解析几何测试题
解析几何专题评估测试题及详细答案

解析几何专题评估测试题[时间120分钟,满分150分]一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·珠海模拟)经过圆C :(x +1)2+(y -2)2=4的圆心且斜率为1的直线方程为 A .x -y +3=0 B .x -y -3=0 C .x +y -1=0D .x +y +3=0解析 圆C :(x +1)2+(y -2)2=4的圆心的圆心坐标为(-1,2), 则所求的直线方程为y -2=x -(-1),即x -y +3=0. 答案 A2.(2013·延庆模拟)已知直线l 1:ax +(a +1)y +1=0,l 2:x +ay +2=0,则“a =-2”是“l 1⊥l 2”A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析 当a =-2时,kl 1=-2,kl 2=12, 所以kl 1·kl 2=-1,即l 1⊥l 2; 当l 1⊥l 2时,a (a +1)+a =0, 解得a =-2,或a =0,所以“a =-2”是“l 1⊥l 2”的充分不必要条件. 答案 A3.(2013·莱芜模拟)点P (2,-1)为圆(x -1)2+y 2=25内弦AB 的中点,则直线AB 的方程为 A .x +y -1=0 B .2x +y -3=0 C .x -y -3=0D .2x -y -5=0解析 设圆心为C ,则C (1,0),k PC =-1,由圆的几何性质可知,PC ⊥AB ,所以k AB =1,则直线AB 的方程为y -(-1)=x -2,即x -y -3=0.答案 C4.直线3x +4y -9=0与圆x 2+(y -1)2=1的位置关系是 A .相离B .相切C .直线与圆相交且过圆心D .直线与圆相交但不过圆心解析 已知圆的圆心坐标为(0,1),则圆心到直线的距离为d =1, 而r =1,所以d =r ,即直线和圆相切. 答案 B5.(2013·青浦模拟)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为A .y =±2xB .y =±2xC .y =±12xD .y =±22x解析 由题意知2b =2,2c =23,所以b =1,c =3, a =c 2-a 2=2,所以双曲线的渐近线方程为y =±b a x =±12x =±22x ,选D. 答案 D6.已知圆x 2+y 2-2x +my -4=0上两点M 、N 关于直线2x +y =0对称,则圆的半径为 A .9B .3C .23D .2解析 已知圆的圆心坐标为⎝ ⎛⎭⎪⎫1,-m 2,因为圆x 2+y 2-2x +my -4=0上两点M 、N 关于直线2x +y =0对称,则直线2x +y =0必过圆心⎝ ⎛⎭⎪⎫1,-m 2,代入直线方程可解得m =4,则圆的半径r=12(-2)2+42-4×(-4)=3.答案 B7.若椭圆x 2a 2+y 2b 2=1过抛物线y 2=8x 的焦点,且与双曲线x 2-y 2=1有相同的焦点,则该椭圆的方程为A.x 24+y 22=1 B.x 23+y 2=1 C.x 22+y 24=1D .x 2+y 23=1解析 抛物线y 2=8x 的焦点坐标为(2,0),因为椭圆过该点, 代入可得a 2=4,双曲线x 2-y 2=1的焦点坐标为(±2,0), 所以椭圆的焦点在x 轴上,且a 2>b 2, 故a 2-b 2=4-b 2=(2)2,即b 2=2,则所求的椭圆的方程为x 24+y 22=1. 答案 A8.(2013·门头沟一模)已知P (x ,y )是中心在原点,焦距为10的双曲线上一点,且yx 的取值范围为⎝ ⎛⎭⎪⎫-34,34,则该双曲线方程是 A.x 29-y 216=1 B.y 29-x 216=1 C.x 216-y 29=1D.y 216-x 29=1解析 由题意知2c =10,所以c =5. 又y x 的取值范围为⎝ ⎛⎭⎪⎫-34,34,所以双曲线的渐近线斜率k =34,且焦点在x 轴上. 即b a =34,所以b =34a , 解得a 2=16,b 2=9,所以双曲线的方程为x 216-y 29=1,选C. 答案 C9.已知双曲线x 24-y 25=1上一点P 到F (3,0)的距离为6,O 为坐标原点,OQ→=12(OP →+OF →),则|OQ→|等于 A .1B .2C .2或5D .1或5解析 设双曲线的左焦点为F 1, 因为OQ→=12(OP →+OF →), 所以点Q 是线段PF 的中点,而O 是F 1F 的中点, 故线段OQ 是三角形PF 1F 的中位线, 故|OQ→|=12|PF 1|, 据双曲线的定义得||PF 1|-|PF ||=||PF 1|-6|=4, 即|PF 1|=10或|PF 1|=2,所以|OQ |=5或1. 答案 D10.(2013·济宁一模)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)作圆x 2+y 2=a 2的切线,切点为E ,延长FE 交抛物线y 2=4cx 于点P ,O 为原点,若OE→=12(OF →+OP →),则双曲线的离心率为A.1+52B.3+33C.52D.1+32解析 因为OE→=12(OF →+OP →),所以E 是FP 的中点.设右焦点为F 1,则F 1也是抛物线的焦点. 连接PF 1,则|PF 1|=2a ,且PF ⊥PF 1, 所以|PF |=4c 2-4a 2=2b .设P (x ,y ),则x +c =2a ,则x =2a -c ,过点F 作x 轴的垂线,点P 到该垂线的距离为2a , 由勾股定理得y 2+4a 2=4b 2, 即4c (2a -c )+4a 2=4(c 2-a 2), 解得e =5+12,选A.答案 A11.(2013·青岛一模)已知抛物线y 2=4x 的焦点为F ,准线为l ,点P 为抛物线上一点,且在第一象限,P A ⊥l ,垂足为A ,|PF |=4,则直线AF 的倾斜角等于A.7π12B.2π3C.3π4D.5π6解析 抛物线的焦点坐标为F (1,0), 准线方程为x =-1.由题意|PF |=|P A |=4,则x P -(-1)=4,即x P =3,所以y 2P =4×3,即y P =±23,不妨取P (-1,23),则设直线AF 的倾斜角等于θ, 则tan θ=23-1-1=-3,所以θ=2π3,选B.答案 B12.已知双曲线x 2a 2-y 2b 2=1(a >1,b >0)的焦距为2c ,若点(-1,0)与点(1,0)到直线x a -yb =1的距离之和为S ,且S ≥45c ,则离心率e 的取值范围是A .[2,7] B.⎣⎢⎡⎦⎥⎤52,5 C.⎣⎢⎡⎦⎥⎤52,7D .[2,5]解析 直线x a -yb =1方程为bx -ay -ab =0, 则S =|-b -ab |+|b -ab |a 2+b 2=b +ab -b +ab a 2+b 2=2aba 2+b2, 而c =a 2+b 2,所以2ab a 2+b2≥45a 2+b 2, 化简得2⎝ ⎛⎭⎪⎫b a 2-5⎝ ⎛⎭⎪⎫b a +2≤0,解得12≤ba ≤2,所以e 2=c 2a 2=1+⎝ ⎛⎭⎪⎫b a 2∈⎣⎢⎡⎦⎥⎤54,5,即e ∈⎣⎢⎡⎦⎥⎤52,5.答案 B二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.(2013·日照一模)抛物线y 2=16x 的准线方程为________. 解析 在抛物线中2p =16,p =8, 所以准线方程为x =-p2=-4. 答案 x =-414.(2013·黄浦模拟)若双曲线x 24-y 2b 2=1(b >0)的一条渐近线过点P (1,2),则b 的值为________. 解析 双曲线的渐近线方程为y =±b 2x ,因为点P (1,2)在第一象限, 所以点P (1,2)在渐近线y =b 2x 上,所以有2=b2,所以b =4. 答案 415.(2013·南京模拟)如图,已知F 1、F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆C 上,线段PF 2与圆x 2+y 2=b 2相切于点Q ,且点Q 为线段PF 2的中点,则椭圆C 的离心率为________.解析 据题意知|OQ |=r =b . 又OQ 是三角形PF 1F 2的中位线, 故|PF 1|=2b ,所以|PF 2|=2a -2b , |QF 2|=a -b ,在直角三角形OQF 2中, 由勾股定理得b 2+(a -b )2=c 2. 又c 2=a 2+b 2,代入化简得b a =23, 所以e 2=1-⎝ ⎛⎭⎪⎫b a 2=59,即e =53.答案 e =5316.(2013·潍坊二模)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,上顶点为A ,离心率为12,点P 为第一象限内椭圆上的一点,若S △PF 1A ∶S △PF 1F 2=2∶1,则直线PF 1的斜率为________.解析 因为椭圆的离心率为12, 所以e =c a =12,即a =2c .设直线PF1的斜率为k(k>0),则直线PF1的方程为y=k(x+c).因为S△PF1A∶S△PF1F2=2∶1,即S△PF1A=2S△PF1F2,即12·|PF1|·|kc-b|k2+1=2×12·|PF1|·|2kc|k2+1,所以|kc-b|=4|kc|,解得b=-3kc(舍去),或b=5kc. 又a2=b2+c2,即a2=25k2c2+c2,所以4c2=25k2c2+c2,解得k2=3 25,所以k=3 5.答案3 5三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y -6=0,点T(-1,1)在AD边所在直线上.(1)求AD边所在直线的方程;(2)求矩形ABCD外接圆的方程;(3)若动圆P过点N(-2,0),且与矩形ABCD的外接圆外切,求动圆P的圆心的轨迹方程.解析(1)因为AB边所在直线的方程为x-3y-6=0,且AD与AB垂直,所以直线AD的斜率为-3.又因为点T(-1,1)在直线AD上,所以AD边所在直线的方程为y-1=-3(x+1).3x +y +2=0.(3分) (2)由⎩⎨⎧x -3y -6=0,3x +y +2=0,解得点A 的坐标为(0,-2).因为矩形ABCD 两条对角线的交点为M (2,0). 所以M 为矩形ABCD 外接圆的圆心. 又|AM |=(2-0)2+(0+2)2=2 2.从而矩形ABCD 外接圆的方程为(x -2)2+y 2=8.(6分) (3)因为动圆P 过点N ,所以|PN |是该圆的半径. 又因为动圆P 与圆M 外切, 所以|PM |=|PN |+22, 即|PM |-|PN |=2 2.故点P 的轨迹是以M ,N 为焦点,实轴长为22的双曲线的左支. 因为实半轴长a =2,半焦距c =2. 所以虚半轴长b =c 2-a 2= 2. 从而动圆P 的圆心的轨迹方程为 x 22-y 22=1(x ≤-2).(10分)18.(12分)(2013·门头沟一模)已知椭圆与双曲线x 2-y 2=1有相同的焦点,且离心率为22. (1)求椭圆的标准方程;(2)过点P (0,1)的直线与该椭圆交于A 、B 两点,O 为坐标原点,若AP →=2PB →,求△AOB 的面积. 解析 (1)设椭圆方程为x 2a 2+y 2b 2=1,a >b >0, 由c =2,可得a =2,b 2=a 2-c 2=2, 即所求方程为x 24+y 22=1.(4分) (2)设A (x 1,y 1),B (x 2,y 2), 由AP →=2PB →有⎩⎨⎧-x 1=2x 21-y 1=2(y 2-1)设直线方程为y =kx +1,代入椭圆方程整理,得(2k 2+1)x 2+4kx -2=0,(6分) 解得x =-2k ±8k 2+22k 2+1,不妨设x 1=-2k -8k 2+22k 2+1,x 2=-2k +8k 2+22k 2+1,因为-x 1=2x 2,则--2k +8k 2+22k 2+1=2·-2k +8k 2+22k 2+1,解得k 2=114.(10分)又△AOB 的面积S =12|OP |·|x 1-x 2|=12·28k 2+22k 2+1=1268.∴△AOB 的面积为1268.(12分)19.(12分)(2013·吉安模拟)已知平面内一动点P 到点F (0,1)的距离与点P 到x 轴的距离的差等于1.(1)求动点P 的轨迹C 的方程;(2)过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求AD →·EB→的最小值. 解析 (1)设动点P 的坐标为(x ,y ),由题意得x 2+(y -1)2-|y |=1, 化简得x 2=2y +2|y |,当y ≥0时x 2=4y ; 当y <0时,x =0,所以动点P 的轨迹C 的方程为x 2=4y 和x =0(y <0).(4分) (2)由题意知,直线l 1的斜率存在且不为0,设为k , 则l 1的方程为y =kx +1.由⎩⎨⎧y =kx +1x 2=4y 得x 2-4kx -4=0,(6分) 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4,y 1+y 2=4k 2+2,y 1y 2=1. 因为l 1⊥l 2,所以l 2的斜率为-1k .设D (x 3,y 3),E (x 4,y 4),则同理可得x 3+x 4=-4k , x 3x 4=-4,y 3+y 4=4k 2+2,y 3y 4=1,(8分) AD →·EB →=(AF →+FD →)·(EF →+FB →) =AF →·EF →+FD →·EF →+AF →·FB →+FD →·FB → =FD →·EF →+AF →·FB →=|FD →||EF →|+|AF →||FB →| =(y 3+1)(y 4+1)+(y 1+1)(y 2+1) =y 3y 4+(y 3+y 4)+1+y 1y 2+(y 1+y 2)+1=8+4k 2+4k 2=8+4⎝ ⎛⎭⎪⎫k 2+1k 2≥8+4×2=16,(10分)当且仅当k 2=1k 2,即k =±1时,AD →·EB→取最小值为16.(12分)20.(12分)在平面直角坐标系xOy 中,抛物线C 的顶点在原点,焦点F 的坐标为(1,0). (1)求抛物线C 的标准方程;(2)设M 、N 是抛物线C 的准线上的两个动点,且它们的纵坐标之积为-4,直线MO 、NO 与抛物线的交点分别为点A 、B ,求证:动直线AB 恒过一个定点.解析 (1)设抛物线的标准方程为y 2=2px (p >0),则p2=1,p =2, 所以抛物线方程为y 2=4x .(4分)(2)证明 抛物线C 的准线方程为x =-1, 设M (-1,y 1),N (-1,y 2),其中y 1y 2=-4, 直线MO 的方程:y =-y 1x ,将y =-y 1x 与y 2=4x , 联立解得A 点坐标⎝ ⎛⎭⎪⎫4y 21,-4y 1.同理可得B 点坐标⎝ ⎛⎭⎪⎫4y 22,-4y 2,(8分) 则直线AB 的方程为:y +4y1-4y 2+4y 1=x -4y 214y 22-4y 21,(10分) 整理得(y 1+y 2)y -4x +4=0, 故直线AB 恒过定点(1,0).(12分)21.(12分)(2013·济宁一模)已知椭圆C 的中心在原点,焦点在x 轴上,离心率为12,短轴长为4 3.(1)求椭圆C 的标准方程;(2)直线x =2与椭圆C 交于P 、Q 两点,A 、B 是椭圆O 上位于直线PQ 两侧的动点,且直线AB 的斜率为12.①求四边形APBQ 面积的最大值;②设直线P A 的斜率为k 1,直线PB 的斜率为k 2,判断k 1+k 2的值是否为常数,并说明理由.解析 (1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由已知b =23,离心率e =c a =12,a 2=b 2+c 2,得a =4,所以,椭圆C 的方程为x 216+y 212=1.(4分)(2)①由(1)可求得点P 、Q 的坐标为P (2,3),Q (2,-3),则|PQ |=6,设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =12x +t ,代入x 216+y 212=1,得:x 2+tx +t 2-12=0.由Δ>0,解得-4<t <4,由根与系数的关系得⎩⎨⎧x 1+x 2=-t x 1x 2=t 2-12. 四边形APBQ 的面积S =12×6×|x 1-x 2|=3×(x 1+x 2)2-4x 1x 2=348-3t 2,故当t =0,S max =12 3.(8分)②由题意知,直线P A 的斜率k 1=y 1-3x 1-2,直线PB 的斜率k 2=y 2-3x 2-2, 则k 1+k 2=y 1-3x 1-2+y 2-3x 2-2=12x 1+t -3x 1-2+12x 2+t -3x 2-2=12(x 1-2)+t -2x 1-2+12(x 2-2)+t -2x 2-2=1+t -2x 1-2+t -2x 2-2 =1+(t -2)(x 1+x 2-4)x 1x 2-2(x 1+x 2)+4, 由①知⎩⎨⎧ x 1+x 2=-t x 1x 2=t 2-12可得k 1+k 2=1+(t -2)(-t -4)t 2-12+2t +4=1+-t 2-2t +8t 2+2t -8=1-1=0, 所以k 1+k 2的值为常数0.(12分)22.(12分)(2013·南京模拟)设椭圆E :x 2a 2+y 2b 2=1(a ,b >0)过M (2,2),N (6,1)两点,O 为坐标原点.(1)求椭圆E 的方程;(2)是否存在圆心为原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B 且OA→⊥OB→?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在,说明理由. 解析 (1)因为椭圆E :x 2a 2+y 2b 2=1(a ,b >0)过M (2,2),N (6,1)两点,所以⎩⎪⎨⎪⎧ 4a 2+2b 2=16a 2+1b 2=1解得⎩⎪⎨⎪⎧ 1a 2=181b 2=14所以⎩⎨⎧a 2=8b 2=4. 椭圆E 的方程为x 28+y 24=1.(4分)(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B 且OA→⊥OB →,设该圆的切线方程为y =kx +m ,联立方程得⎩⎪⎨⎪⎧ y =kx +m x 28+y 24=1得x 2+2(kx +m )2=8, 即(1+2k 2)x 2+4kmx +2m 2-8=0,则Δ=16k 2m 2-4(1+2k 2)(2m 2-8)=8(8k 2-m 2+4)>0,即8k 2-m 2+4>0⎩⎪⎨⎪⎧ x 1+x 2=-4km 1+2k 2x 1x 2=2m 2-81+2k 2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 2(2m 2-8)1+2k 2-4k 2m 21+2k 2+m 2=m 2-8k 21+2k 2.(6分) 要使OA →⊥OB →,需使x 1x 2+y 1y 2=0, 即2m 2-81+2k 2+m 2-8k 21+2k 2=0, 所以3m 2-8k 2-8=0,所以k 2=3m 2-88≥0. 又8k 2-m 2+4>0,所以⎩⎨⎧m 2>23m 2≥8, 所以m 2≥83,即m ≥263或m ≤-263.因为直线y =kx +m 为圆心在原点的圆的一条切线, 所以圆的半径为r =|m |1+k 2, r 2=m 21+k 2=m 21+3m 2-88=83,r =263, 所求的圆为x 2+y 2=83,此时圆的切线y =kx +m 都满足m ≥263或m ≤-263,而当切线的斜率不存在时切线为x =±263与椭圆x 28+y 24=1的两个交点为⎝ ⎛⎭⎪⎫263,±263或⎝⎛⎭⎪⎫-263,±263满足OA →⊥OB →, 综上,存在圆心在原点的圆x 2+y 2=83,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA→⊥OB →. 因为⎩⎪⎨⎪⎧ x 1+x 2=-4km 1+2k 2x 1x 2=2m 2-81+2k 2, 所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-4km 1+2k 22-4×2m 2-81+2k 2=8(8k 2-m 2+4)(1+2k 2)2, |AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)(x 1-x 2)2=(1+k 2)8(8k 2-m 2+4)(1+2k 2)2 =323·4k 4+5k 2+14k 4+4k 2+1=323⎣⎢⎡⎦⎥⎤1+k 24k 4+4k 2+1,(10分) ①当k ≠0时,|AB |=323⎣⎢⎢⎡⎦⎥⎥⎤1+14k 2+1k 2+4. 因为4k 2+1k 2+4≥8,所以0<14k 2+1k 2+4≤18, 所以323<323⎣⎢⎢⎡⎦⎥⎥⎤1+14k 2+1k 2+4≤12,所以436<|AB |≤23, 当且仅当k =±22时取“=”.②当k =0时,|AB |=463. ③当AB 的斜率不存在时,两个交点为⎝ ⎛⎭⎪⎫263,±263或⎝ ⎛⎭⎪⎫-263,±263,所以此时|AB |=463, 综上,|AB |的取值范围为436≤|AB |≤23,即:|AB |∈⎣⎢⎡⎦⎥⎤436,23.(12分)。
平面解析几何单元测试题1

平面向量与平面解析几何练习一、选择题1、已知平面向量a =,1x (),b =2,x x (-), 则向量a b += ( ). A 、平行于y 轴 B 、平行于第一、三象限的角平分线C 、平行于x 轴D 、平行于第二、四象限的角平分线2、设M(-2,1),N(1,2)为平面直角坐标系中的两点,将M 和N 按向量)1,1(=a平移到点M '和N ',则N M ''的坐标是( )A 、(4,2)B 、(3,1)C 、(2,0)D 、(-1,3)3、下列直线中,垂直于直线01=+-y x 且与圆422=+y x 相切的是( ).A 、022=--y xB 、02=--y xC 、022=++y xD 、02=-+y x4、抛物线24x y =的焦点坐标为( ).A 、1(0,)16B 、1(,0)16C 、(0,1)D 、(1,0) 5、若向量(1,1)=-a ,(2,1)=-b , ,则向量3-a b 的模|3|-=a b ( )A.6、已知直线l 过点(1,1)P -,且与直线310x y +-=垂直,则直线l 的方程为( )A.13(1)y x +=-B.11(1)3y x -=-+C.13(1)y x -=+D.11(1)3y x +=-- 7、设P 是椭圆2212510x y +=上的一点,则P 到两焦点的距离的和为( )A.5B.6C.8D.108、设(2,1),(1,2)M N =-=为平面直角坐标系中两点,将,M N 按向量a =(1,1)平移到'',M N ,则''N M 的坐标为( )9、已知直线l 1:2y=x ,直线l 2:y+2x+1=0则l 1与 l 2 ( )A. 相交不垂直B.相交且垂直C. 平行不重合D.重合10、双曲线191622=-y x 的焦距为( ) A. 7 B.5 C. 72 D.1011、已知直线y=x-2与圆x 2+y 2=4交于两点M 和N ,O 是坐标原点,则=•ON OM ( )A. -1B.0C. 1D.212、垂直于x 轴的直线l 交抛物线y 2=4x 于A 、B 两点,且|AB|=43,则该抛物线的焦点到直线l 的距离是( )A.1B.2 B.3 D.413、以点(2,-1)为圆心且与直线0543=+-y x 相切的圆的方程( )A.3)1()2(22=++-y xB. 3)1()2(22=-++y xC. 9)1()2(22=-++y x D .9)1()2(22=++-y x14、以141222=-x y 的顶点为焦点,长半轴长为4的椭圆方程为( ) A .1526422=+y x B .1121622=+y xC .141622=+y xD .116422=+y x 15、若抛物线==p px y ,则的点之横坐标为上到焦点的距离为2322( )A .4B .3C .2D .1二、填空题16、圆2240x x y -+=的圆心到直线40x +-=的距离为__________.17、已知m 为实数,椭圆1322=+m y x 的一个焦点为抛物线y 2=4x 的焦点,则m = .18、经过点(0,-1)与点(1,0),且圆心在直线y=x+1上的圆的方程是____________19、双曲线112422=-y x 的离心率是20、以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,通常称它们互为共轭双曲线.共轭双曲线的四个焦点在同一个圆上. 如果已知双曲线22124x y -=和22124x y -=-,那么它们的焦点所在的这个圆的方程为_______________.三、解答题21、(14分) 已知圆k C :0214222=--++y kx y x )(R k ∈. 椭圆M 的中心在坐标原点,长轴在x 轴上,离心率为23, 两个焦点分别为1F 和2F , 椭圆M 上一点到1F 和2F 的距离之和为12. (1)求椭圆M 的方程;(2)求过焦点且与长轴垂直的直线被椭圆M 所截得的线段的长;(3)问是否存在实数k,使得椭圆M 在圆k C 的内部? 请说明理由.22、(本小题满分12分) 已知椭圆1xy y x 2222=+的左、右两个焦点F1、F2为双曲线13y 4x 2222=-的顶点。
中国人民大学附属中学必修二第二章《解析几何初步》测试题(含答案解析)

一、选择题1.设两条直线的方程分别为0x y a ++=,0x y b ++=,已知,a b 是方程20x x c ++=的两个实根,且108c ≤≤,则这两条直线之间的距离的最大值和最小值分别为( ) A3, B13, C.122, D.23, 2.已知点(,0)A m -,(,0)B m ,R m ∈,若圆22:(3)(3)2C x y -+-=上存在点P ,满足PA PB ⊥,则m 最大值是( )A.B.C.D.3.已知圆()()2295x a y a -+=>上存在点M ,使2OM MQ =(O 为原点)成立,()2,0Q ,则实数a 的取值范围是( )A .7a >B .57a <<C .1373a ≤≤ D .57a <≤4.已知直线:20()l kx y k R +-=∈是圆22:6260C x y x y +-++=的一条对称轴,若点(2,)A k ,B 为圆C 上任意的一点,则线段AB 长度的最小值为( ) A2B .2CD25.已知M 、N 分别是圆()()22:161C x y ++-=和圆()()22:261D x y -+-=上的两个动点,点P 在直线:l y x =上,则PM PN +的最小值是( ) A.2B .10C2D .126.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB ⋅的最大值是( ) A .4B .10C .5D7.在正方体1111ABCD A B C D -中,点,E F 分别是梭BC ,CD 的中点,则1A F 与1C E 所成角的余弦值为( ) ABC.15D.158.现有一个三棱锥形状的工艺品P ABC -,点P 在底面ABC 的投影为Q ,满足12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,22222213QA QB QC AB BC CA ++=++,ABCS =品放入一个球形容器(不计此球形容器的厚度)中,则该球形容器的表面积的最小值为( )A .42πB .44πC .48πD .49π9.如图,在Rt ABC △中,1AC =,BC x =,D 是斜边AB 的中点,将BCD △沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB AD ⊥,则x 的取值范围是( )A .(0,3⎤⎦B .2,22⎛⎤⎥ ⎝⎦C .3,23D .(]2,410.如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O .E ,F ,G ,H 为圆O 上的点,ABE △,BCF △,CDG ,ADH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形.沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起ABE △,BCF △,CDG ,ADH ,使得E ,F ,G ,H 重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为( )A .163πB .253πC .643πD .1003π11.已知平面图形PABCD ,ABCD 为矩形,4AB =,是以P 为顶点的等腰直角三角形,如图所示,将PAD △沿着AD 翻折至P AD '△,当四棱锥P ABCD '-体积的最大值为163,此时四棱锥P ABCD '-外接球的表面积为( )A .12πB .16πC .24πD .32π12.如图,在矩形ABCD 中,1AB =,3BC =,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥A BCD -正视图和俯视图如图,则三棱锥A BCD -中AC 长为( )A .32B 3C .102D .2二、填空题13.已知直线1:210l x my ++=与2:310l x y --=平行,则m 的值为__________. 14.已知直线l :230ax y a --+=与圆C :()()22124x y -+-=相交于P ,Q 两点,则PQ 的最小值为______.15.经点()2,3P -,作圆2220x y +=的弦AB ,使得P 平分AB ,则弦AB 所在直线方程是______.16.若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,双曲线C 的离心率为______.17.若直线30ax by +-=与圆22410x y x ++-=相切于点()1,2P -,则a b +=________.18.将一张坐标纸折叠一次,使点(10,0)与点(6,8)-重合,则与点(4,2)-重合的点是______.19.已知H 是球O 的直径AB 上一点,:1:3AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为__________.20.如图,在一个底面面积为4,侧棱长为10的正四棱锥P ABCD -中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的体积为___________.21.如图,四边形ABCD 是矩形,且有2AB BC =,沿AC 将ADC 翻折成AD C ',当二面角D AC B '--的大小为3π时,则异面直线D C '与AB 所成角余弦值是______.22.如图,在正方体1111ABCD A B C D -中,E ,F ,G 分别是棱11A B ,1BB ,11B C 的中点,则下列结论中:①FG BD ⊥; ②1B D ⊥面EFG ;③面//EFG 面11ACC A ; ④//EF 面11CDD C . 正确结论的序号是________.23.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角的大小为_________.24.在三棱锥-P ABC 中,侧面PBC 和底面ABC 都是边长为2的正三角形,若3PA =,则侧棱PA 与底面ABC 所成的角的大小是___________.三、解答题25.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,E 为PD 的中点.(1)证明://PB 平面AEC ; (2)设1AP =,3AD =,四棱锥P ABCD -的体积为1,求证:平面PAC ⊥平面PBD .26.如图,在长方体1111ABCD A B C D -中,12AB BC AA ==,1O 是底面1111D C B A 的中心.(Ⅰ)求证:1//O B 平面1ACD ;(Ⅱ)求二面角1D AC D --的平面角的余弦值. 27.如图,在三棱锥A BCD -中,2,22,23,BCBD AB CD AC AB BD =====⊥(1)证明:平面ABC ⊥平面ABD .(2)在侧面ACD 内求作一点H ,使得BH ⊥平面ACD ,写出作法(无需证明),并求线段AH 的长.28.如图,四边形ABCD 为矩形,且4=AD ,22AB =,PA ⊥平面ABCD ,2PA =,E 为BC 的中点.(1)求证:PC DE ⊥;(2)若M 为PC 的中点,求三棱锥M PAB -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由韦达定理求出1,a b ab c +=-=,然后求出2||()4a b a b ab -=+-两平行线间的距离范围. 【详解】由已知得两条直线的距离是d =, 因为,a b 是方程20x x c ++=的两个根,所以1,a b ab c +=-=,则||a b -=, 因为108c ≤≤,所以12222,即1222d . 故选:C 【点睛】本题考查平行线间的距离公式,韦达定理和不等式,属于基础题.2.C解析:C 【分析】首先设点(),P x y ,利用0AP BP ⋅=,转化为m =m 的最大值. 【详解】由圆的方程可知,圆的圆心()3,3C ,设(),P x y 则(),AP x m y =+,(),BP x m y =-,()()20AP BP x m x m y ⋅=+-+=,即222m x y m =+⇒=m 的最大值就是圆上的点到原点的距离的最大值,即圆心到原点的距离加半径,即OC r +== 故选:C 【点睛】结论点睛:与圆的几何性质有关的最值,具体结论如下:(1)设O 为圆的圆心,半径为r ,圆外一点A 到圆上的距离的最小值为AO r -,最大值为AO r -;(2)过圆内一点的最长弦为圆的直径,最短弦是以该点为中点的弦;(3)记圆的半径为r ,圆心到直线的距离为d ,直线与圆相离,则圆上的点到直线的最大距离为d r +,最小值为d r -;3.D解析:D 【分析】根据2OM MQ =可得M 的轨迹方程.由点M 在圆()()2295x a y a -+=>上,可得M的轨迹方程与圆()()2295x a y a -+=>有公共点,即可由其位置关系求解. 【详解】 由题意,设(),M x y则由2OM MQ =,()2,0Q =化简变形可得2281639x y ⎛⎫-+= ⎪⎝⎭ 所以M 的轨迹为以8,03⎛⎫ ⎪⎝⎭为圆心,以43为半径的圆 由题意可知M 为2281639x y ⎛⎫-+= ⎪⎝⎭与()()2295x a y a -+=>的公共点即两个圆有公共点,由圆与圆的位置关系可知48433333a -≤-≤+ 解得1373a ≤≤ 又因为5a >所以57a <≤ 故选:D 【点睛】本题考查了点的轨迹方程求法,圆与圆位置关系式的应用,属于中档题.4.D解析:D 【分析】由直线l 是圆C 的一条对称轴,求得1k =,得到点(2,1)A ,再结合圆的性质,即可求解. 【详解】由题意,圆22:6260C x y x y +-++=,可得圆心(3,1)C -,半径为2r因为直线:20l kx y +-=是圆22:6260C x y x y +-++=的一条对称轴, 则(3,1)C -在直线l 上,即3120k --=,解得1k =,所以(2,1)A ,则AC ==所以线段AB 长度的最小值为min ||||2AB AC r =-=.2. 【点睛】本题主要考查了直线与圆的位置关系及其应用,其中解答中熟练应用直线与圆的位置关系求得k 的值,转化为点与圆的位置关系,结合圆的性质求解是解得关键,着重考查转化思想,以及计算能力.5.C解析:C 【分析】计算圆心()1,6-关于直线:l y x =的对称点为()16,1C -,计算1C D =. 【详解】圆()()22:161C x y ++-=的圆心为()1,6-,圆()()22:261D x y -+-=的圆心为()2,6,()1,6-关于直线:l y x =的对称点为()16,1C -,1C D ==故PM PN +的最小值是1122C D r r --=. 故选:C. 【点睛】本题考查了点关于直线对称,与圆相关的距离的最值,意在考查学生的计算能力和应用能力,转化能力.6.C解析:C 【分析】由题意结合直线位置关系的判断可得两直线互相垂直,由直线过定点可得定点A 与定点B ,进而可得22210PA PB AB +==,再利用基本不等式,即可得解.【详解】由题意直线0x my +=过定点(0,0)A ,直线30mx y m --+=可变为(1)30m x y --+=,所以该直线过定点()1,3B , 所以2221310AB =+=,又()110m m ⨯+⨯-=,所以直线0x my +=与直线30mx y m --+=互相垂直, 所以22210PA PB AB +==,所以22102PA PB PA PB =+≥⋅即5PA PB ⋅≤,当且仅当=PA PB , 所以PA PB ⋅的最大值为5. 故选:C. 【点睛】本题考查了直线位置关系的判断及直线过定点的应用,考查了基本不等式的应用,合理转化条件是解题关键,属于中档题.7.D解析:D【分析】延长DA 至G ,使AG CE =,可证11//A G C E ,得1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角).在1AGF △中,由余弦定理可得结论. 【详解】延长DA 至G ,使AG CE =,连接1,GE GA ,GF ,11,AC A C , 又//AG CE 所以AGEC 是平行四边形,//,GE AC GE AC =, 又正方体中1111//,AC AC AC AC =, 所以1111//,AC DE AC DE =,所以11AC EG 是平行四边形,则11//A G C E ,所以1GA F ∠是异面直线1A F 与1C E 所成的角(或其补角). 设正方体棱长为2,在正方体中易得15AG =,10GF =,22222112(21)3A F AA AF =+=++=,1AGF △中,2221111125cos 215253AG A F GF GA F AG A F +-∠===⋅⨯⨯. 故选:D .【点睛】方法点睛:本题考查空间向量法求异面直线所成的角,求异面直线所成角的方法: (1)定义法:根据定义作出异面直线所成的角并证明,然后解三角形得结论; (2)建立空间直角坐标系,由两异面直线的方向向量的夹角得异面直线所成的角.8.D解析:D 【分析】作QM AB ⊥,连接PM ,易证AB PM ⊥,由112122QAB PABABQMS S AB PM ⨯⨯==⨯⨯△△,得到2PM QM =,再根据12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△,由对称性得到AB BC AC ==,然后根据22222213QA QB QC AB BC CA ++=++,93ABCS =,求得6,23AB AQ ==,在AOQ△中,由222AO OQ AQ =+求解半径即可.【详解】 如图所示:作QM AB ⊥与M ,连接PM , 因为PQ ⊥平面ABC ,所以PQ AB ⊥,又QM PQ Q ⋂=, 所以AB ⊥平面PQM , 所以AB PM ⊥,所以112122QAB PABAB QM S S AB PM ⨯⨯==⨯⨯△△, 2PM QM =,因为12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△, 由对称性得AB BC AC ==,又因为22222213QA QB QC AB BC CA ++=++,93ABCS =所以21sin 60932ABCSAB =⨯⨯=解得6,23AB AQ ==,所以3,23,3QM PM PQ ===,设外接球的半径为r ,在AOQ △中,222AO OQ AQ =+,即()()222323r r =-+, 解得72r =, 所以外接球的表面积为2449S r ππ==, 即该球形容器的表面积的最小值为49π. 故选:D 【点睛】关键点点睛:本题关键是由12QAB QAC QBC PABPACPBCS S S S S S ===△△△△△△得到三棱锥是正棱锥,从而找到外接球球心的位置而得解..9.A解析:A 【分析】取BC 中点E ,连接DE ,AE ,若CB AD ⊥,则可证明出BC ⊥平面ADE ,则可得BC AE ⊥. 根据题目中各边长的关系可得出AE ,AD 关于x 的表达式,然后在ADE 中,利用三边关系求解即可. 【详解】由题意得BC x =,则21x AD CD BD +===,如图所示,取BC 中点E ,翻折前,在图1中,连接DE ,CD ,则1122DE AC ==, 翻折后,在图2中,若CB AD ⊥,则有:∵BC DE ⊥,BC AD ⊥,AD DE D ⋂=,且,AD DE 平面ADE ,∴BC ⊥平面ADE ,∴BC AE ⊥,又BC AE ⊥,E 为BC 中点,∴1AB AC ==∴AE =AD =,在ADE 中,由三边关系得:①122+>②122<+③0x >;由①②③可得0x <<.故选:A. 【点睛】本题考查折叠性问题,考查线面垂直的判定及性质在解题中的运用,解答本题的主要思路分析在于将异面直线间的垂直转化为线面垂直关系,即作出辅助线DE 与AE ,根据题目条件确定出BC ⊥平面ADE ,得到BC AE ⊥,从而通过几何条件求解.10.D解析:D 【分析】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62xIE =-,求出x 的值,再利用勾股定理求R ,代入球的表面积公式,即可得答案. 【详解】连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x (0x >)cm ,则2x OI =,62x IE =-, 因为该四棱锥的侧面积是底面积的2倍, 所以246222x x x ⎛⎫⨯⨯-= ⎪⎝⎭,解得4x =. 设该四棱锥的外接球的球心为Q ,半径为R ,如图,则QP QC R ==,22OC =16423OP =-= 所以()(22232R R =+,解得3R =所以外接球的表面积为2100433S ππ==(2cm ).故选:D . 【点睛】关键点点睛:本题考查平面图形的折叠,四棱锥外接球的半径,解题关键在于平面图形折叠成立体图形后,要明确变化的量和没有变的量,以及线线的位置,线面的位置关系,对于几何体的外接球的问题,关键在于确定外接球的球心的位置.11.C解析:C 【分析】分析出当平面P AD '⊥平面ABCD 时,四棱锥P ABCD '-的体积取最大值,求出AD 、P A '的长,然后将四棱锥P ABCD '-补成长方体P AMD QBNC '-,计算出该长方体的体对角线长,即为外接球的直径,进而可求得外接球的表面积. 【详解】取AD 的中点E ,连接P E ',由于P AD '△是以P '为顶点的等腰直角三角形,则P E AD '⊥,设AD x =,则1122P E AD x '==, 设二面角P AD B '--的平面角为θ,则四棱锥P ABCD '-的高为1sin 2h x θ=, 当90θ=时,max 12h x =,矩形ABCD 的面积为4S AB AD x =⋅=,2111216433233P ABCD V Sh x x x '-=≤⨯⨯==,解得22x =.将四棱锥P ABCD '-补成长方体P AMD QBNC '-, 所以,四棱锥P ABCD '-的外接球直径为22222226R P N P A P D P Q AD AB ''''==++=+=,则6R =,因此,四棱锥P ABCD '-的外接球的表面积为2424R ππ=. 故选:C.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.12.C解析:C 【分析】先由正视图、俯视图及题意还原三棱锥,过A 作AM ⊥BD 于点M ,连结MC ,把AC 放在直角三角形AMC 中解AC . 【详解】根据三棱锥A BCD -正视图和俯视图,还原后得到三棱锥的直观图如图示,由图可知:平面ABD ⊥平面CBD ,过A 作AM ⊥BD 于点M ,连结MC ,则AM ⊥平面CBD , ∴△MCA 为直角三角形. 过C 作CN ⊥BD 于点N ,在直角三角形ABD 中,AB =1,AD ,∴2BD ==所以∠ABD=60°,∠ADB=30°,则在直角三角形ABM 中,AB =1,∠ABM=60°,∴1,22BM AM ==.同理,在直角三角形CBD 中,1,22DN CN ==. ∴MN =BD -BM -DN =112122--=,∴2CM ===在直角三角形AMC 中,2AC === 故选:C 【点睛】(1)根据三视图画直观图,可以按下面步骤进行:①、首先看俯视图,根据俯视图画出几何体地面的直观图 ;②、观察正视图和侧视图找到几何体前、后、左、右的高度;③、画出整体,让后再根据三视图进行调整.(2)立体几何中求线段长度:①、把线段放在特殊三角形中,解三角形;②、用等体积法求线段.二、填空题13.【分析】解方程即得解【详解】由题得当时两直线不重合故答案为:【点睛】结论点睛:直线和直线平行则且两直线不重合解析:23-【分析】解方程230m ⨯⨯=(-1)-即得解. 【详解】由题得2230,3m m ⨯⨯=∴=-(-1)-. 当23m =-时,两直线不重合.故答案为:23-. 【点睛】结论点睛:直线1111:0l a x b y c ++=和直线2222:0l a x b y c ++=平行,则12210a b a b -=且两直线不重合.14.【分析】首先求出直线所过定点的坐标当时取得最小再根据弦长公式计算可得;【详解】解:因为所以令所以故直线恒过定点又因为故点在圆内当时取得最小因为所以故答案为:【点睛】本题考查直线和圆的位置关系弦长公式解析:【分析】首先求出直线所过定点M 的坐标,当PQ MC ⊥时,PQ 取得最小,再根据弦长公式计算可得; 【详解】解:因为230ax y a --+=,所以()()230x a y -+-=,令2030x y -=⎧⎨-=⎩,所以23x y =⎧⎨=⎩,故直线恒过定点()2,3M ,又因为()()22213224-+-=<,故点()2,3M 在圆内,当PQ MC ⊥时,PQ 取得最小,因为MC ==所以minPQ ===故答案为:【点睛】本题考查直线和圆的位置关系,弦长公式、两点间的距离公式的应用,关键是掌握直线与圆的位置关系以及应用,属于中档题.15.【分析】由题意知圆的圆心从而可求出由从而可求出弦所在直线的斜率是由直线的点斜式可写出弦所在直线方程【详解】解:设圆的圆心为则由是的中点知因为所以点在圆内且所以弦所在直线的斜率是则弦所在的直线方程是整解析:23130x y --=. 【分析】由题意知圆2220x y +=的圆心()0,0O ,从而可求出32OP k =-,由AB OP ⊥,从而可求出弦AB 所在直线的斜率是123AB OP k k =-=,由直线的点斜式,可写出弦AB 所在直线方程.解:设圆2220x y +=的圆心为O ,则()0,0O .由P 是AB 的中点,知AB OP ⊥.因为()22231320+-=<,所以点P 在圆O 内,且303202OP k --==--. 所以弦AB 所在直线的斜率是123AB OP k k =-=,则弦AB 所在的直线方程是23(2)3y x +=-, 整理可得,23130x y --=. 故答案为:23130x y --=. 【点睛】本题考查了直线的点斜式方程,考查了两直线垂直的应用.本题的关键是分析出AB OP ⊥,进而求出弦所在直线的斜率.16.2【分析】求得双曲线的一条渐近线方程求得圆心和半径运用点到直线的距离公式和弦长公式可得ab 的关系即可得到所求离心率公式【详解】双曲线C :的一条渐近线方程设为圆的圆心为半径可得圆心到渐近线的距离为则化解析:2 【分析】求得双曲线的一条渐近线方程,求得圆心和半径,运用点到直线的距离公式和弦长公式,可得a ,b 的关系,即可得到所求离心率公式. 【详解】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程设为0bx ay -=,圆22(2)4x y -+=的圆心为(2,0),半径2r ,可得圆心到渐近线的距离为d =则2=,化为22223a b c a ==-, 即224a c =,1ce a=>,解得2e =. 故答案为:2. 【点睛】本题考查圆与圆锥曲线的综合,解题关键是点到直线距离公式及弦长公式建立a ,b 的等量关系,即可求解a 、c 关系,属于中等题.17.3【分析】根据题意先由圆的方程求出圆心为根据直线和圆相切的性质列出方程组求出即得解【详解】根据题意的圆心为:若直线与圆相切于则有故答案为:3【点睛】本题考查了直线和圆的位置关系考查了学生转化与划归数【分析】根据题意,先由圆的方程求出圆心为()2,0-,根据直线和圆相切的性质列出方程组,求出,a b ,即得解.【详解】根据题意22410x y x ++-=的圆心为:()2,0-,若直线30ax by +-=与圆22410x y x ++-=相切于()1,2P -,则有2301,2302()1(2)(1)a b a b a b a b -+-=⎧⎪∴==∴+=-⎨⨯-=-⎪---⎩故答案为:3 【点睛】本题考查了直线和圆的位置关系,考查了学生转化与划归,数学运算的能力,属于中档题.18.【分析】先求得点的垂直平分线的方程然后根据点关于直线对称点的求法求得的对称点由此得出结论【详解】已知点点可得中点则∴线段AB 的垂直平分线为:化为设点关于直线的对称点为则解得∴与点重合的点是故答案为: 解析:()4,2-【分析】先求得点()()10,0,6,8-的垂直平分线的方程,然后根据点关于直线对称点的求法,求得()4,2-的对称点,由此得出结论.【详解】已知点(10,0)A ,点(6,8)B -,可得中点(2,4)M . 则816102AB k ==---.∴线段AB 的垂直平分线为:42(2)y x -=-, 化为20x y -=.设点()4,2-关于直线20x y -=的对称点为(,)P a b ,则2214422022baa b -⎧⨯=-⎪⎪--⎨-++⎪⨯-=⎪⎩,解得42a b =⎧⎨=-⎩. ∴与点()4,2-重合的点是()4,2-. 故答案为:()4,2-. 【点睛】本小题主要考查线段垂直平分线方程的求法,考查点关于直线对称点的坐标的求法,属于19.【分析】求出截面圆的半径设可得出从而可知球的半径为根据勾股定理求出的值可得出球的半径进而可求得球的表面积【详解】如下图所示设可得出则球的直径为球的半径为设截面圆的半径为可得由勾股定理可得即即所以球的 解析:163π【分析】求出截面圆H 的半径,设AH x =,可得出3HB x =,从而可知,球O 的半径为2x ,根据勾股定理求出x 的值,可得出球O 的半径,进而可求得球O 的表面积. 【详解】如下图所示,设AH x =,可得出3HB x =,则球O 的直径为4AB x =,球O 的半径为2x ,设截面圆H 的半径为r ,可得2r ππ=,1r ∴=,由勾股定理可得()2222OH r x +=,即()22214x AH x -+=,即2214x x +=,33x ∴=, 所以,球O 的半径为232x =,则球O 的表面积为22316433S ππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故答案为:163π. 【点睛】方法点睛:在求解有关球的截面圆的问题时,一般利用球的半径、截面圆的半径以及球心到截面圆的距离三者之间满足勾股定理来求解.20.【分析】设为正方形的中心的中点为连接求出如图分别可求得大球与小球半径分别为和进而可得小球的体积【详解】解:由题中条件知底面四边形是边长为2的正方形设O 为正方形的中心的中点为M 连接则如图在截面中设N 为解析:224π 【分析】设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO,求出OM ,PM ,PO ,如图,分别可求得大球1O 与小球2O 半径分别为22和24,进而可得小球的体积. 【详解】解:由题中条件知底面四边形ABCD 是边长为2的正方形.设O 为正方形ABCD 的中心,AB 的中点为M ,连接PM ,OM ,PO ,则1OM =,221013PM PA AM =-=-=,9122PO =-=,如图,在截面PMO 中,设N为球1O 与平面PAB 的切点,则N 在PM 上,且1O N PM ⊥,设球1O 的半径为R ,则1O N R =,∵1sin 3OM MPO PM ∠==,∴1113NO PO =,则13PO R =,11422PO PO OO R =+==,∴2R =,设球1O 与球2O 相切于点Q ,则22PQ PO R R =-=,设球2O 的半径为r ,同理可得4PQ r =,∴22R r ==,故小球2O 的体积342324V r ππ==.故答案为:224π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.21.【分析】作于于可得等于二面角的平面角从而可得然后求得而因此可得是异面直线与所成角(或补角)这样在求解可得【详解】如图作于于则连接根据二面角平面角的定义知与的夹角等于二面角的平面角所以因为所以设则在矩解析:12. 【分析】作DM AC ⊥于M ,BN AC ⊥于N ,可得,MD NB '<>等于二面角D AC B '--的平面角,从而可得DMD '∠,然后求得DD ',而//AB CD ,因此可得D CD '∠是异面直线D C '与AB 所成角(或补角).这样在DCD '求解可得.【详解】如图,作DM AC ⊥于M ,BN AC ⊥于N ,则//DM BN ,连接,D M DD '', 根据二面角平面角的定义知MD '与NB 的夹角等于二面角D AC B '--的平面角, 所以,3MD NB π'<>=,因为//DM BN ,所以23DMD π'∠=, 设1BC =,则22AB BC ==,在矩形ABCD 中,3AC =,12633DM ⨯==, 6D M DM '==, 则222222666612cos 2232DD DM D M DM D M π⎛⎫⎛⎫⎛⎫'''=+-⋅=+-⨯⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以2DD '=,因为//AB CD ,所以D CD '∠是异面直线D C '与AB 所成角(或补角).DCD '是正三角形,3D CD π'∠=,1cos 2D CD '∠=. 所以异面直线D C '与AB 所成角余弦值是12. 故答案为:12.【点睛】关键点点睛:本题考查求异面直线所成的角,解题方法根据异面直线所成角定义作出它们所成的角,然后解三角形可得,解题关键是利用图中MD '与NB 的夹角等于二面角D AC B '--的平面角,从而求得DMD '∠,只要设1BC =,可求得DD ',从而求得结论.22.②④【分析】由是正三角形可判断①;判断出平面平面平面可判断②;假设面面则可以推出可判断③;由平面平面平面可判断④【详解】连接分别是的中点对于①因方是正三角形所以与不垂直;对于②连接因为且所以平面平面解析:②④. 【分析】由1//FG BC ,1BDC 是正三角形,可判断①;判断出1DB ⊥平面11A C B ,平面11//AC B 平面EFG ,可判断②;假设面//EFG 面11ACC A ,则可以推出1//AA EF 可判断③;由平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,可判断④. 【详解】连接11A C ,1A B ,1BC ,BD ,1B D ,E ,F ,G 分别是1A B ,1BB ,11B C 的中点. 对于①,因方1//FG BC ,1BDC 是正三角形,所以FG 与BD 不垂直; 对于②,连接11D B ,因为1111111AC B D ,AC BB ⊥⊥,且1111B D BB B ⋂=,所以11A C ⊥平面11BDD B ,1DB ⊂平面11BDD B ,所以111AC DB ⊥,同理11BC DB ⊥,且1111A C BC C ,所以1DB ⊥平面11A C B ,因为1//A B EF ,11//AC EG ,且111A B AC A ⋂=,EF EG E =,所以平面11//AC B 平面EFG ,所以1B D ⊥平面EFG .正确;对于③,如果面//EFG 面11ACC A ,由平面EFG 平面11ABB A EF =,平面11CC A A平面111BB A A A A =,则1//AA EF ,显然不正确;对于④,因为平面11//ABB A 平面11DCC D ,EF ⊂平面11ABB A ,所以//EF 平面11CDD C ,正确故选:②④. 【点睛】方法点睛:本题主要考查了正方体中垂直与平行关系,考查了线线垂直、线面垂直的判定、线面平行的判断、面面平行的判断与性质,对于证明线线关系、线面关系,面面关系等方面的问题,必须在熟练掌握有关的定理和性质的前提下,再利用已知来进行证明, 属于中档题.23.40°【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图根据面面平行的性质定理和线面垂直的定义判定有关截线的关系根据点处的纬度计算出晷针与点处的水平面所成角【详解】画出截面图如下图所示其中是赤解析:40° 【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A 处的纬度,计算出晷针与点A 处的水平面所成角. 【详解】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故答案为:40°.【点睛】本小题主要考查中国古代数学文化,解题的关键是将稳文中的数据建立平面图形,属于中档题.24.【分析】先画出直观图证明平面平面然后侧棱与底面ABC 所成的角即为根据题目中的数据算出即可【详解】如图作的中点连结因为侧面PBC 和底面ABC 都是边长为2的正三角形而为的中点所以又所以平面同时平面所以平解析:o 60. 【分析】先画出直观图,证明平面PAD ⊥平面ABC ,然后侧棱PA 与底面ABC 所成的角即为PAD ∠,根据题目中的数据算出即可. 【详解】如图,作BC 的中点D ,连结AD 、PD 因为侧面PBC 和底面ABC 都是边长为2的正三角形 而D 为BC 的中点,所以BC PD ⊥,BC AD ⊥,又PD AD D ⋂=,所以BC ⊥平面PAD ,同时BC ⊂平面ABC 所以平面PAD ⊥平面ABC ,所以PAD ∠即为侧棱PA 与底面ABC 所成的角 由侧面PBC 和底面ABC 都是边长为2的正三角形得3AD PD ==3PA =所以PAD ∆为等边三角形,则=PAD ∠o 60 即侧棱PA 与底面ABC 所成的角为o 60 故答案为:o 60 【点睛】本题主要考查空间直线与平面所成角的计算,较简单.三、解答题25.(1)证明见解析;(2)证明见解析. 【分析】( 1)设BD 与AC 的交点为O ,连接EO ,通过直线与平面平行的判定定理证明//PB 平面AEC ;( 2)通过体积得到底面为正方形,再由线面垂直得到面面垂直即可. 【详解】(1)连接BD 交AC 于点O ,连结EO , 因为ABCD 为矩形,所以O 为BD 的中点, 又E 为PD 的中点,所以//EO PB ,EO ⊂平面AEC ,PB ⊄平面AEC ,所以//PB 平面AEC .(2)因为113P ABCD V AB AD AP -=⨯⨯⨯=, 所以3AB =ABCD 为正方形,所以BD AC ⊥,因为PA ABCD ⊥,所以BD PA ⊥,且AC PA A ⋂=,所以BD ⊥平面PAC , 又BD ⊂平面PBD ,所以平面PAC ⊥平面PBD .【点睛】本题主要考查了立体几何及其运算,要证明线面平行先证明线线平行,要证明面面垂直,先证明线面垂直,考查了学生的基础知识、空间想象力. 26.(Ⅰ)证明见解析;(Ⅱ)63. 【分析】(Ⅰ)连接BD 交AC 于点O ,连接1D O ,连接11B D ,可证11//O B D O ,即可得证; (Ⅱ)依题意可得1D OD ∠是二面角1D AC D --的平面角,再根据锐角三角函数计算可得; 【详解】(Ⅰ)证明:连接BD 交AC 于点O ,连接1D O ,连接11B D , 由长方体的性质知11BO O D =,且11//BO O D , 故四边形11BO D O 是平行四边形, 所以11//O B D O .又因为1D O ⊂平面1ACD ,1O B ⊄平面1ACD , 所以1//O B 平面1ACD .(Ⅱ)解:设122AB BC AA ===,由长方体底面ABCD 是正方形,得DO AC ⊥. 因为11D A D C =,O 是AC 的中点,所以1D O AC ⊥, 所以1D OD ∠是二面角1D AC D --的平面角.。
解析几何测试题

解析几何测试题(椭圆、双曲线、抛物线)姓名一. 选择题:(本大题共12小题,每小题5分,共60分)1. 抛物线x y 42=的焦点坐标是( ) A .(1,0) B .(0,1) C .(0,2) D .(2,0)2. 若椭圆长轴长为8,且焦点为F 1(-2,0),F 2(2,0),则这个椭圆的离心率等于( )A.22B. 13C. 12D.413. 已知方程01222=+-+m y m x 表示双曲线,则m 的取值范围是( )A .m<-2B .m>-1C .-2<m<-1D .m<-2或m>-14. 以双曲线1322=-x y 的一个焦点为圆心,离心率为半径的圆的方程是A .4)2(22=+-y xB .2)2(22=-+y xC .2)2(22=+-y xD .4)2(22=-+y x5. 如果点M (x,y )在运动过程中,总满足关系式10)3()3(2222=-++++y x y x 则点M 的轨迹方程为( )A.191622=+yx B. 191622=+x y C. 1162522=+y x D. 1162522=+x y6.已知双曲线C :x 2a -y 2b=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( ) A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 7. 抛物线)0(242>=a ax y 上有一点M ,它的横坐标为3,它到焦点的距离是5,则抛物线的方程为 ( )A.x y 82=B. x y 122=C. x y 162=D. x y 202= 8.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则 cos ∠F 1PF 2= ( ) A.14 B.35 C.34 D.459. 等轴双曲线C 的中心在原点,焦点在x 轴上,双曲线c 与抛物线x y 162=的准线交于B A 、两点,AB =34,则双曲线C 的实轴长为 ( )A. 2B. 22C. 4D. 810.已知定点A (3,4),点P 为抛物线y 2=4x 上一动点,点P 到直线x=-1的距离为d ,则|PA|+d 的最小值为( ) A ..2 C . . 11. 设椭圆)0(12222>>=+b a b y a x 的离心率21=e ,右焦点F (c ,0),方程02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在 ( ) A .圆222=+y x 内 B. 圆222=+y x 上 C .圆222=+y x 外 D. 以上三种情况都有可能12.过双曲线22221(0,0)y x a b a b -=>>的左焦点F ,作圆222a y x =+的切线交双曲线右支于点P ,切点为T ,PF 的中点M 在第一象限,则以下正确的是( )A .||||b a MO MT -<-B .||||MT MO a b -=-C .||||MT MO a b ->-D .||||MT MO a b --与大小不定二.填空题:(本大题共4小题,每小题4分,共16分)13.双曲线22221x y a b-=的两条渐近线互相垂直,那么双曲线的离心率为14. 已知B ,C 是两个定点,坐标分别为(3,0),(-3,0),若顶点A 的轨迹方程为)0(1162522≠=+y y x ,则 △ABC 的周长为15.过抛物线)0(22>=p px y 的焦点作一条直线交抛物线于A(x 1,y 1),B(x 2,y 2),则2121x x y y 的值为 16.方程12422=-+-t y t x 所表示的曲线为C ,有下列命题:①若曲线C 为椭圆,则2<t<4;②若曲线C 为双曲线,则t>4或t<2;③曲线C 不可能为圆; ④若曲线C 表示焦点在y 轴上的双曲线, 则t>4, 则以上命题正确的是三. 解答题:(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.求双曲线14416922=-x y 的实轴长,虚轴长,顶点和焦点的坐标,离心率,渐近线方程。
高考数学复习难点解析几何中的定值、定点和定线问题测试卷文

解析几何中的定值、定点和定线问题(一)选择题(12*5=60分)1.已知双曲线2212xy-=与不过原点O且不平行于坐标轴的直线l相交于,M N两点,线段MN的中点为P,设直线l的斜率为1k,直线OP的斜率为2k,则12k k=()A.12B.12- C.2 D.-2【答案】A2.如图,12A A,为椭圆22195x y+=的长轴的左、右端点,O为坐标原点,S Q T,,为椭圆上不同于12A A,的三点,直线12QA QA OS,,,OT围成一个平行四边形OPQR,则22OS OT+=()A.5 B.35+ C.9 D.14【答案】D【解析】设1122(x,y)(,) (x,y)Q T x y S,,,12QA QA,斜率为12,k k,则,OT OS斜率为12,k k,且212253399y y yk kx x x=⋅==-+--,所以22222221111112145(1)59kOT x y x k xk+=+=+=+,同理2222245(1)59kOSk+=+,因此22OS OT+=22222221211111222222121111212545(1)45(1)45(1)45(1)8145(1)812512670+++142559595959595959k k k k k k kk k k k k kk+++++++====+++++++,选D.3.已知椭圆22221 35x ym n+=和双曲线2222123x ym n-=有公共焦点,则22mn=()A.8 B.2 C.18D.25【答案】A【解析】由椭圆2222135x ym n+=和双曲线2222123x ym n-=有公共焦点,得22223253nmnm+=-,即228nm=,则822=nm,故选A.4.已知双曲线2213yx-=的左、右焦点分别为12,F F,双曲线的离心率为e,若双曲线上一点P使2112sinsinPF FePF F∠=∠,则221F P F Fu u u u r u u u u rg的值为()A.3 B.2 C.3- D.2-【答案】B5.若m,n满足210m n+-=,则直线30mx y n++=过定点()A.11,26⎛⎫⎪⎝⎭B.11,26⎛⎫-⎪⎝⎭C.11,62⎛⎫-⎪⎝⎭D.11,62⎛⎫- ⎪⎝⎭【答案】B【解析】210,21m n m n+-=∴+=Q,30,()30mx y n mx n y++=∴++=Q,当12x=时,1122m n+=,113,26y y∴=-∴=-,故直线过定点11(,)26-.故选B.6.已知P是双曲线1322=-yx上任意一点,过点P分别作双曲线的两条渐近线的垂线,垂足分别为BA,,则⋅的值是()A .83-B .163C .83-D .不能确定【答案】A7.以抛物线28y x =上的任意一点为圆心作圆与直线20x +=相切,这些圆必过一定点,则这一定点的坐标是A. ()0,2B. (2,0)C. (4,0)D. ()0,4 【答案】B【解析】∵抛物线y 2=8x 的准线方程为x=-2,∴由题可知动圆的圆心在y 2=8x 上,且恒与抛物线的准线相切,由定义可知,动圆恒过抛物线的焦点(2,0),故选B .8.【浙江省台州中学2018届第三次统练】已知圆C : 224x y +=,点P 为直线290x y +-=上一动点,过点P 向圆C 引两条切线,PA PB , ,A B 为切点,则直线AB 经过定点( )A. 48,99⎛⎫⎪⎝⎭ B. 24,99⎛⎫⎪⎝⎭C. ()2,0 D . ()9,0 【答案】A【解析】设()92,P m m - ,过点P 向圆C 引两条切线,PA PB , ,A B 为切点,则,OA PA OB PB ⊥⊥ , AB 是以OP 为直径的圆D 与圆C 的公共弦,求得圆D 的方程为()22229292224m m m m x y -+-⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭ ①,又知圆C 的方程为224x y += ②,②-①可得公共弦AB 所在直线的方程为()()2490m x y x -+-= ,令20{ 490x y x -=-= 可得49{ 89x y ==,所以直线AB 经过定点48,99⎛⎫⎪⎝⎭,故选A. 9.已知直线12y x =与双曲线22194x y -=交于A ,B 两点,P 为双曲线上不同于A ,B 的点,当直线PA ,PB 的斜率PA k ,PB k 存在时,PA PB k k ⋅= .【答案】9410.【江苏省如皋市2018届教学质调(三)】在平面直角坐标系xOy 中,已知圆221:9O x y +=,圆()222:616O x y +-=,在圆2O 内存在一定点M ,过M 的直线l 被圆1O ,圆2O 截得的弦分别为AB ,CD ,且34AB CD =,则定点M 的坐标为_______. 【答案】1807⎛⎫ ⎪⎝⎭,【解析】Q34AB CD =总成立,且知,过两圆的圆心直线截两圆弦长比是63,84=∴点M 在两圆心连线上,因为圆心连线方程为0x =,可设()00,M y ,设直线l 的方程为0y kx y =+,因为34AB CD =,所以202202991166161y k y k ⎛⎫- ⎪+⎝⎭=⎛⎫-- ⎪+⎝⎭,解得0187y =或018y =-(此时点M 在圆2O 外,舍去),故答案为1807⎛⎫ ⎪⎝⎭,. 11.【江苏省泰州中学2018届12月月考】已知点()30A -,和圆O : 229x y +=, AB 是圆O 的直径,M 和N 是线段AB 的三等分点, P (异于A , B )是圆O 上的动点, PD AB ⊥于D , PE EDλ=u u u v u u u v (0λ>),直线PA 与BE 交于C ,则当λ=__________时, CM CN +为定值. 【答案】1812.已知圆222:(0)O x y r r +=>与直线34150x y -+=相切. (1)若直线225l y x =-+与圆O 交于,M N 两点,求MN ;(2)设圆O 与x 轴的负半轴的交点为A ,过点A 作两条斜率分别为12,k k 的直线交圆O 于,B C 两点,且12,-3k k =,试证明直线BC 恒过一定点,并求出该定点的坐标.【解析】(1)由题意知,圆心O 到直线34150x y -+=的距离3916d r ===+,所以圆229O x y +=:.又圆心O 到直线:25l y x =-+的距离1541d ==+,所以21294MN d =-=.(2)易知()30A -,,设()()1122,,,B x y C x y ,则直线()1:3AB y k x =+,由()2223{9y k x x y =++=,得()222211116990k x k x k +++-=,所以211219931k x k --=+,即21121331k xk -+=+,所以2112211336,11k k B k k ⎛⎫- ⎪++⎝⎭.由123k k =-得213k k =-,将13k -代替上面的1k ,同理可得211221132718,99k k C k k ⎛⎫-- ⎪++⎝⎭,所以1122111222111221161819433327319BCk k k k k k k k k k k +++==----++,从而直线21112221116433:131k k k BC y x k k k ⎛⎫--=- ⎪+-+⎝⎭.即()22111222111433933121k k k y x k k k ⎛⎫-- ⎪=-+ ⎪-++⎝⎭,化简得1214332k y x k ⎛⎫=+ ⎪-⎝⎭.所以直线BC 恒过一定点,该定点为3,02-(). 13.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为3,上顶点M 到直线340x y ++=的距离为3.(1)求椭圆C 的方程;(2)设直线l 过点()4,2-且与椭圆C 相交于,A B 两点, l 不经过点M ,证明:直线MA 的斜率与直线MB 的斜率之和为定值.()()1212221621641,1414k k k k x x x x kk+++==++,因为()()1221121212444422MA MB kx k x kx k x y y k k x x x x --+----+=+=,所以()1212244MA MB x x k k k k x x ++=-+ ()()()()16212412211641k k k k k k k k +=-+=-+=-+(为定值).14.如图所示,已知圆A 的圆心在直线2y x =-上,且该圆存在两点关于直线10x y +-=对称,又圆A 与直线1l :270x y ++=相切,过点(2,0)B -的动直线l 与圆A 相交于M ,N 两点,Q 是MN 的中点,直线l 与1l 相交于点P .(1)求圆A 的方程;(2)当||219MN =时,求直线l 的方程;(3)()BM BN BP +⋅u u u u r u u u r u u u r是否为定值?如果是,求出其定值;如果不是,请说明理由.(2)y k x =+,即20kx y k -+=,连接AQ ,则AQ MN ⊥,∵||19MN =∴||20191AQ =-=.由2||1AQ k =+1=,得34k =,∴直线l 的方程为3460x y -+=,∴所求直线l 的方程为2x =-或3460x y -+=.(3)∵AQ BP ⊥,∴0AQ BQ ⋅=u u u r u u u r ,∴()2BM BN BP BQ BP +⋅=⋅u u u u r u u u r u u u r u u u r u u u r 2()BA AQ BP =+⋅u u u r u u u r u u u r2BA BP =⋅u u u r u u u r ,当直线l 与x 轴垂直时,得5(2,)2P --,则5(0,)2BP =-u u u r ,又(1,2)BA =u u u r ,∴()2BM BN BP BQ BP +⋅=⋅u u u u r u u u r u u u r u u u r u u u r210BA BP =⋅=-u u u r u u u r ,当直线l 的斜率存在时,设直线l 的方程为(2)y k x =+, 由(2),270y k x x y =+⎧⎨++=⎩,解得475(,)1212k k P k k ---++,∴55(,)1212kBP k k --=++u u u r ,∴()2BM BN BP BQ BP +⋅=⋅u u u u r u u u r u u u r u u u r u u u r 2BA BP =⋅u u u r u u u r 5102()101212kk k-=-=-++,综上所述,()BM BN BP +⋅u u u u r u u u r u u u r 为定值10-. 15.【2018届年12月期末联考】已知椭圆2222:1x y C a b += (0)a b >>的长轴长是短轴长的2倍,且过点13,2⎛⎫ ⎪⎝⎭. ⑴求椭圆C 的方程;⑵若在椭圆上有相异的两点,A B (,,A O B 三点不共线),O 为坐标原点,且直线AB ,直线OA ,直线OB 的斜率满足2•(0)ABOA OB AB kk k k =>.(ⅰ)求证: 22OA OB +是定值;(ⅱ)设AOB ∆的面积为S ,当S 取得最大值时,求直线AB 的方程.∴()()122121212kx m kx m y y k x x x x ++==,化简得: ()2120km x x m ++=,∵A 、O 、B 三点不共线 ∴0m ≠ 则()120k x x m ++= ①由22{44y kx m x y =++=可得: ()()222148410k x kmx m +++-=,由韦达定理可得()1222122814{4114km x x k m x x k +=-+-=+ ② 且()2216140k m ∆=+-> ③将②代入①式得: ()280014kmk m k k⎛⎫-+=> ⎪+⎝⎭,解得12k =,则()122122{ 21x x m x x m +=-=- ④(ⅰ) 22OA OB +=22221122x y x y +++=()222121212333222444x x x x x x ⎡⎤++=+-+⎣⎦,将④代入得22OA OB +=()223422124m m ⎡⎤⨯-⨯-+⎣⎦=5 , (ⅱ) AOB S V =()221212122111142221m AB d k x x x x x x m k ⋅=+-⋅=+-+=22m m -,由 ③ ④可得: ()()2,00,2m ∈-⋃,则AOB S V =22m m -=()2221m m-≤,当且仅当1m =±时,直线方程为112y x =±. 16.【吉林省榆树市2018届第三次模拟】已知椭圆2222:1(0)x y C a b a b+=>>过点115(20C 2A ,),(,)两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,椭圆C 与y 轴正半轴交于B 点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.(Ⅱ)设()00,x y P (00x <, 00y <),则220044x y +=.又∵()2,0A , ()0,1B ,∴直线PA 的方程为()0022y y x x =--.令0x =,得0022y y x M =--,从而002112y y x MBM =-=+-.直线PB 的方程为11yy xx-=+.令0y=,得01xxyN=--,从而0221xxyNAN=-=+-.∴四边形ABNM的面积12S=AN⋅BM00002121212x yy x⎛⎫⎛⎫=++⎪⎪--⎝⎭⎝⎭()22000000000044484222x y x y x yx y x y++--+=--+00000000224422x y x yx y x y--+=--+2=.∴四边形ABNM的面积为定值.17. 【江苏省丹阳2018届期中】如图,在平面直角坐标系xOy中,过椭圆C:2214xy+=的左顶点A作直线l,与椭圆C和y轴正半轴分别交于点P,Q.(1)若AP PQ=,求直线l的斜率;(2)过原点O作直线l的平行线,与椭圆C交于点M N,,求证:2AP AQMN⋅为定值.(2)设点N的横坐标为N x.结合(1)知,直线MN的方程为y kx=.③由②③得, 22414N x k =+. 从而()()22222p N x AP AQ MN x +⋅= 222282214142414k k k⎛⎫-+ ⎪+⎝⎭==⨯+,即证. 18.【黑龙江省齐齐哈尔市2018届第二次模拟】已知抛物线()2:20C y px p =>的焦点为F ,倾斜角为45︒的直线l 过点F 与拋物线C 交于,A B 两点, O 为坐标原点, OAB ∆的面积为22.(1)求p ;(2)设点E 为直线2p x =与拋物线C 在第一象限的交点,过点E 作C 的斜率分别为12,k k 的两条弦,EM EN ,如果121k k +=-,证明直线MN 过定点,并求出定点坐标.123412124444k k y y k k k k +-+=⨯-=-,()12341212122464141k k y y k k k k k k ⎡⎤+⎛⎫=-+=+⎢⎥ ⎪⎝⎭⎣⎦.令121t k k =,则()343444,461y y t y y t +=--=+,代入MN 的方程得16111t y x t t +=--++,整理得()()610t y x y ++++=,若上式对任意变化的t 恒成立,则10{60x y y ++=+=,解得5,{ 6.x y ==- 故直线MN 经过定点()5,6-. 19.设椭圆2222:1(0)x y C a b a b +=>>的离心率12e =,圆22127x y +=与直线1x y a b+=相切,O 为坐标原点.(1)求椭圆C 的方程;(2)过点(4,0)Q -任作一直线l 交椭圆C 于,M N 两点,记MQ QN λ=u u u u r u u u r ,若在线段MN 上取一点R ,使得MR RN λ=-u u u r u u u r ,试判断当直线l 运动时,点R 是否在某一定直一上运动?若是,请求出该定直线的方程;若不是,请说明理由.。
解析几何单元测试题及答案

解析几何单元测试题及答案一、选择题(每题3分,共15分)1. 椭圆的标准方程是哪一个?A. \((x-h)^2/a^2 + (y-k)^2/b^2 = 1\)B. \((x-h)^2/b^2 + (y-k)^2/a^2 = 1\)C. \((x-h)^2/a^2 + (y-k)^2/b^2 = 0\)D. \((x-h)^2/a^2 - (y-k)^2/b^2 = 1\)2. 点P(-1, 3)到直线3x - 4y + 5 = 0的距离是?A. 2B. 3C. 4D. 53. 抛物线 \(y^2 = 4x\) 的焦点坐标是?A. (1, 0)B. (0, 2)C. (1, 2)D. (2, 0)4. 直线 \(ax + by + c = 0\) 与 \(dx + ey + f = 0\) 平行的条件是?A. \(a/d = b/e\)B. \(a/d = b/e ≠ c/f\)C. \(a/d ≠ b/e\)D. \(a/d = b/e = c/f\)5. 圆心在原点,半径为5的圆的标准方程是?A. \(x^2 + y^2 = 25\)B. \((x-5)^2 + y^2 = 25\)C. \(x^2 + y^2 = 5\)D. \((x-5)^2 + y^2 = 5\)二、填空题(每题2分,共10分)6. 已知椭圆 \(\frac{x^2}{9} + \frac{y^2}{4} = 1\),其长轴的长度为________。
7. 点A(2, -1)关于直线 \(x-y-1=0\) 对称的点的坐标是________。
8. 直线 \(2x - 3y + 1 = 0\) 与 \(x + y - 2 = 0\) 的交点坐标是________。
9. 抛物线 \(x^2 = 6y\) 的准线方程是________。
10. 圆 \(x^2 + y^2 - 2x - 4y + 4 = 0\) 的圆心坐标是________。
高中数学解析几何测试题(答案版)

解析几何练习题一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( )A 、12B 、12- C 、13D 、13-3.若直线32:1+=x y l ,直线2l 与1l 关于直线x y -=对称,则直线2l 的斜率为 ( )A .21B .21- C .2 D .2- 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( )A .y -1=3(x -3)B .y -1=-3(x -3)C .y -3=3(x -1)D .y -3=-3(x -1)5.直线02032=+-=+-y x y x 关于直线对称的直线方程是 ( ) A .032=+-y xB .032=--y xC .210x y ++=D .210x y +-=6.若直线()1:4l y k x =-与直线2l 关于点)1,2(对称,则直线2l 恒过定点( )A .0,4B .0,2C .2,4D .4,27.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m ,n 的值分别为A.4和3B.-4和3C.- 4和-3D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( )A.(x -2)2+(y+3)2=12B.(x -2)2+(y+3)2=2C.(x +2)2+(y -3)2=12D.(x +2)2+(y -3)2=210.已知点(,)P x y 在直线23x y +=上移动,当24x y +取得最小值时,过点(,)P x y 引圆22111()()242x y -++=的切线,则此切线段的长度为( )A .2B .32C .12D .211.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则弦AB 所在直线方程为( ) A .50x y --=B .50x y -+=C .50x y ++=D .50x y +-=12.直线3y kx =+与圆()()22324x y -+-=相交于M,N 两点,若MN ≥则k 的取值范围是( )A. 304⎡⎤-⎢⎥⎣⎦,B.[]304⎡⎤-∞-+∞⎢⎥⎣⎦,,C. ⎡⎢⎣⎦ D. 203⎡⎤-⎢⎥⎣⎦, 二填空题:(本大题共4小题,每小题4分,共16分.)13.已知点()1,1A -,点()3,5B ,点P 是直线y x =上动点,当||||PA PB +的值最小时,点P 的坐标是 。
空间平面及直线测试题(解析几何)

x 1 y2 z1 . 直线与平面4x y mz 5 0 平行,则m _____ . x y2. 点 (1,0,1)到直线 的距离是______________。
3x z 03 . 直线x 3y 5z 与平面4x 12y 20z 1 0的位置关系为 。
4. 自坐标原点指向平面: 2x 3y 6z 35 0 的单位法向量为 。
5. 平面 1 (x y 2z 2) 2 (3x 4y 2z ) 0 ,如在 z 轴上的截距为 2,则 1 : 2 ____________ 。
1.设直线 L 为 ,平面 :4x 2y z 2 0 ,则( )。
4 2 1(A ) L 平行于 (B ) L 在 上 (C ) L 垂直于 (D ) L 与 斜交 2 . 直线与平面x y z 1的位置关系是 ( )。
(A)直线在平面内 (B)平行 (C)垂直 (D)相交但不垂直 x y z 1 0 3 . 过点M (3, 2,1)且与直线L : 平行的直线方程是:( )。
2x y 3z 4 0(A) (B)(C) (D)4 .过 z 轴和点(1,2,-1)的平面方程是:( )。
(A) x 2y z 6 0 (B) 2x y 0 (C) y 2z 0 (D) x z 05 .设平面 的方程为3x 4y 5z 2 0 ,以下选项中错误的是:( )。
(A) 平面 过点(-1,0,-1)(B) 平面 的法向量为 3i 4j 5k(C) 平面 在z 轴的截距是(D) 平面 与平面 2x y 2z 2 0 垂直1.求经过点 A (3,2,1)和B (1,2,3) 且与坐标平面xOz 垂直的平面的方程。
2 .求过点(1,2,1) 且与直线 x y z 1 0 及 x 1 y 2 z 都平行的平面方程。
x 2y z 1 0 2 1 x 2z 0 3.平面 x y z 1 0上的直线 l 通过直线 l 1 : 与此平面的交点且与 l 1 垂y z 1 0直, 求l 的方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何测试题一、选择题1.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4B .21313 C .51326D .710202.若直线1:10l ax y +-=与2:3(2)10l x a y +++=平行,则a 的值为( ) A 、-3 B 、1 C 、0或-23D 、1或-3 3.直线经过点A (2,1),B (1,m 2)两点(m ∈R ),那么直线l 的倾斜角取值范围是 ( ) A .),0[π B .),2(]4,0[πππ⋃C .]4,0[π D .),2()2,4[ππππ⋃4. 过点A(1,2)且与原点距离最大的直线方程是( ) A 、052=-+y x B 、042=--y x C 、073=-+y x D 、053=-+y x 5.若直线42y kx k =++与曲线24x y -=有两个交点,则k 的取值范围是A .[1,+∞)B . [-1,-43)C . (43,1] D .(-∞,-1]6.椭圆1322=+ky x 的一个焦点坐标为)10(,,则其离心率等于 ( ) A. 2 B. 21C. 332D. 237.一动圆与圆O :x 2+y 2=1外切,与圆C :x 2+y 2-6x +8=0内切,那么动圆的圆心的轨迹是( )(A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线8.如右图双曲线12222=-by a x 焦点1F ,2F , 过点1F 作垂直于x 轴的直线交双曲线于P点,且2130PF F ∠=︒,则双曲线的渐近线是( )A x y ±=B x y 2±=C x y 2±=D x y 4±=9.设抛物线xy 82=的焦点为F ,过点F 作直线l 交抛物线于A 、B 两点,若线段AB 的yxO1F P2F中点E 到y 轴的距离为3,则AB 的长为( )A. 5B. 8C. 10D. 1210.设椭圆22221(00)x y m n m n +=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )A .2211612x y +=B .2211216x y += C .2214864x y += D .2216448x y +=二、填空题11.下列关于圆锥曲线的命题:其中真命题的序号___________.(写出所有真命题的序号)。
① 设B A ,为两个定点,若2=-PB PA ,则动点P 的轨迹为双曲线;② 设B A ,为两个定点,若动点P 满足PB PA -=10,且6=AB ,则PA 的最大值为8; ③ 方程02522=+-x x的两根可分别作椭圆和双曲线的离心率;④ 双曲线221259x y -=与椭圆13522=+y x 有相同的焦点 12.已知椭圆2211612x y +=,则以点(1,2)M -为中点的弦所在直线方程为__________________。
13.椭圆22162x y +=和双曲线2213x y -=的公共点为P F F ,,21是两曲线的一个交点,那么21cos PF F ∠的值是___________14.已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b-=>>的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为 .三、解答题15.设21,F F 分别是椭圆: 2222by a x +(0>>b a )的左、右焦点,过1F 斜率为1的直线l 与该椭圆相交于P ,Q 两点,且2PF ,PQ ,2QF 成等差数列. (Ⅰ)求该椭圆的离心率;(Ⅱ)设点M(0,-1)满足|MP|=|MQ|,求该椭圆的方程.16.已知椭圆C 的方程为22221(0)x y a b a b +=>> ,其离心率为12,经过椭圆焦点且垂直于长轴的弦长为3.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l:1()2y kx m k=+≤与椭圆C交于A、B两点,P为椭圆上的点,O为坐标原点,且满足OP OA OB=+,求OP的取值范围.参考答案1.D【解析】由条件得63.2;m m-=-∴=在直线330x y +-=任取一点,例如(1,0);则两平行线间的距离为点(1,0)到直线6210x y ++=的距离;由点到直线距离公式得20=故选D 2.B 【解析】试题分析:因为,直线1:10l ax y +-=与2:3(2)10l x a y +++=平行,所以,a(a+2)-1×3=0,解得,a=1或a=-3,但a=-3时,两直线重合,故选B 。
考点:本题主要考查两直线平行的条件。
点评:简单题,在直线方程的一般式下,两直线平行的条件是:1221122100A B A B AC A C -=-≠且.3.B 【解析】试题分析:设直线AB 的倾斜角为θ,0≤θ<π,根据斜率的计算公式,可得AB 的斜率为K= 2121m --=1-m 2,进而可得K 的范围,由倾斜角与斜率的关系,可得tanθ≤1,进而由正切函数的图象分析可得答案。
解:设直线AB 的倾斜角为θ,0≤θ<π,根据斜率的计算公式,可得AB 的斜率为 K=2121m --=1-m 2,易得k≤1,由倾斜角与斜率的关系,可得tanθ≤1,由正切函数的图象,可得θ的范围是),2(]4,0[πππ⋃故选B . 考点:直线的倾斜角点评:本题考查直线的倾斜角,要求学生结合斜率的计算公式,结合斜率与倾斜角的关系,进行分析求解 4.A【解析】过点A 与原点距离最大的直线应为过A 并且与OA 垂直,因为12,2OA l k k =∴=-,所以所求直线的方程为12(1)2y x -=--即250x y +-=. 5.B 【解析】直线42y kx k =++过定点(2,4),P -曲线y =表示圆224x y +=在x 轴上方的部分(包括与x 轴的交点);当直线在如图1l 与2l 之间(包括1l ,不包括2l )时,直线42y kx k =++与曲线y =1l 过点(2,0),2l 与圆相切;(2,0)代入直线方程得0242,1;k k k =++∴=-2=,解得3,4k =-所以k 的取值范围是3[1,)4--,故选B 6. D 【解析】试题分析:1322=+ky x 即221113x y k+=,其表示一个焦点坐标为)10(,的椭圆,所以,2222211113,,1,,334a b c a b k k k ===-=-==e ===,故选D .考点:椭圆的标准方程、几何性质.7.C 【解析】试题分析:由08622=+-+x y x ,可得1)3(22=+-y x ,设动圆圆心为)(y x M ,,半径为R ,∵圆M 与圆O 外切,∴1+=R MO ,∵圆M 与圆C 内切,∴1-=R MC ,从而OC MC MO <=-2,根据双曲线的定义,动圆圆心的轨迹是是以C O ,为焦点的双曲线(靠近点C 的一支).考点:1、圆与圆的位置关系;2、双曲线的定义. 8.C【解析】先根据焦点三角形PF 2F 1中角的大小求出三边之间的关系,在根据双曲线定义把三边用含a ,c 的式子表示,就可得到含a ,c 的关系式,把c 用a ,b 表示,求出a ,b 的关系式,再代入双曲线的渐近线方程即可. 解:∵PF 1⊥F 1F2,∠PF 2F 1=30° ∴在Rt △PF 2F 1中,|PF 2|=12 2|FF |3,,|PF 1|=12|FF |3∵P 点在双曲线12222=-by a x 上,∴|PF 2|-|PF 1|=2a ,|F 2F 1|=2c ∴12 2|FF |3-12|FF |3=2a=2c ,2c 3 =a 2∵c 2=a 2+b 2,∴a 2+b 2=3a 2∴b 2=2a 2,∵双曲线12222=-by a x 焦点在x 轴上,∴渐近线方程为y=±bax=±a x=x∴渐近线方程为y=x 故选C 9.C 【解析】抛物线y 2=8x 的准线方程为2x ,根据抛物线的定义可知AB 的长等于A ,B 到准线的和 ∵线段AB 的中点E 到y 轴的距离为3 ∴线段AB 的中点E 到准线的距离为3+2=5根据梯形中位线的性质,可得A ,B 到准线的和为10。
∴AB 的长为10 10.A【解析】抛物线28y x =的焦点为(2,0),∴椭圆焦点在x 轴上且半焦距为2,∴2142m m =⇒=,∴2224212n =-=,∴椭圆的方程为2211612x y +=故选A 。
11.②③【解析】219y =的焦点在x 轴上,椭圆13522=+y x 的焦点在y 轴 上, 故答案为:②③.考点:椭圆、双曲线的定义及其几何性质点评:简单题,本题注重椭圆、双曲线的定义及其几何性质的考查,突出了对基础知识的考查。
12.38190x y -+= 【解析】试题分析:由题意该弦所在的直线斜率存在,设弦的两个点为A 11(,)x y ,B 22(,)x y ,∵221111612x y +=,222211612x y +=,两式相减得直线AB 的斜率为1212121212()12(2)316()1648y y x x x x y y -+⨯-=-=-=--+⨯,∴所求直线方程为y-2=3(1)8x -+,即38190x y -+=考点:本题考查了直线与椭圆的关系 点评:“点差法”是由弦的两端点坐标代入圆锥曲线的方程,得到两个等式,两式相减,可以得到一个与弦的斜率及中点相关的式子,再结合有关条件来求解.当题目涉及弦的中点、斜率时,一般都可以用点差法来解.13.13【解析】略14.2213y x -= 【解析】由题意知,双曲线的左焦点为(-2,0),即2c =,又因为离心率2ca=,所以1a =,23b =,所以该双曲线的方程为2213y x -=. 【考点定位】本小题主要考查双曲线与抛物线的几何性质,双曲线的标准方程等基础知识.. 15.(Ⅰ)由椭圆定义知|PF 2|+|QF 2|+|PQ|=4a , 又2|PQ|=|PF 2|+|QF 2|,得|PQ|=43a. l 的方程为y =x +c, 其中c =a b 22-.设P(x 1,y 1),Q(x 2,y 2),则P ,Q 两点坐标满足方程组16.(Ⅰ)22143x y +=. (Ⅱ)133OP ≤≤。
【解析】试题分析:(Ⅰ)由已知可得222214a b e a -==,所以2234a b =又 232b a =解之得224,3a b ==故椭圆C 的方程为22143x y +=. 5分(Ⅱ) 由22,1.43y kx m x y =+⎧⎪⎨+=⎪⎩消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+-> ① 设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、, 012012122286,()23434km mx x x y y y k x x m k k=+=-=+=++=++ 8分 由于点P 在椭圆C 上,所以 2200143x y +=.从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足①式.又||OP ====因为12k ≤,得3≤4k 2+3≤4,有34≤3432+kOP ≤ 12分考点:椭圆的标准方程,平面向量的线性运算,直线与椭圆的位置关系。