它的坐标是(x,y,z)根据它到两条异面直线的距离相等,求得z的表达式,把z=0和z=a代入即可求得x和y的关系,根据其方程判断轨迹.解答:解:先做出两条异面直线的公垂线,以其中一条直线为x轴,公垂线与x轴交点为原点,公垂线所在直线为z轴,过x且垂直于公垂线的平面为xoy平面,建立空间直角坐标系,则两条异面直线的方程就分别是y=0,z=0和x=0,z=a(a是两异面直线公垂线长度,是个常数)空间内任意点设它的坐标是(x,y,z)那么由已知,它到两条异面直线的距离相等,即=两边平方,化简可得z=(y2﹣x2+a2)过一条直线且平行于另一条直线的平面是z=0和z=a分别代入所得式子z=0时代入可以得到y2﹣x2=﹣a2,图形是个双曲线z=a时代入可以得到y2﹣x2=a2,图形也是个双曲线故选D点评:本题主要考查了双曲线的方程.考查了学生分析归纳和推理的能力.12.(2009•天津)设抛物线y2=2x的焦点为F,过点M(,0)的直线与抛物线相交于A、B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比=()A.B.C.D.考点:抛物线的应用;抛物线的简单性质;直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:根据=,进而根据两三角形相似,推断出=,根据抛物线的定义求得=,根据|BF|的值求得B的坐标,进而利用两点式求得直线的方程,把x=代入,即可求得A的坐标,进而求得的值,则三角形的面积之比可得.解答:解:如图过B作准线l:x=﹣的垂线,垂足分别为A1,B1,∵=,又∵△B1BC∽△A1AC、∴=,由拋物线定义==.由|BF|=|BB1|=2知xB=,yB=﹣,∴AB:y﹣0=(x﹣).把x=代入上式,求得y A=2,xA=2,∴|AF|=|AA1|=.故===.故选A.点评:本题主要考查了抛物线的应用,抛物线的简单性质.考查了学生基础知识的综合运用和综合分析问题的能力.13.(2008•四川)已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且,则△AFK的面积为( )A. 4B.8 C. 16 D. 32考点:抛物线的简单性质.专题: 计算题;压轴题.分析:根据抛物线的方程可知焦点坐标和准线方程,进而可求得K的坐标,设A(x0,y0),过A点向准线作垂线AB,则B(﹣2,y0),根据及AF=AB=x0﹣(﹣2)=x0+2,进而可求得A点坐标,进而求得△AFK的面积.解答:解:∵抛物线C:y2=8x的焦点为F(2,0),准线为x=﹣2∴K(﹣2,0)设A(x0,y0),过A点向准线作垂线AB,则B(﹣2,y0)∵,又AF=AB=x0﹣(﹣2)=x0+2∴由BK2=AK2﹣AB2得y02=(x0+2)2,即8x0=(x0+2)2,解得A(2,±4)∴△AFK的面积为故选B.点评:本题抛物线的性质,由题意准确画出图象,利用离心率转化位置,在△ABK中集中条件求出x0是关键;14.(2008•海南)已知点P在抛物线y2=4x上,那么点P到点Q(2,﹣1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()A.B.C. (1,2) D. (1,﹣2)考点: 抛物线的简单性质.专题:综合题;压轴题.分析:先判断点Q与抛物线的位置,即点Q在抛物线内,再由点P到抛物线焦点距离等于点P到抛物线准线距离,根据图象知最小值在S,P,Q三点共线时取得,可得到答案.解答:解:点P到抛物线焦点距离等于点P到抛物线准线距离,如图PF+PQ=PS+PQ,故最小值在S,P,Q三点共线时取得,此时P,Q的纵坐标都是﹣1,故选A.点评:本题主要考查抛物线的定义,即抛物线是到定点的距离等于定直线的距离的点的集合. 15.(2008•福建)双曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()A.(1,3) B. (1,3]C.(3,+∞)D. [3,+∞]考点:双曲线的简单性质.专题: 计算题;压轴题.分析:可用三角形的两边和大于第三边,及两边差小于第三边,但要注意前者可以取到等号成立,因为可以三点一线.也可用焦半径公式确定a与c的关系.解答:解:设|PF1|=x,|PF2|=y,则有,解得x=4a,y=2a,∵在△PF1F2中,x+y>2c,即4a+2a>2c,4a﹣2a<2c,∴,又因为当三点一线时,4a+2a=2c,综合得离心的范围是(1,3],故选B.点评:本题主要考查了双曲线的简单性质.考查了关于离心率范围的确定.可以在平时的教学过程中总结常见的有关离心率的求法及范围的求法.二.填空题(共15小题)16.(2015•鞍山一模)已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF2为底边的等腰三角形.若|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是(,) .考点: 双曲线的简单性质;椭圆的简单性质.专题:压轴题;数形结合法.分析:作出图象,结合图象把问题转化为1<<2,求的取值范围.解答:解:如图,设双曲线的半实轴长,半焦距分别为a,c,2|PF1|=m,|PF2|=n,则⇒,问题转化为已知1<<2,求的取值范围.设=x,则c=,==﹣.∵1<x<2,∴﹣<﹣<﹣,即<﹣<.故答案为:().点评:本题考查双曲线的性质和应用,作出图象,数形结合,事半功倍.17.(2015•上饶二模)以抛物线y2=20x的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为(x﹣5)2+y2=9.考点: 双曲线的简单性质;直线与圆的位置关系.专题: 压轴题;圆锥曲线的定义、性质与方程.分析:确定抛物线的焦点,双曲线的渐近线方程,求出圆的半径,即可得到圆的方程.解答:解:抛物线y2=20x的焦点坐标为(5,0),双曲线:的两条渐近线方程为3x±4y=0由题意,r=3,则所求方程为(x﹣5)2+y2=9故答案为:(x﹣5)2+y2=9.点评:本题考查圆的方程,考查直线与圆的位置关系,考查学生的计算能力,属于基础题.18.(2015•射阳县校级模拟)已知椭圆,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若=.考点: 直线与圆锥曲线的综合问题.专题:压轴题.分析:设l为椭圆的右准线,过A、B作AA,BB1垂直于l,A1,B1为垂足,过B作BE⊥AA11于E,由=3知,||=,,由此可知.解答:解:设l为椭圆的右准线,过A、B作AA1,BB1垂直于l,A1,B1为垂足,过B作BE⊥AA1于E,则|AA1|=,|BB1|=,由=3知,||=,∴,∴,∴tan.∴.故答案:.点评:本题考查椭圆的性质和应用,解题时要认真审题,仔细解答.19.(2014•福建模拟)若函数f(x)=log2(x+1)﹣1的零点是抛物线x=ay2焦点的横坐标,则a=.考点: 抛物线的简单性质.专题:压轴题.分析:先求出函数f(x)=log2(x+1)﹣1的零点x=1和抛物线x=ay2焦点的横坐标,然后再求a.解答:解:由f(x)=log2(x+1)﹣1=0,知x=1,抛物线x=ay2焦点的坐标是F(),由题设条件知,∴a=.故答案为:.点评:本题考查抛物线的简单性质,解题时要认真审题,仔细解答,注意公式的合理运用.20.(2013•建邺区模拟)过抛物线y2=2px(p>0)的对称轴上的定点M(m,0)(m>0),作直线AB与抛物线相交于A,B两点.(1)试证明A,B两点的纵坐标之积为定值;(2)若点N是定直线l:x=﹣m上的任一点,试探索三条直线AN,MN,BN的斜率之间的关系,并给出证明.考点: 直线与圆锥曲线的关系;直线的斜率;直线的一般式方程.专题: 压轴题;圆锥曲线的定义、性质与方程.分析:(1)设直线AB的方程为:x=ty+m,与y2=2px联立,消去x得到关于y的一元二次方程,利用根与系数的关系即可证明;(2)三条直线AN,MN,BN的斜率成等差数列.设点N(﹣m,n),则直线AN的斜率为,直线BN的斜率为,再利用(1)的结论即可证明.解答:(1)证明:.设A(x1,y1),B(x2,y2)有y1•y2=﹣2pm,下证之:设直线AB的方程为:x=ty+m,与y2=2px联立消去x得y2﹣2pty﹣2pm=0,由韦达定理得y1•y2=﹣2pm,(2)解:三条直线AN,MN,BN的斜率成等差数列,下证之:设点N(﹣m,n),则直线AN的斜率为,直线BN的斜率为,∴===又∵直线MN的斜率为,∴k AN+kBN=2k MN即直线AN,MN,BN的斜率成等差数列.点评:熟练掌握直线与抛物线相交问题转化为方程联立得到一元二次方程的根与系数的关系、直线的斜率计算公式、等差数列的定义等是解题的关键.21.(2012•湖北)如图,双曲线﹣=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e=;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值= .考点:圆锥曲线的综合.专题: 综合题;压轴题.分析:(Ⅰ)直线B2F1的方程为bx﹣cy+bc=0,所以O到直线的距离为,根据以A1A2为直径的圆内切于菱形F1B1F2B2,可得,由此可求双曲线的离心率;(Ⅱ)菱形F1B1F2B2的面积S1=2bc,求出矩形ABCD的长与宽,从而求出面积S2=4mn=,由此可得结论.解答:解:(Ⅰ)直线B2F1的方程为bx﹣cy+bc=0,所以O到直线的距离为∵以A1A2为直径的圆内切于菱形F1B1F2B2,∴∴(c2﹣a2)c2=(2c2﹣a2)a2∴c4﹣3a2c2+a4=0∴e4﹣3e2+1=0∵e>1∴e=(Ⅱ)菱形F1B1F2B2的面积S1=2bc设矩形ABCD,BC=2n,BA=2m,∴∵m2+n2=a2,∴,∴面积S2=4mn=∴==∵bc=a2=c2﹣b2∴∴=故答案为:,点评:本题考查圆与圆锥曲线的综合,考查双曲线的性质,面积的计算,解题的关键是确定几何量之间的关系.22.(2013•沈河区校级模拟)+=1上有一动点P,圆E:(x﹣1)2+y2=1,过圆心E任意做一条直线与圆E交于A、B两点,圆F:(x+1)2+y2=1,过圆心任意做一条直线交圆F 于C、D两点,则•+•的最小值为6.考点:圆与圆锥曲线的综合.专题:计算题;压轴题.分析:先利用条件得出与互为相反向量,且长为1.再利用向量的三角形法则和向量的数量积的运算求出•的表达式;同理求出•,再与点P是椭圆上的点相结合即可求出结论.解答:解:设P(a,b)则由已知得与互为相反向量,且长为1.又∵=,=,∴=+•()+=+0﹣1=﹣1;同理可得=﹣1.故•+•=+﹣2=(a﹣1)2+b2+(a+1)2+b2﹣2=2(a2+b2)①.又因为点P(a,b)在+=1上,所以有=1⇒b2=3(1﹣) ②.把②代入①整理得,•+•=2(3+)≥6.故答案为6.点评:本题主要考查向量基本知识以及圆与圆锥曲线的综合问题.是对知识点的一个综合考查,属于中档题.23.(2012•庐阳区校级模拟)如图,椭圆的长轴为A1A2,短轴为B1B2,将坐标平面沿y轴折成一个二面角,使点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,则此二面角的大小为.考点:椭圆的应用;循环结构;二面角的平面角及求法.专题: 综合题;压轴题.分析:确定椭圆中的几何量,确定二面角的平面角,利用点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,可求得cos∠A2OF1=,即可求得结论.解答:解:由题意,椭圆中a=4,c=,∠A2OF1为二面角的平面角∵点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点∴在直角△A2OF1中,cos∠A2OF1=∴∠A2OF1=即二面角的大小为故答案为:点评:本题考查椭圆与立体几何的综合,考查面面角,解题的关键是确定二面角的平面角. 24.(2013•江西)抛物线x2=2py(p>0)的焦点为F,其准线与双曲线=1相交于A,B 两点,若△ABF为等边三角形,则p=6.考点:抛物线的简单性质;双曲线的简单性质.专题: 圆锥曲线的定义、性质与方程.分析:求出抛物线的焦点坐标,准线方程,然后求出抛物线的准线与双曲线的交点坐标,利用三角形是等边三角形求出p即可.解答:解:抛物线的焦点坐标为(0,),准线方程为:y=﹣,准线方程与双曲线联立可得:,解得x=±,因为△ABF为等边三角形,所以,即p2=3x2,即,解得p=6.故答案为:6.点评:本题考查抛物线的简单性质,双曲线方程的应用,考查分析问题解决问题的能力以及计算能力.。

高考解析几何压轴题精选(含答案)

高考解析几何压轴题精选(含答案)

1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。

(3分)2 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.(6分)3已知以原点O 为中心,)F 为右焦点的双曲线C 的离心率2e =。

(I )求双曲线C 的标准方程及其渐近线方程;(II )如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2x x ≠)的直线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。

(8分)4.如图,已知椭圆22221(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·A B C D A B C Dλ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分)5.在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x的左、右顶点为A 、B ,右焦点为F 。

设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06 解析几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题06解析几何压轴题题型/考向一:直线与圆、直线与圆锥曲线题型/考向二:圆锥曲线的性质综合题型/考向三:圆锥曲线的综合应用一、直线与圆、直线与圆锥曲线热点一直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离.判断方法:(1)点线距离法(几何法).(2)判别式法:设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0(A2+B2≠0),+By+C=0,x-a)2+(y-b)2=r2,消去y,得到关于x的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系,即内含、内切、相交、外切、外离.热点二中点弦问题已知A(x1,y1),B(x2,y2)为圆锥曲线E上两点,AB的中点C(x0,y0),直线AB 的斜率为k.(1)若椭圆E的方程为x2a2+y2b2=1(a>b>0),则k=-b2a2·x0y0;(2)若双曲线E的方程为x2a2-y2b2=1(a>0,b>0),则k=b2a2·x0y0;(3)若抛物线E的方程为y2=2px(p>0),则k=py0.热点三弦长问题已知A(x1,y1),B(x2,y2),直线AB的斜率为k(k≠0),则|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2(y1+y2)2-4y1y2.热点四圆锥曲线的切线问题1.直线与圆锥曲线相切时,它们的方程组成的方程组消元后所得方程(二次项系数不为零)的判别式为零.2.椭圆x2a2+y2b2=1(a>b>0)在(x0,y0)处的切线方程为x0xa2+y0yb2=1;双曲线x2a2-y2b2=1(a>0,b>0)在(x0,y0)处的切线方程为x0xa2-y0yb2=1;抛物线y2=2px(p>0)在(x0,y0)处的切线方程为y0y=p(x+x0).热点五直线与圆锥曲线位置关系的应用直线与圆锥曲线位置关系的判定方法(1)联立直线的方程与圆锥曲线的方程.(2)消元得到关于x或y的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.二、圆锥曲线的性质综合热点一圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.热点二椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e=ca=1-b2a2(0<e<1),双曲线的离心率e=ca=1+b2a2(e>1).(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程为x2a2-y2b2=λ(λ≠0).热点三抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则(1)x1x2=p24,y1y2=-p2.(2)|AB|=x1+x2+p=2psin2α.(3)1|FA|+1|FB|=2p.(4)以线段AB为直径的圆与准线x=-p2相切.三、圆锥曲线的综合应用求解范围、最值问题的常见方法(1)利用判别式来构造不等关系.(2)利用已知参数的范围,在两个参数之间建立函数关系.(3)利用隐含或已知的不等关系建立不等式.(4)利用基本不等式.○热○点○题○型一直线与圆、直线与圆锥曲线一、单选题1.过圆224x y +=上的动点作圆221x y +=的两条切线,则连接两切点线段的长为()A .2B .1C 32D 3【答案】D【详解】令点P 是圆224x y +=上的动点,过点P 作圆221x y +=的两条切线,切点分别为A ,B ,如图,则OA PA ⊥,而1||||12OA OP ==,于是260APB OPA ∠=∠= ,又||||3PB PA ==,因此PAB 为正三角形,||||3AB PA ==,所以连接两切点线段的长为3.故选:D2.过抛物线:()的焦点的直线交抛物线于,两点,若2AF BF AB ⋅=,则抛物线C 的标准方程是()A .28y x=B .26y x=C .24y x=D .22y x=3.若直线0x y a +-=与曲线A .[12,12]-+B .(1C .[2,12)+D .(1【答案】B4.已知抛物线22y px =的焦点为4x =A .4B .42C .8D .【答案】D5.已知抛物线2:2(0)C y px p =>的焦点为F ,准线为l ,过FC 交于A ,B 两点,D 为AB 的中点,且DM l ⊥于点M ,AB 的垂直平分线交x 轴于点N ,四边形DMFN的面积为,则p =()A.B .4C.D.因为30DN DF DFN ⊥∠=︒,,故223DF DE p ==,FN6.已知圆22:4C x y +=,直线l经过点3,02P ⎛⎫⎪⎝⎭与圆C 相交于A ,B 两点,且满足关系OM =(O 为坐标原点)的点M 也在圆C 上,则直线l 的斜率为()A .1B .1±C .D .±故选:D.7.已知椭圆()222210x y a b a b+=>>的上顶点为B ,斜率为32的直线l 交椭圆于M ,N 两点,若△BMN 的重心恰好为椭圆的右焦点F ,则椭圆的离心率为()A .22BC .12D8.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,直线y =与C的左、右两支分别交于A ,B 两点,若四边形12AF BF 为矩形,则C 的离心率为()AB .3C1D 1+二、多选题9.在平面直角坐标系xOy 中,已知圆()()()222:210C x y r r -+-=>,过原点O 的直线l 与圆C 交于A ,B 两点,则()A .当圆C 与y 轴相切,且直线l 的斜率为1时,2AB =B .当3r =时,存在l ,使得CA CB⊥C .若存在l ,使得ABC 的面积为4,则r 的最小值为D .若存在两条不同l ,使得2AB =,则r 的取值范围为()1,3故选:BC10.已知0mn ≠,曲线22122:1x y E m n +=,曲线22222:1x y E m n-=,直线:1x y l m n +=,则下列说法正确的是()A .当3n m =时,曲线1E 离心率为3B .当3n m =时,曲线2E 离心率为103C .直线l 与曲线2E 有且只有一个公共点D .存在正数m ,n ,使得曲线1E 截直线l11.已知抛物线:4C x y =,过焦点F 的直线l 与交于1122两点,1与F 关于原点对称,直线AB 和直线AE 的倾斜角分别是,αβ,则()A .cos tan 1αβ⋅>B .AEF BEF∠=∠C .90AEB ∠>︒D .π22βα-<【答案】BD【详解】作AD y ⊥轴于D ,作BC y ⊥轴于C ,则,DAF DAEαβ=∠=∠由()()1122,,,A x y B x y ,则()()120,,0,D y C y ,故选:BD.12.已知双曲线22:145x y C -=的左、右焦点分别为12,F F ,过点2F 的直线与双曲线C 的右支交于,A B 两点,且1AF AB ⊥,则下列结论正确的是()A .双曲线C 的渐近线方程为2y x =±B .若P 是双曲线C 上的动点,则满足25PF =的点P 共有两个C .12AF =D .1ABF 2○热○点○题○型二圆锥曲线的性质综合一、单选题1.设1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 的直线交双曲线右支于A ,B 两点,若1123AF BF =,且223AF BF =,则该双曲线的离心率为()A B .2C D .32.已知双曲线()22:10,0C a b a b-=>>的左、右焦点分别为1F ,2F ,12F F =P为C 上一点,1PF 的中点为Q ,2PF Q △为等边三角形,则双曲线C 的方程为().A .2212y x -=B .2212x y -=C .2222133x y -=D .223318y x -=A .6B .3或C .D .或4.已知双曲线221(0,0)a b a b-=>>的实轴为4,抛物线22(0)y px p =>的准线过双曲线的左顶点,抛物线与双曲线的一个交点为(4,)P m ,则双曲线的渐近线方程为()A .y x =B .y =C .23y x =±D .4y x =±故选:A5.2022年卡塔尔世界杯会徽(如图)正视图近似伯努利双纽线.在平面直角坐标系xOy中,把到定点()1,0F a -,()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线.已知点00(,)P x y 是双纽线C 上一点,有如下说法:①双纽线C 关于原点O 中心对称;②022a a y -≤≤;③双纽线C 上满足12PF PF =的点P 有两个;④PO .其中所有正确的说法为()A .①②B .①③C .①②③D .①②④6.如图所示,1F ,2F 是双曲线22:1(0,0)C a b a b-=>>的左、右焦点,双曲线C 的右支上存在一点B 满足12BF BF ⊥,1BF 与双曲线C 的左支的交点A 平分线段1BF ,则双曲线C 的离心率为()A .3B .C D7.已知椭圆1和双曲线2的焦点相同,记左、右焦点分别为1,2,椭圆和双曲线的离心率分别为1e ,2e ,设点P 为1C 与2C 在第一象限内的公共点,且满足12PF k PF =,若1211e e k =-,则k 的值为()A .3B .4C .5D .6个焦点射出的光线,经椭圆反射,其反射光线必经过椭圆的另一焦点.设椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,若从椭圆右焦点2F 发出的光线经过椭圆上的点A 和点B 反射后,满足AB AD ⊥,且3cos 5ABC ∠=,则该椭圆的离心率为().A .12B 22C D则113cos 5AB ABF BF ∠==,sin ABF ∠可设3AB k =,14AF k =,1BF =由1122AB AF BF AF BF AF ++=++二、多选题9.已知曲线E :221mx ny -=,则()A .当0mn >时,E 是双曲线,其渐近线方程为y =B .当0n m ->>时,E 是椭圆,其离心率为eC .当0m n =->时,E 是圆,其圆心为()0,0D .当0m ≠,0n =时,E是两条直线x =10.2022年卡塔尔世界杯会徽(如图)的正视图可以近似看成双纽线,在平面直角坐标系中,把到定点()1,0F a -和()2,0F a 距离之积等于()20a a >的点的轨迹称为双纽线,已知点()00,P x y 是双纽线C 上一点,则下列说法正确的是()A .若12F PF θ∠=,则12F PF △的面积为sin 2aθB .022a a y -≤≤C .双纽线C 关于原点O 对称D .双纽线上C 满足12PF PF =的点P 有三个【答案】BC11.已知椭圆()2:1039C b b+=<<的左、右焦点分别为1F 、2F ,点2M在椭圆内部,点N 在椭圆上,椭圆C 的离心率为e ,则以下说法正确的是()A .离心率e 的取值范围为0,3⎛ ⎝⎭B .存在点N ,使得124NF NF =C .当6e =时,1NF NM +的最大值为62+D .1211NF NF +的最小值为1如上图示,当且仅当2,,M N F12.已知P ,Q 是双曲线221x y a b-=上关于原点对称的两点,过点P 作PM x ⊥轴于点M ,MQ 交双曲线于点N ,设直线PQ 的斜率为k ,则下列说法正确的是()A .k 的取值范围是b bk a a-<<且0k ≠B .直线MN 的斜率为2kC .直线PN 的斜率为222b kaD .直线PN 与直线QN 的斜率之和的最小值为ba2222PN QNb k b k k ka a +=+≥,当且仅当但PN QN k k ≠,所以等号无法取得,选项○热○点○题○型三圆锥曲线的综合应用1.已知椭圆()2222:10x y C a b a b+=>>2倍,且右焦点为()1,0F .(1)求椭圆C 的标准方程;(2)直线():2l y k x =+交椭圆C 于A ,B 两点,若线段AB 中点的横坐标为23-.求直线l 的方程.【详解】(1)由椭圆C 的长轴长是短轴长的2倍,可得2a b =.所以()2222bb c =+.又()1,0F ,所以()2221bb =+,解得1b =.所以2a =.所以椭圆C 的标准方程为2212x y +=.(2)设()11,A x y ,()22,B x y ,由()22122x y y k x ⎧+=⎪⎨⎪=+⎩,得()2222218820k x k x k +++-=.则2122821k x x k -+=+,21228221k x x k -=+.因为线段AB 中点的横坐标为23-,所以2122422213x x k k +-==-+.2.已知抛物线:2=2的焦点为(1,0),过的直线交抛物线于,两点,直线AO,BO分别与直线m:x=-2相交于M,N两点.(1)求抛物线C的方程;(2)求证:△ABO与△MNO的面积之比为定值.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的离心率为2,右焦点F 到其中一条渐近线的距离(1)求双曲线C 的标准方程;(2)(2)过右焦点F 作直线AB 交双曲线于,A B 两点,过点A 作直线1:2l x =的垂线,垂足为M ,求证直线MB 过定点.4.如图,平面直角坐标系中,直线l 与轴的正半轴及轴的负半轴分别相交于两点,与椭圆22:143x y E +=相交于,A M 两点(其中M 在第一象限),且,QP PM N = 与M关于x 轴对称,延长NP 交㮋圆于点B .(1)设直线,AM BN 的斜率分别为12,k k ,证明:12k k 为定值;(2)求直线AB 的斜率的最小值.5.已知双曲线C :221a b-=(0a >,0b >)的右焦点为F ,一条渐近线的倾斜角为60°,且C 上的点到F 的距离的最小值为1.(1)求C 的方程;(2)设点()0,0O ,()0,2M ,动直线l :y kx m =+与C 的右支相交于不同两点A ,B ,且AFM BFM ∠=∠,过点O 作OH l ⊥,H 为垂足,证明:动点H 在定圆上,并求该圆的方程.。

解析几何填空选择压轴题(含答案)解析(1)

解析几何填空选择压轴题(含答案)解析(1)

解析几何填空选择压轴题(含答案)解析(1)20XX年解析几何填空选择压轴题(含答案)一.选择题(共15小题)1.(20XX年潍坊模拟)椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是2.(20XX年绥化一模)已知椭圆,F1,F2为其左、右焦点,P(其为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I,且有3.(20XX年鹰潭二模)已知点A(1,0),B(1,0)及抛物线y=2x,若抛物线上点P满4.(20XX年大庆校级模拟)已知双曲线的标准方程为,F为其右焦点,A1,A2是2实轴的两端点,设P为双曲线上不同于A1,A2的任意一点,直线A1P,A2P与直线x=a分别交于两点M,N,若5.(20XX年瓦房店市校级二模)已知抛物线y=2px (p>0)与椭圆2,则a的值为()6.(20XX年江北区校级模拟)如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()27.(20XX年东城区模拟)设F为抛物线y=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()8.(20XX年重庆)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C9.(20XX年江西)如图,一个“凸轮”放置于直角坐标系X 轴上方,其“底端”落在远点O处,一顶点及中心M在Y轴的正半轴上,它的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成今使“凸轮”沿X轴正向滚动过程中,“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放10.(20XX年陕西)已知抛物线y=2px(p>0)的准线与圆(x3)+y=16相切,则p的值22211.(20XX年重庆)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另12.(20XX年天津)设抛物线y=2x的焦点为F,过点M(2,0)的直线与抛物线相交于A、=()B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比13.(20XX年四川)已知抛物线C:y=8x的焦点为F,准线与x轴的交点为K,点A在C上14.(20XX年海南)已知点P在抛物线y=4x上,那么点P 到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()2215.(20XX年福建)双曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一二.填空题(共15小题)16.(20XX年鞍山一模)已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF2为底边的等腰三角形.若|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是.17.(20XX年上饶二模)以抛物线y=20x的焦点为圆心,且与双曲线:近线都相切的圆的方程为.18.(20XX年射阳县校级模拟)已知椭圆2的两条渐,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若= .19.(20XX年福建模拟)若函数f(x)=log2(x+1)1的零点是抛物线x=ay焦点的横坐标,则a= .20.(20XX年建邺区模拟)过抛物线y=2px(p>0)的对称轴上的定点M(m,0)(m>0),作直线AB与抛物线相交于A,B两点.(1)试证明A,B两点的纵坐标之积为定值;(2)若点N是定直线l:x=m上的任一点,试探索三条直线AN,MN,BN的斜率之间的关系,并给出证明.2221.(20XX年湖北)如图,双曲线=1(a,b>0)的两顶点为A1,A2,虚轴两端点为B1,B2,两焦点为F1,F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A,B,C,D.则:(Ⅰ)双曲线的离心率e= ;(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值= .22.(20XX年沈河区校级模拟)+=1上有一动点P,圆E:(x1)+y=1,过圆心E任2222意做一条直线与圆E交于A、B两点,圆F:(x+1)+y=1,过圆心任意做一条直线交圆F于C、D两点,则23.(20XX年庐阳区校级模拟)如图,椭圆的长轴为A1A2,短轴为B1B2,将坐标+的最小值为.平面沿y轴折成一个二面角,使点A2在平面B1A1B2上的射影恰好是该椭圆的左焦点,则此二面角的大小为.24.(20XX年江西)抛物线x=2py(p>0)的焦点为F,其准线与双曲线B两点,若△ABF为等边三角形,则p=.25.(20XX年湖南)设F1,F2是双曲线C:(a>0,b>0)的两个焦点.若在C2=1相交于A,上存在一点P.使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为26.(20XX年浙江)设F1,F2分别为椭圆则点A的坐标是.+y=1的焦点,点A,B在椭圆上,若2=5;27.(20XX年湖北)已知椭圆C:的两焦点为F1,F2,点P(x0,y0)满足与椭圆C的公共点个,则|PF1|+PF2|的取值范围为,直线数.28.(20XX年重庆)动圆的圆心在抛物线y=8x上,且动圆恒与直线x+2=0相切,则动圆必过点.29.(20XX年上海)在平面直角坐标系中,双曲线Γ的中心在原点,它的一个焦点坐标为,曲线Γ上的点P,若30.(20XX年重庆)过双曲线xy=4的右焦点F作倾斜角为105的直线,交双曲线于P、Q两点,则|FP| |FQ|的值为.222、分别是两条渐近线的方向向量.任取双(a、b∈R),则a、b满足的一个等式是.20XX年解析几何填空选择压轴题(含答案)参考答案与试题解析一.选择题(共15小题)1.(20XX年潍坊模拟)椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是2.(20XX年绥化一模)已知椭圆,F1,F2为其左、右焦点,P(其为椭圆C上除长轴端点外的任一点,△F1PF2的重心为G,内心I,且有3.(20XX年鹰潭二模)已知点A(1,0),B(1,0)及抛物线y=2x,若抛物线上点P满24.(20XX年大庆校级模拟)已知双曲线的标准方程为,F为其右焦点,A1,A2是实轴的两端点,设P为双曲线上不同于A1,A2的任意一点,直线A1P,A2P与直线x=a分别交于两点M,N,若,则a的值为()B.C.D.考点:双曲线的简单性质. 专题:综合题;压轴题. 分析:双曲线菁优网版权所有,右焦点F(5.0) ,A1(3,0) ,A2(3,0) ,设P(x,y) ,M(a, ,故m= ,由和,能求,由P,m) ,N(a,n) ,由P,A1,M 三点共线,知A2,N 三点共线,知,故n= , 出 a 的值. 解答:解:∵双曲线,右焦点F(5,0) ,A1(3,0) ,A2(3,0) ,设P(x,y) ,M(a,m) ,N(a,n) , ∵P,A1,M 三点共线,∴m= ,∵P,A2,N 三点共线,∴ ∴n= , ,∵,∴,∴,,∴=(a5) +=(a5) +,第10 页(共32 页)5.(20XX年瓦房店市校级二模)已知抛物线y=2px(p>0)与椭圆26.(20XX年江北区校级模拟)如图,已知半圆的直径|AB|=20,l为半圆外一直线,且与BA的延长线交于点T,|AT|=4,半圆上相异两点M、N与直线l的距离|MP|、|NQ|满足条件,则|AM|+|AN|的值为()7.(20XX年东城区模拟)设F为抛物线y=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()28.(20XX年重庆)设双曲线C的中心为点O,若有且只有一对相交于点O,所成的角为60°的直线A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分别是这对直线与双曲线C9.(20XX年江西)如图,一个“凸轮”放置于直角坐标系X 轴上方,其“底端”落在远点O处,一顶点及中心M在Y轴的正半轴上,它的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成今使“凸轮”沿X轴正向滚动过程中,“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放10.(20XX年陕西)已知抛物线y=2px(p>0)的准线与圆(x3)+y=16相切,则p的值22211.(20XX年重庆)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另12.(20XX年天津)设抛物线y=2x的焦点为F,过点M(2,0)的直线与抛物线相交于A、=()B两点,与抛物线的准线相交于点C,|BF|=2,则△BCF与△ACF的面积之比代入,即可求得A 的坐标,进而求得的值,则三角形的面积之比可得.解答:解:如图过 B 作准线l:x= 的垂线,垂足分别为A1,B1,∵=,又∵△B1BC∽△A1AC、∴ = ,由物线定义==.由|BF|=|BB1|=2 知xB= ,yB= ∴AB:y0= (x ) .,把x=代入上式,求得yA=2,xA=2,∴|AF|=|AA1|= . 故故选A. = = = .第17 页(共32 页)13.(20XX年四川)已知抛物线C:y=8x的焦点为F,准线与x轴的交点为K,点A在C上14.(20XX年海南)已知点P在抛物线y=4x上,那么点P 到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为()215.(20XX年福建)双曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一二.填空题(共15小题)16.(20XX年鞍山一模)已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左右焦点分别为F1,F2,且它们在第一象限的交点为P,△PF1F2是以PF2为底边的等腰三角形.若|PF1|=10,双曲线的离心率的取值范围为(1,2).则该椭圆的离心率的取值范围是(,).17.(20XX年上饶二模)以抛物线y=20x的焦点为圆心,且与双曲线:222的两条渐近线都相切的圆的方程为(x5).18.(20XX年射阳县校级模拟)已知椭圆,过右焦点F且斜率为k(k>0)的直线与C相交于A、B两点,若= .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学选择填空压轴题精选(解析几何1)已知椭圆E :22142x y +=,O 为坐标原点,A 、B 是椭圆E 上两点,且△AOB,则11||||OA OB +的最小值是 . 解法一(利用椭圆参数方程)设(2cos ), (2cos )A B ααββ,因为AOB S ∆=,所以12211||2AOB S x y x y ∆=-=,cos sin sin cos |αβαβ-=|sin()|1βα∴-=, cos()0βα∴-=,()2k k Z πβαπ=++∈,222222||||4cos 2sin 4cos ()2sin ()622OA OB ππαααα∴+=+++++=.下面求11||||OA OB +的最小值,有如下方法: ①均值不等式22||||||||32OA OB OA OB +⋅≤=,11||||OA OB ∴+≥≥=. ②平方平均大于等于调和平均21111a b a b≥⇒+≥+,11||||3OA OB +≥==. ③权方和不等式33322211122222221111(11)||||(||)(||)(||+||)OA OB OA OB OA OB ++=+≥==,当且仅当||||OA OB ==,等号成立,min 11()||||3OA OB ∴+=. ④权方和不等式+柯西不等式2211423||||||+||3122(||+||)OA OB OA OB OA OB +≥≥==. 点评:本解法利用椭圆的参数方程,得到了一个很重要的中间结论:|sin()|1βα-=. 一般地, 有如下结论:若11(,)A x y ,22(,)B x y 为椭圆2222:1(0)x y E a b a b+=>>上的动点, 且满足2AOB abS ∆=,则有:(1)22212x x a +=, 22212y y b +=;(2)22OA OBb k k a⋅=-. 解法二:(利用柯西不等式)设11(,)A x y ,22(,)B x y ,由12211||22AOB S x y x y ∆=-=得 2222222221221121212128()()()[82()]()x y x y x x y y y y y y =-≤++=-++,(当且仅当12120x x y y +=时等号成立).22212(2)0y y ∴+-=,22122y y ∴+=又221124x y +=,222224x y +=,则22221122228x y x y +++=,22124x x ∴+=, 进而222212126x x y y +++=,221123||||3||||2OA OB OA OB ∴+≥==+当且仅当||||3OA OB ==,11||||OA OB +23.点评:本解法利用柯西不等式,实现等与不等的相互转化,相当精彩!解法三:(利用仿射变换,椭圆变圆)设伸缩变换2:2x x y τ'=⎧⎪⎨'=⎪⎩,则221x y ''+=,在该变换下,1122(,),(,)A x y B x y 的对应点分别为1122(,),(,)A x y B x y '''''', 而12211||2A OB S x y x y ''∆'''=-,122112211||2|2AOB S x y x y x y x y ∆'''=-=-, 所以12222AOB A OB A OB S S S ''''∆∆∆===,OA OB ''∴⊥,21||||x y ''∴=,21||||y x ''= ,2221x y ''∴=,2221y x ''=,22222222112211||||42426()6OA OB x y x y x y ''''''∴+=+++=+=, 33322211122222221111(11)||||3(||)(||)(||+||)OA OB OA OB OA OB +∴+=+≥==当且仅当||||OA OB ==,11||||OA OB +取得最小值3.点评:本解法利用仿射变换,椭圆变圆,关键是发现OA OB ''⊥.游数玩形,妙在转化!解法四:(齐次化)由12211||2AOB S x y x y ∆=-=及221124x y +=,222224x y +=,得22222122111222()(2)(2)x y x y x y x y -=++.(1)当直线OA 与OB 的斜率都存在时,两边同时除以2212x x ,得2222()(12)(12)OA OB OAOB k k k k -=++, 化简得2(21)0OA OB k k +=,12OA OB k k ∴=-,设:OA y kx =,则1:2OB y x k=-, 由222222244,121224A A y kx k x y k k x y =⎧⇒==⎨+++=⎩,22244||12k OA k +∴=+, 同理(将k 换成12k-),得22228||21k OB k +=+,22|||| 6.OA OB ∴+=(2)当直线OA 或OB 的斜率为0或不存在时,也有22|||| 6.OA OB +=于是11||||OA OB +≥==当且仅当||||OA OB ==,等号成立, 因此11||||OA OB +.点评:本解法利用齐次化,得出OA 与OB 的斜率关系,接下来便顺理成章了.解法五:常规思路当直线OA 与OB 的斜率都存在时,设直线1:OA y k x =,直线1:OB y k x =,1122(,),(,)A x y B x y ,由221142x y y k x⎧+=⎪⎨⎪=⎩解得2121412x k =+,同理2222412x k =+.点B 到直线OA 的距离122212221111d k k ==++, 因为2AOB S ∆=,所以2212111212211111|||()|2221AOB S OA d k x x x k k k ∆=⋅=+⋅=-+,即122212||221212k k k k -=++,即2212122||(12)(12)k k k k -=++, 所以212(21)0k k +=,即1212k k =-. 下同解法四.点评:与上述方法相比,本解法相对复杂一些,熟悉以下二级结论的话,过程会大大简化.【结论】椭圆2222:1(0)x y C a b a b+=>>,A ,B 为椭圆C 上的动点,11(,)A x y ,22(,)B x y ,且满足22OA OBb k k a⋅=-,则有: (1)22212x x a +=,22212y y b +=,2222||||OA OB a b +=+;(2)2AOB ab S ∆=; (3)若M 为椭圆上一点,且OM OA OB λμ=+u u u u r u u u r u u u r,则221λμ+=.相似题1(2011年山东卷理22题)已知动直线l 与椭圆22:132x y C +=交于11(,)P x y 、22(,)Q x y 两不同点,且OPQ △ 的面积62OPQ S ∆=,其中O 为坐标原点. (Ⅰ)证明2212x x +和2212y y +均为定值;(Ⅱ)(Ⅲ)略.答案:22123x x +=,22122y y +=.相似题2已知椭圆E :2212412x y +=,O 为坐标原点,A 、B 是椭圆E 上两点,OA ,OB 的斜率存在并分别记为,OA OB k k ,且12OA OB k k ⋅=-,则11||||OA OB +的最小值是( ) A.26 B.13C.23D.22答案:C.相似题3已知A ,B 是椭圆C :221259x y +=上关于原点对称的两个点,P 、M 、N 是椭圆上异于AB 的点,且//AP OM ,//BP ON ,则MON ∆的面积为( )A.32 B. 32 C. 152 D.252答案:C.相似题4:如图所示,12,A A 分别是椭圆2212x y +=,的长轴的左右端点,O 为坐标原点,,,S Q T 为椭圆上不同于12,A A 的三点,直线12,,,QA QA OS OT 围成一个平行四边形OPQR ,则22||||OS OT +等于( )A. 4B. 3C. 32D.52答案:B. 相似题5:在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>,其焦点到相应准线的距离为3,离心率为12.(1)求椭圆C 的标准方程;(2)如图所示,A ,B 是椭圆C 上两点,且射线OA ,OB 的斜率满足34OA OB k k =-,延长OA 到M ,使得OM =3OA ,且MB 交椭圆C 于Q ,设OQ OA OB λμ=+u u u r u u u r u u u r,求证: ①221λμ+=;②BMBQ 为定值.答案:5.。

相关文档
最新文档