2020-2021学年人教版八年级数学上册课时练:第十二章 全等三角形 (提升篇)(含答案)
人教版八年级数学上册课时练:第十二章 全等三角形 (培优篇)

课时练:第十二章全等三角形(培优篇)时间:100分钟满分:100分一.选择题(每小题3分,共30分)1.下列选项中表示两个全等图形的是()A.形状相同的两个图形B.能够完全重合的两个图形C.面积相等的两个图形D.周长相等的两个图形2.如图,点D在AB上,点E在AC上,且∠AEB=∠ADC,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AE B.∠B=∠C C.BE=CD D.AB=AC3.△ABC≌△DEF,且△ABC的周长为80cm,A、B分别与D、E对应,且AB=25cm,DF=35cm,则EF的长为()A.20cm B.30cm C.45cm D.55cm4.工人师傅常用角尺平分任意角,做法如下:如图,∠AOB是一个任意角,在OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点P的射线OP便是∠AOB的平分线,师傅这么做的依据是()A.SAS B.SSSC.角平分线逆定理D.AAS5.如图,在△ABC中,CD⊥AB于点D,EF⊥AC交CD于点E,连接AE,若ED=EF,∠ECF=58°,则∠DAE=()A.32°B.18°C.16°D.29°6.如图,已知CD⊥AB,BE⊥AC,且AO平分∠BAC,那么图中全等三角形共有()A.2对B.3对C.4对D.5对7.如图,AB=AD,AC=AE,则能判定△ABC≌△ADE的条件是()A.∠B=∠D B.∠C=∠B C.∠D=∠E D.BC=DE8.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是()A.△DEF≌△ABC B.∠F=∠ACB C.AC=DF D.BE=EC9.如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=28°,∠CGF=85°,则∠E的度数是()A.38°B.36°C.34°D.32°10.如图,在△ABC中,∠B=90°,点O是∠CAB、∠ACB平分线的交点,且BC=4cm,AC =5cm,则点O到边AB的距离为()A.1cm B.2cm C.3cm D.4cm二.填空题(每小题4分,共20分)11.如图,已知△ABC中,∠A=40°,AB=AC,BD=CE,BE=CF,则∠DEF=12.如图,在△ABC中,点E、F分别是AB、AC边上的点,EF∥BC,点D在BC边上,连接DE、DF,请你添加一个条件,使△BED≌△FDE.13.如图,∠C=90°,AC=20,BC=10,AX⊥AC,点P和点Q同时从点A出发,分别在线段AC和射线AX上运动,且AB=PQ,当AP=时,以点A,P,Q为顶点的三角形与△ABC全等.14.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段即可.15.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D 为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为.三.解答题(每题10分,共50分)16.如图,AC平分∠BAD,CA平分∠BCD,AC与BD交于点O.(1)求证:OB=OD;(2)若AC=8,BD=6,求△ABC的面积.17.如图,AB∥CD,EF交AB于E,交CD于F,EP平分∠AEF,FP平分∠CFE,直线MN经过点P并与AB,CD分别交于点M,N.(1)如图①,求证:EM +FN =EF ;(2)如图②,(1)的结论是否成立?若成立,请证明;若不成立,直接写出EM ,FN ,EF 三条线段的数量关系.18.在△ABC 中,AD 是△ABC 的角平分线.(1)如图(1)所示,AB =6,AC =4,S △ABD =9,求S △ADC .(2)如图(2)所示,E 、F 分别是AB 、AC 上的点,且∠EDF +∠BAC =180°,求证:DE =DF .19.已知:如图,点E 是BC 的中点,点A 在DE 上,且∠BAE =∠CDE .作CG ⊥DE 于G ,BF ⊥DE ,交DE 的延长线于F .(1)求证:EF =EG .(2)求证:AB =CD .20.已知在四边形ABCD 中,∠ABC +∠ADC =180°,AB =BC ,点E ,F 分别在射线DA ,DC 上,满足EF =AE +CF .(1)如图1,若点E ,F 分别在线段DA ,DC 上,求证:∠EBF =90°﹣∠ADC ;(2)如图2,若点E ,F 分别在线段DA 延长线与DC 延长线上,请直接写出∠EBF 与∠ADC 的数量关系.参考答案一.选择题1.解:A、形状相同的两个图形,不一定是全等图形,故此选项错误;B、能够完全重合的两个图形,一定是全等图形,故此选项正确;C、面积相等的两个图形,不一定是全等图形,故此选项错误;D、周长相等的两个图形,不一定是全等图形,故此选项错误;故选:B.2.解:由图形可知∠BAE=∠DAC,A、根据ASA(∠AEB=∠ADC,∠BAE=∠DAC,AD=AE)能推出△ABE≌△ACD(ASA),故本选项不符合题意;B、没有边的条件,不能推出△ABE≌△ACD,故本选项符合题意;C、根据AAS(∠AEB=∠ADC,∠BAE=∠DAC,BE=CD)能推出△ABE≌△ACD,正确,故本选项不符合题意;D、根据AAS(∠AEB=∠ADC,∠BAE=∠DAC,AB=AC)能推出△ABE≌△ACD,正确,故本选项不符合题意;故选:B.3.解:∵△ABC≌△DEF,△ABC的周长为80cm,∴△DEF的周长为80cm,DE=AB=25cm,又∵DF=35cm,∴EF=80﹣25﹣35=20cm.故选:A.4.解:在△OMP和△ONP中∵∴△OMP≌△ONP(SSS),∴∠MOP=∠NOP,∴OP平分∠AOB,故选:B.5.解:∵CD⊥AB,∠ECF=58°,∴∠DAC=32°,∵CD⊥AB,EF⊥AC,∴在Rt△ADE和Rt△AFE中,,∴Rt△ADE≌Rt△AFE(HL)∴∠DAE=∠FAE,且∠DAC=32°,∴∠DAE=16°,故选:C.6.解:∵CD⊥AB,BE⊥AC,AO平分∠BAC,∴∠ADO=∠AEO=90°,∠DAO=∠EAO,∵AO=AO∴△ADO≌△AEO(AAS);∴OD=OE,AD=AE∵∠DOB=∠EOC,∠ODB=∠OEC=90°∴△BOD≌△COE(ASA);∴BD=CE,OB=OC,∠B=∠C∵AE=AD,∠DAC=∠CAB,∠ADC=∠AEB=90°,∴△ADC≌△AEB(ASA);∵AD=AE,BD=CE∴AB=AC∵OB=OC,AO=AO∴△ABO≌△ACO(SSS).所以共有四对全等三角形.故选:C.7.解:∵AB=AD,AC=AE,BC=DE,∴△ABC≌△ADE(SSS).A、B、C选项都不符合题意,故选:D.8.解:由平移的性质可知:△ABC≌△DEF,∴∠F=∠ACB,AC=DF,BC=EF,∴BE=CF,故A,B,C正确,故选:D.9.解:∵CD平分∠BCA,∴∠ACD=∠BCD=∠BCA,∵△ABC≌△DEF,∴∠D=∠A=28°,∵∠CGF=∠D+∠BCD,∴∠BCD=∠CGF﹣∠D=57°,∴∠BCA=114°,∴∠B=180°﹣28°﹣114°=38°,∵△ABC≌△DEF,∴∠E=∠B=38°,故选:A.10.解:∵点O为∠CAB与∠ACB的平分线的交点,∴点O在∠ACB的角平分线上,∴点O为△ABC的内心,过O作OP⊥AB,连接OB,S==OP•(AB+BC+AC),△ABC又∵AC=5,BC=4,△ABC为直角三角形,∠B=90°∴AB=3,∴×3×4=•OP(3+4+5),解得:OP=1.故选:A.二.填空题(共5小题)11.证明:∵∠A=40°,AB=AC,∴∠B=∠C=70°,且BD=CE,BE=CF,∴△BED≌△CFE(SAS)∴∠EFC=∠BED,∵∠BEF=∠EFC+∠C=∠BED+∠DEF,∴∠DEF=∠C=70°,故答案为:70°.12.解:由题意:DE=ED,∠DEF=∠EDB,∴根据SAS可以添加DB=EF,根据AAS,ASA可以添加∠BED=∠EDF或DF∥AB或∠B=∠EFD,故答案为BD=EF(或∠BED=∠EDF或DF∥AB或∠B=∠EFD)13.解:∵AX⊥AC,∴∠PAQ=90°,∴∠C=∠PAQ=90°,分两种情况:①当AP=BC=10时,在Rt△ABC和Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时,在△ABC和△PQA中,,∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时,△ABC与△APQ全等;故答案为:10或20.14.解:利用CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,即两角及这两角的夹边对应相等即ASA这一方法,可以证明△ABC≌△EDC,故想知道两点A,B的距离,只需要测量出线段DE即可.故答案为:DE.15.解:延长AC至E,使CE=BM,连接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,,∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4.三.解答题(共5小题)16.证明:如图所示:(1)∵AC平分∠BAD,CA平分∠BCD,∴∠ADC=∠BAC,∠DCA=BCA,在△ADC和△ABC中,,∴△ADC≌△ABC(ASA),∴AD=AB,∴△ADB是等腰三角形,∴OB=OD;(2)由(1)可知:AO⊥BD,OB=OD=,∵BD=6,∴OB=,又∵AC=8,∴==12.17.(1)证明:如图1,在EF上截取FQ=FN,∵FP平分∠CFE,∴∠PFN=∠PFQ,又FP=FP,∴△FPN≌△FPQ(SAS),∴∠PNF=∠PQF,又AB∥CD,∴∠PNF+∠PME=180°,∵∠PQF+∠PQE=180°,∴∠PME=∠PQE,∵EP平分∠MEP,∴∠PEM=∠PEQ,∵PE=PE,∴△PEM≌△PEQ(AAS),∴EM=EQ,∴EM+FN=EQ+FQ=EF;(2)解:(1)的结论不成立.EM,FN,EF三条线段的关系是:FN﹣EM=EF.如图2,延长EP交CD于H,∵AB∥CD,∴∠AEF+∠CFE=180°,∵EP平分∠AEF,FP平分∠CFE,∴∠PEF+∠PFE=90°,∴∠EPF=90°,∴∠EPF=∠HPF,∵PF=PF,∠PFH=∠PFE,∴△PFH≌△PFE(ASA),∴EF=HF,PH=PE,∵AB∥CD,∴∠EMP=∠PNH,∠PEM=∠PHN,∴△PEM≌△PHN(AAS),∴EM=NH,∴FN﹣NH=FN﹣EM=HF=EF,即FN﹣EM=EF.18.解:(1)作DE⊥AB于点E,作DF⊥AC于点F,如右图1所示,∵AD平分∠BAC,∴DE=DF,∵AB=6,AC=4,S=9,△ABD∴=9,解得,DE=3,∴DF=3,==6;∴S△ADC(2)证明:作DM⊥AB于点M,作DN⊥AC于点N,如右图2所示,则∠EMD=∠FND=90°,∵AD平分∠BAC,∴DM=DN,∵∠EDF+∠BAC=180°,∴∠AED+∠AFD=180°,又∵∠DFN+∠AFD=180°,∴∠DEM=∠DFN,在△EMD和△FND中,,∴△EMD≌△FND(AAS),∴DE=DF.19.证明:(1)∵CG⊥DE,BF⊥DE,∴∠CGE=∠BFE=90°.在△CGE和△BFE中,∵∠CGE=∠BFE,∠CEG=∠BEF,BE=CE,∴△CGE≌△BFE(AAS),∴EF=EG.(2)∵△CGE≌△BFE(AAS),∴BF=CG.在△ABF和△DCG中,∵∠BAF=∠CDG,∠BFA=∠CGD=90°,BF=CG,∴△ABF≌△DCG(AAS),∴AB=CD.20.证明:(1)如图1,延长DA,使AH=CF,连接BH,∵∠ABC+∠BCD+∠ADC+∠DAB=360°,∠ABC+∠ADC=180°,∴∠DAB+∠BCD=180°,且∠DAB+∠HAB=180°,∴∠BCD=∠HAB,且AB=BC,AH=CF,∴△HAB≌△FCB(SAS)∴BH=BF,∠HBA=∠CBF,∵EF=AE+CF,∴EF=AE+AH=EH,且BH=BF,BE=BE,∴△BEH≌△BEF(SSS)∴∠EBF=∠EBH,∴∠EBF=∠EBH=∠EBA+∠CBF,∴∠EBF=∠ABC=(180°﹣∠ADC)=90°﹣∠ADC;(2)在CD的延长线上截取CH=AE,连接BH,∵∠ABC+∠BCD+∠ADC+∠DAB=360°,∠ABC+∠ADC=180°,∴∠DAB+∠BCD=180°,且∠DAB+∠EAB=180°,∴∠BCD=∠EAB,且AB=BC,AE=CH,∴△AEB≌△CHB(SAS)∴BE=BH,∠EBA=∠HBC,∵EF=AE+CF,∴EF=CH+CF=HF,且BF=BF,BE=BH,∴△EBF≌△HBF(SSS)∴∠EBF=∠HBF,∵∠EBF+∠HBF+∠EBA+∠ABH=360°,∴2∠EBF+∠HBC+∠ABH=360°,∴2∠EBF+∠ABC=360°,∴2∠EBF+180﹣∠ADC=360°,∴∠EBF=90°+∠ADC.。
2021年人教版数学八年级上册12.1《全等三角形》课时练习(含答案)

人教版数学八年级上册12.1《全等三角形》课时练习一、选择题1.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同。
B.图形全等,只与形状、大小有关,而与它们的位置无关。
C.全等图形的面积相等,面积相等的两个图形是全等形。
D.全等三角形的对应边相等,对应角相等。
2.如图,若△ABC≌△DEF,则∠E等于()A.30°B. 50°C.60°D.100°3.边长都为整数的△ABC≌△DEF,AB与DE是对应边,AB=2,BC=4,若△DEF的周长为偶数,则 DF的取值为()A.3B.4C.5D.3或4或54.如图所示,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°5.如下图,△ABC≌△ADE,∠B=70°,∠C=26°,∠DAC=20°,则∠EAC=( )A.20°B.64°C.30°D.65°6.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18 cm2,则EF边上的高的长是( ).A.3cmB.4cmC.5cmD.6cm7.如图已知△ABE≌△ACD, AB=AC, BE=CD,∠B=40°,∠AEC=120°则∠DAC的度数为()A.80°B.70°C.60°D.50°8.已知图中的两个三角形全等,则∠1等于()A.50°B.58°C.60°D.72°9.如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有()A.5对 B.4对 C.3对 D.2对10.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为( )A.90°B.108°C.110°D.126°二、填空题11.如图所示,△AOB≌△COD,∠AOB=∠COD,∠A=∠C,则∠D的对应角是__________,图中相等的线段有__________.12.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=________13.如图所示,已知△ABC≌△DEF,AB=4cm,BC=6cm,AC=5cm,CF=2cm,∠A=70°,∠B=65°,则∠D=__________,∠F=__________,DE=__________,BE=__________.14.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC 全等,那么点D的坐标是.三、作图题15.如图,把大小为4×4的正方形方格图形分别分割成两个全等图形,例如图①,请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形分割成两个全等图形.四、解答题16.如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.17.△ACF≌△DBE,∠E=∠F,若AD=11,BC=7,求线段AB的长.18.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.参考答案1.C2.D3.B4.D5.B6.D7.A8.B9.B10.B11.答案为:∠OBA,OA=OC、OB=OD、AB=CD12.答案为:2013.答案为:70° 45° 4cm 2cm14.答案为:(4,﹣1)或(﹣1,3)或(﹣1,﹣1)15.解:如图所示:16.解:因为AB、EC是对应边,所以∠AEB=∠CDE=100°,又因为∠C=35°,所以∠CED=180°-35°-100°=45°,又因为∠DEB=10°,所以∠BEC=45°-10°=35°,所以∠AEC=∠AEB-∠BEC=100°-35°=65°.17.解:∵△ACF≌△DBE,∴AC=BD,∴AC-BC=BO-BC,即AB=CD,∴2AB+BC=AO,∴2AB+7=11,∴AB=218.解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB﹣∠CAD)=. ∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°∠DGB=∠DFB﹣∠D=90°﹣25°=65°.综上所述:∠DFB=90°,∠DGB=65°.。
2020-2021学年人教版八年级数学上学期《第12章 全等三角形》测试卷及答案解析

2020-2021学年人教版八年级数学上学期《第12章全等三角形》测试卷一.选择题(共8小题)1.下列说法正确的个数()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个2.如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB ≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F,若∠BAC=40°,则∠BFC的大小是()A.105°B.100°C.110°D.115°3.如图,已知:AC=DF,AC∥FD,AE=DB,判断△ABC≌△DEF的依据是()A.SSS B.SAS C.ASA D.AAS4.下列说法正确的是()A.两边及其中一边的对角分别相等的两个三角形全等B.三角形的外角等于它的两个内角的和C.斜边和一条直角边相等的两个直角三角形全等D.两条直线被第三条直线所截,内错角相等5.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF6.如图,在△ABC中,F是高AD和BE的交点,BC=6,CD=2,AD=BD,则线段AF 的长度为()A.2B.1C.4D.37.平面内,到三角形三边所在直线距离相等的点共有()个.A.3B.4C.5D.68.下列作图语句正确的是()A.连接AD,并且平分∠BAC B.延长射线ABC.作∠AOB的平分线OC D.过点A作AB∥CD∥EF二.填空题(共2小题)9.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=.10.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是cm.2020-2021学年人教版八年级数学上学期《第12章全等三角形》测试卷参考答案与试题解析一.选择题(共8小题)1.下列说法正确的个数()①三角形的三条高所在直线交于一点;②一个角的补角比这个角的余角大90°;③垂直于同一条直线的两条直线互相垂直;④两直线相交,同位角相等;⑤面积相等的两个正方形是全等图形;⑥已知两边及一角不能唯一作出三角形.A.1个B.2个C.3个D.4个【分析】根据全等图形、三角形的高、互补、垂直以及平行线的性质进行判断即可.【解答】解:①三角形的三条高交于同一点,所以此选项说法正确;②设这个角为α,则这个角的补角表示为180°﹣α,这个角的余角表示为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,∴一个角的补角比这个角的余角大90°,此选项正确;③垂直于同一条直线的两条直线互相平行,所以此选项不正确;④两直线平行,同位角相等,所以此选项说法不正确;⑤面积相等的两个正方形是全等图形,此选项正确;⑥已知两边及一角不能唯一作出三角形,此选项正确.故选:D.【点评】此题考查全等图形、三角形的高以及平行线的性质等知识,关键是根据全等图形、三角形的高、互补、垂直以及平行线的性质进行判断.2.如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB ≌△AEB′,且C′D∥EB′∥BC,BE、CD交于点F,若∠BAC=40°,则∠BFC的大小是()A.105°B.100°C.110°D.115°【分析】延长C′D交AB′于H.利用全等三角形的性质,平行线的性质,三角形的外角的性质证明∠BFC=∠C′+∠AHC′,再求出∠C′+∠AHC′即可解决问题.【解答】解:延长C′D交AB′于H.∵△AEB≌△AEB′,∴∠ABE=∠AB′E,∵C′H∥EB′,∴∠AHC′=∠AB′E,∴∠ABE=∠AHC′,∵△ADC≌△ADC′,∴∠C′=∠ACD,∵∠BFC=∠DBF+∠BDF,∠BDF=∠CAD+∠ACD,∴∠BFC=∠AHC′+∠C′+∠DAC,∵∠DAC=∠DAC′=∠CAB′=40°,∴∠C′AH=120°,∴∠C′+∠AHC′=60°,∴∠BFC=60°+40°=100°,故选:B.【点评】本题考查了全等三角形的性质,平行线的性质,三角形的外角的性质等知识,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应边相等,对应角相等.3.如图,已知:AC=DF,AC∥FD,AE=DB,判断△ABC≌△DEF的依据是()A.SSS B.SAS C.ASA D.AAS【分析】根据两直线平行内错角相等,再根据SAS即可证明△ABC≌△DEF.【解答】解:∵AC∥FD,∴∠CAD=∠ADF,∵AE=DB,∴ED=AB,∵AC=DF,∴△ABC≌△DEF(SAS),故选:B.【点评】本题主要考查了全等三角形的判定,关键是根据两直线平行内错角相等解答.4.下列说法正确的是()A.两边及其中一边的对角分别相等的两个三角形全等B.三角形的外角等于它的两个内角的和C.斜边和一条直角边相等的两个直角三角形全等D.两条直线被第三条直线所截,内错角相等【分析】A、根据三角形全等的判定进行判断;B、根据三角形的外角与内角和关系及三角形的内角和定理可做判断;C、根据三角形全等的判定进行判断;D、根据平行线的性质进行判断.【解答】解:A、两边及夹角分别相等的两个三角形全等,错误;B、三角形的外角等于与它不相邻的两个内角的和,错误;C、边和一条直角边相等的两个直角三角形全等,正确;D、两条平行线被第三条直线所截,内错角相等,错误;故选:C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,命题可分为真命题和假命题.5.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:A.【点评】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.6.如图,在△ABC中,F是高AD和BE的交点,BC=6,CD=2,AD=BD,则线段AF 的长度为()A.2B.1C.4D.3【分析】先证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC,利用全等三角形对应边相等就可得到结论.【解答】证明:∵F是高AD和BE的交点,∴∠ADC=∠FDB=∠AEF=90°,∴∠DAC+∠AFE=90°,∵∠FDB=90°,∴∠FBD+∠BFD=90°,又∵∠BFD=∠AFE,∴∠FBD=∠DAC,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),∴DF=CD=2,∴AD=BD=BC﹣DF=4,∴AF=AD﹣DF=4﹣2=2;故选:A.【点评】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;证明三角形全等是解题的关键.7.平面内,到三角形三边所在直线距离相等的点共有()个.A.3B.4C.5D.6【分析】在三角形内部到三边距离相等的点是三条内角平分线的交点,只有一个;在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,有三个【解答】解:∵在三角形内部到三边距离相等的点是三条内角平分线的交点,交点重合,只有一点;在三角形的外部到三条边所在直线距离相等的点是外角平分线的交点,交点不重合,有三个.∴到三角形三边所在直线距离相等的点有4个.故选:B.【点评】此题是考查角平分线的性质的灵活应用.注意三角形的外角平分线不要漏掉,有3个交点.8.下列作图语句正确的是()A.连接AD,并且平分∠BAC B.延长射线ABC.作∠AOB的平分线OC D.过点A作AB∥CD∥EF【分析】根据基本作图的方法,逐项分析,从而得出正确的结论.【解答】解:A.连接AD,不能同时使平分∠BAC,此作图错误;B.只能反向延长射线AB,此作图错误;C.作∠AOB的平分线OC,此作图正确;D.过点A作AB∥CD或AB∥EF,此作图错误;故选:C.【点评】此题主要考查了作图﹣尺规作图的定义:用没有刻度的直尺和圆规作图,正确把握定义是解题关键.二.填空题(共2小题)9.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=45°.【分析】根据题意,作出合适的辅助线,然后根据勾股定理的逆定理即可解答本题.【解答】解:如右图所示,作CD∥AB,连接DE,则∠2=∠3,设每个小正方形的边长为a,则CD=,DE=a,CE=a,∵CD2+DE2==10a2=CE2,CD=DE,∴△CDE是等腰直角三角形,∠CDE=90°,∴∠DCE=45°,∴∠3+∠1=45°,∴∠1+∠2=45°,故答案为:45°.【点评】本题考查全等图形,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.10.利用两块完全相同的直角三角板测量升旗台的高度.首先将两块完全相同的三角板按图1放置,然后交换两块三角板的位置,按图2放置.测量数据如图所示,则升旗台的高度是69cm.【分析】设升旗台的高度是zcm,AC=xcm,BC=ycm.构建方程组即可解决问题.【解答】解:设升旗台的高度是zcm,AC=xcm,BC=ycm.由题意:,①+②可得,2z=138,∴z=69,故答案为69.【点评】本题考查全等三角形的性质,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.。
人教版八年级数学上册课时练:第12章 《全等三角形》 (基础篇)

课时练:第12章《全等三角形》(基础篇)一.选择题1.如图,已知AB∥DC,AD∥BC,则△ABC≌△CDA的依据是()A.SAS B.ASA C.AAS D.以上都不对2.如图,△ABD≌△ACE,若AB=6,AE=4,则CD的长度为()A.10 B.6 C.4 D.23.一定能确定△ABC≌△DEF的条件是()A.∠A=∠D,AB=DE,∠B=∠E B.∠A=∠E,AB=EF,∠B=∠D C.AB=DE,BC=EF,∠A=∠D D.∠A=∠D,∠B=∠E,∠C=∠F 4.如图AB=CD,AD=BC,过O点的直线交AD于E,交BC于F,图中全等三角形有()A.4对B.5对C.6对D.7对5.如图,已知AB=AD给出下列条件:(1)CB=CD(2)∠BAC=∠DAC(3)∠BCA=∠DCA(4)∠B=∠D,若再添一个条件后,能使△ABC≌△ADC的共有()A.1个B.2个C.3个D.4个6.如图,两条笔直的公路l1、l2相交于点O,公路的旁边建三个加工厂A、B、D,已知AB =AD=5.2km,CB=CD=5km,村庄C到公路l1的距离为4km,则C村到公路l2的距离是()A.3km B.4km C.5km D.5.2km7.如图所示,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于()A.1cm B.2cm C.3cm D.4cm8.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个9.如图,△ABE≌△ACD,AB=AC,BE=CD,∠B=50°,∠AEC=120°,则∠DAC 的度数等于()A.120°B.70°C.60°D.50°10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中结论正确的个数是()A.1 B.2 C.3 D.4二.填空题11.如图,AD=AE,∠1=∠2,BD=CE,则有△ABD≌△,理由是,△ABE≌△,理由是.12.如图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选择的位置共有个.13.如图,点E是CD是的一点,Rt△ACD≌Rt△EBC,则下结论:①AC=BC,②AD∥BE,③∠ACB=90°,④AD+DE=BE,成立的有个.14.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.15.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E.则下列结论:①CD =ED,②AC+BE=AB,③∠BDE=∠BAC,④AD平分∠CDE,⑤S△ABD:S△ACD=AB:AC,其中正确的是.三.解答题16.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF度数.17.已知∠AOB=90°,OC是∠AOB的平分线,按以下要求解答问题.(1)将三角板的直角顶点P在射线OC上移动,两直角边分别与OA,OB交于M,N,如图①,求证:PM=PN;(2)将三角板的直角顶点P在射线OC上移动,一条直角边与OB交于N,另一条直角边与射线OA的反向延长线交于点M,并猜想此时①中的结论PM=PN是否成立,并说明理由.18.如图,已知△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,求证:(1)AP=AQ;(2)AP⊥AQ.19.如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.20.在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于点D.(1)如图1,过点C作CF⊥AD于F,延长CF交AB于点E.联结DE.①说明AE=AC的理由;②说明BE=DE的理由;(2)如图2,过点B作直线BM⊥AD交AD延长线于M,交AC延长线于点N.说明CD=CN的理由.参考答案一.选择1.解:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,而AC=CA,∴△ABC≌△CDA(ASA).故选:B.2.解:∵△ABD≌△ACE,∴AB=AC=6,AE=AD=4,∴CD=AC﹣AD=6﹣4=2,故选:D.3.解:A、根据ASA即可推出△ABC≌△DEF,故本选项正确;B、根据∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、根据AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、根据AAA不能推出△ABC≌△DEF,故本选项错误;故选:A.4.解:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),同理可得△ABC≌△CDA,∵AB=CD,AD=BC,∴四边形ABCD为平行四边形,∴OA=OC,OB=OD,在△AOB和△COD中,,∴△AOB≌△BOD(SAS),同理可得△BOC≌△DOA,由平行四边形的性质可得AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,在△AEO和△CFO中,,∴△AEO≌△CFO(AAS),同理可得△DOE≌△BOF,所以共有六组.故选:C.5.解:由图形△ABC和△ADC有公共边,结合条件AB=AD,故可再加一组边,和公共边与已知一组边的夹角相等,即当CB=CD或∠BAC=∠DAC时△ABC≌△ADC,当∠B=∠D时,如图,连接BD,∵AB=AD,∴∠ABD=∠ADB,∴∠CBD=∠CDB,∴BC=DC,且AC=AC,∴△ABC≌△ADC(SSS),所以能使△ABC≌△ADC的条件有3个,故选:C.6.解:连接AC,在△ADC和△ABC中,∴△ADC≌△ABC(SSS),∴∠DAC=∠BAC,∴C到l1与C到l2的距离相等,都为4km.故选:B.7.解:∵AC⊥BC,AE为∠BAC的平分线,DE⊥AB,∴CE=DE,在Rt△ACE和Rt△ADE中,,∴Rt△ACE≌Rt△ADE(HL),∴AD=AC,∵AB=7cm,AC=3cm,∴BD=AB﹣AD=AB﹣AC=7﹣3=4cm.故选:D.8.解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.故选:C.9.解:由题意得:∠B=50°,∠AEC=120°,又∵∠AEC=∠B+∠BAE(三角形外角的性质),∴∠BAE=120°﹣50°=70°,又∵△ABE≌△ACD,∴∠BAE=∠DAC=70°.故选:B.10.解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,本选项正确;③∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;④∵∠BAC=∠DAE=90°,∴∠BAE+∠DAC=360°﹣90°﹣90°=180°,故此选项正确,故选:D.二.填空题(共5小题)11.解:∵AD=AE,∠1=∠2,BD=CE,∴△ABD≌△ACE(SAS),∴∠B=∠C,AB=AC,又BD=CE,∠1=∠2,∴BE=CD,∠AEB=∠ADC,∴△ABE≌△ACD(ASA)或(SAS).故填ACE,SAS,ACD,ASA或SAS.12.解:根据三条路线构成的三角形知,三角形的内心为三角形内角角平分线的交点.∵由三角形内心为该三角形内切圆的圆心,∴所以符合货物中转站到各路的距离相等.这样的点可找到一个.两外角平分线的交点,到三条公路的距离也相等,可找到三个.故答案为:4.13.解:∵Rt△ACD≌Rt△EBC,∴AC=BE,∵在Rt△BEC中,BE<BC,∴AC<BC,∴①错误;∵∠CAD=∠CEB=∠BED=90°,∠D<∠CAD,∴∠D≠∠BED,∴AD和BE不平行,∴②错误;∵Rt△ACD≌Rt△EBC,∴∠ACD=∠CEE,∠D=∠BCE,∵∠CAD=90°,∴∠ACD+∠D=90°,∴∠ACB=∠ACD+∠BDE=90°,∴③正确;∵Rt△ACD≌Rt△EBC,∴AD=CE,CD=BC,CD=CE+DE=AD+DE=BC,∵BE<BC,∴AD+DE>BE,∴④错误;故答案为:1.14.解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.15.解:∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,∴CD=ED,故①正确;∴∠CDE=90°﹣∠BAD,∠ADC=90°﹣∠CAD,∴∠ADE=∠ADC,即AD平分∠CDE,故④正确;∴AE=AC,∴AB=AE+BE=AC+BE,故②正确;∵∠BDE+∠B=90°,∠B+∠BAC=90°,∴∠BDE=∠BAC,故③正确;∵S△ABD=AB•DE,S△ACD=AC•CD,∵CD=ED,∴S△ABD:S△ACD=AB:AC,故⑤正确.故答案为:①②③④⑤.三.解答题(共5小题)16.(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL);(2)解:∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,又∵∠BAE=∠CAB﹣∠CAE=45°﹣30°=15°,由(1)知:Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=15°+45°=60°.17.解:(1)过P作PE⊥OA于E,PF⊥OB于F,∵OC是∠AOB的平分线,∴PE=PF,∠PEM=∠PFN=90°,∵∠MPE+∠MPF=90°,∠NPF+∠MPF=90°,∴∠MPE=∠NPF,在△PME和△PNF中,,∴△PME≌△PNF(ASA),∴PM=PN.(2)过P作PE⊥OA于E,PF⊥OB于F,∵OC是∠AOB的平分线,∴PE=PF,∠PEM=∠PFN=90°,∵∠MPE+∠MPF=90°,∠NPF+∠MPF=90°,∴∠MPE=∠NPF,在△PME和△PNF中,,∴△PME≌△PNF(ASA),∴PM=PN.18.证明:(1)∵BE、CF都是△ABC的高,∴∠AFC=∠AFQ=∠AEB=90°.∴∠BAC+∠ABE=90°,∠BAC+∠ACF=90°,∴∠ABE=∠ACF.在△ABP和△QCA中,∴△ABP≌△QCA(ASA),∴AP=QA;(2)∵△ABP≌△QCA,∴∠BAP=∠CQA.∵∠CQA+∠FAQ=90°,∴∠BAP+∠FAQ=90°,即∠PAQ=90°,∴AP⊥AQ.19.(1)证明:∵正五边形ABCDE,∴AB=BC,∠ABM=∠C,∴在△ABM和△BCN中,∴△ABM≌△BCN(SAS);(2)解:∵△ABM≌△BCN,∴∠BAM=∠CBN,∵∠BAM+∠ABP=∠APN,∴∠CBN+∠ABP=∠APN=∠ABC==108°.即∠APN的度数为108°.20.解:(1)①∵AD平分∠BAC,∴∠EAD=∠CAD,∵CF⊥AD,∴∠AFE=∠AFC=90°,在△AEF和△ACF中,,∴△AEF≌△ACF(ASA),∴AE=AC;②在△AED和△ACD中,,∴△AED≌△ACD(SAS),∴∠AED=∠ACB∵∠ACB=2∠B,∴∠AED=2∠B,又∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴BE=DE;(2)连接DN,易证△ABM≌△ANM,所以AB=AN,在△ABD和△AND中,,∴△ABD≌△AND(SAS),∴∠ABD=∠AND,∵∠ACB=2∠ABC,即∠ACB=2∠ABD,∴∠ACB=2∠AND,又∵∠ACB=∠CDN+∠AND,∴∠CDN=∠AND,∴CD=CN.。
人教版八年级数学上册课时练:第十二章 《全等三角形》 (培优篇)解析版

课时练:第十二章《全等三角形》(培优篇)一.选择题1.已知△ACB≌△A'CB',∠CBA=30°,则∠CB'A'的度数为()A.20°B.30°C.35°D.40°2.在下列条件中,能判断两个直角三角形全等的是()A.一个锐角对应相等B.两锐角对应相等C.一条边对应相等D.一条斜边和另外一条直角边对应相等3.如图,点B、F、C、E在同一直线上,BF=CE,AB∥DE,添加下列条件,其中不能判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=DE D.∠ACB=∠DFE 4.如图,在△ABC中,∠ABC=45°,AC=9cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm5.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=32,DE=4,AB =6,则AC的长是()A.8 B.9 C.10 D.116.如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=28°,∠CGF=85°,则∠E的度数是()A.38°B.36°C.34°D.32°7.如图,方格纸中△DEF的三个顶点分别在小正方形的顶点上,像这样的三个顶点都在格点上的三角形叫格点三角形,则图中与△DEF全等的格点三角形有()个.A.9 B.10 C.11 D.128.如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论错误的是()A.CB=CD B.DA=DC C.AB=AD D.△ABC≌△ADC 9.如图,在△ABC中,∠B=90°,点O是∠CAB、∠ACB平分线的交点,且BC=4cm,AC=5cm,则点O到边AB的距离为()A.1cm B.2cm C.3cm D.4cm10.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD 延长线上的点,∠EAF=∠BAD,若DF=1,BE=5,则线段EF的长为()A.3 B.4 C.5 D.6二.填空题11.如图,已知点A,D,C,F在同一条直线上,AB=DE,且∠B=∠E.则添加条件,可得△ABC≌△DEF.12.如图,四边形ABCD中,AC=BC=BD,且AC⊥BD,若AB=a,则△ABD的面积为.(用含a的式子表示)13.如图,在四边形ABCD中,AC是四边形的对角线,∠CAD=30°,过点C作CE⊥AB 于点E,∠B=2∠BAC,∠ADC﹣∠BAC=90°,若AB=20,CD=16,则BE的长为.14.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=8cm,DE=3cm,则△BCD的面积为cm2.15.如图,△ABC中,∠C=60°,取BC上一点D,连接AD,使AD=BD,延长CA至E,连接ED,且∠DAE=2∠AED,若BC=4AE,AC=3,则BC的长度为.三.解答题16.已知,如图,A、D、C、B在同一条直线上AD=BC,AE=BF,CE=DF,求证:(1)DF∥CE;(2)DE=CF.17.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?18.如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.试说明:(1)△ABP≌△AEQ;(2)EF=BF.19.在∠MAN内有一点D,过点D分别作DB⊥AM,DC⊥AN,垂足分别为B,C.且BD =CD,点E,F分别在边AM和AN上.(1)如图1,若∠BED=∠CFD,请说明DE=DF;(2)如图2,若∠BDC=120°,∠EDF=60°,猜想EF,BE,CF具有的数量关系,并说明你的结论成立的理由.20.已知:直线m∥n,点A,B分别是直线m,n上任意两点,在直线n上取一点C,使BC=AB,连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.(1)如图1,若点E是线段AC上任意一点,EF交AB于H,求证:EF=BE;(2)如图2,点E在线段AC的延长线上时,∠ABE与∠AFE互为补角,若∠ABC=90°,请判断线段EF与BE的数量关系,并说明理由.参考答案一.选择题1.解:∵△ACB≌△A'CB',∠CBA=30°,∴∠CB'A'=∠CBA=30°.故选:B.2.解:A、一个锐角对应相等,不能判定两直角三角形全等,故此选项不符合题意;B、两锐角对应相等,不能判定两直角三角形全等,故此选项不符合题意;C、一条边对应相等,不能判定两直角三角形全等,故此选项不符合题意;D、一条斜边和另外一条直角边对应相等能判定两直角三角形全等,故此选项符合题意;故选:D.3.解:∵BF=CE,∴BC=EF,∵AB∥DE∴∠B=∠E,当∠A=∠D时,且BC=EF,∠B=∠E,由“AAS”可证△ABC≌△DEF,当AC=DF时,不能判定△ABC≌△DEF,当AB=DE时,且BC=EF,∠B=∠E,由“SAS”可证△ABC≌△DEF,当∠ACB=∠DFE时,且BC=EF,∠B=∠E,由“ASA”可证△ABC≌△DEF,故选:B.4.解:如图所示:∵AD⊥BC,BE⊥AC,∴∠ADC=∠ADB=90°,∠BEA=90°,又∵∠FBD+∠BDF+∠BFD=180°,∠FAE+∠FEA+∠AFE=180°,∠BFD=∠AFE,∴∠FBD=∠FAE,又∵∠ABC=45°,∠ABD+∠BAD=90°,∴∠BAD=45°,∴BD=AD,在△FBD和△CAD中,,∴△FBD≌△CAD(AAS),∴BF=AC,又∵AC=9cm,∴BF=9cm.故选:D.5.解:作DF⊥AC于F,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=4,∵S△ADB+S△ADC=S△ABC,∴×6×4+×AC×4=32,∴AC=10.故选:C.6.解:∵CD平分∠BCA,∴∠ACD=∠BCD=∠BCA,∵△ABC≌△DEF,∴∠D=∠A=28°,∵∠CGF=∠D+∠BCD,∴∠BCD=∠CGF﹣∠D=57°,∴∠BCA=114°,∴∠B=180°﹣28°﹣114°=38°,∵△ABC≌△DEF,∴∠E=∠B=38°,故选:A.7.解:如图示2×3排列的每6个小正方形上都可找出4个全等的三角形,所以共有12个全等三角形,除去△DEF外有11个与△DEF全等的三角形:△DAF,△BGQ,△CGQ,△NFH,△AFH,△WBI,△QBI,△CKR,△KRW,△CGR,△KIW.故选:C.8.解:∵△ABO≌△ADO.∴AB=AD,选项C正确,∠BAC=∠DAC,在△ABC与△ADC中,∴△ABC≌△ADC(SAS),选项D正确∴CB=CD,选项A正确;故选:B.9.解:∵点O为∠CAB与∠ACB的平分线的交点,∴点O在∠ACB的角平分线上,∴点O为△ABC的内心,过O作OP⊥AB,连接OB,S==OP•(AB+BC+AC),△ABC又∵AC=5,BC=4,△ABC为直角三角形,∠B=90°∴AB=3,∴×3×4=•OP(3+4+5),解得:OP=1.故选:A.10.解:在BE上截取BG=DF,∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,在△ADF与△ABG中,∴△ADF≌△ABG(SAS),∴AG=AF,∠FAD=∠GAB,∵∠EAF=∠BAD,∴∠FAE=∠GAE,在△AEG与△AEF中,∴△AEG≌△AEF(SAS)∴EF=EG=BE﹣BG=BE﹣DF=4.故选:B.二.填空题(共5小题)11.解:添加条件:BC=EF;理由如下:在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故答案为:BC=EF(答案不唯一)12.解:过D作DE⊥AB交BA的延长线于E,过C作CF⊥AB交AB于F,∵AC⊥BD,CF⊥AB,∴∠ACF+∠FAC=90°,∠ABD+∠BAC=90°,∴∠ACF=∠ABD∵AC=BC,CF⊥AB,∴AF=BF=,∠ACF=∠BCF∴∠ABD=∠BCF,∵∠DEB=∠AFC=90°,∠ABD=∠BCF,BC=BD∴△BDE≌△CBF(AAS)∴BF=ED=,∴△ABD的面积=×AB×DE=a2,故答案为a2.13.解:在EA上截取EF=EB,连接CF,作FM⊥AC于M,作CN⊥AD于N,如图所示:∵CE⊥AB,∴CB=CF,∴∠CFB=∠B=2∠BAC,∵∠CFB=∠FCA+∠BAC,∴∠FCA=∠BAC,∴AF=CF,∵FM⊥AC,∴CM=AM=AC,∵CN⊥AD,∠CAD=30°,∴CN=AC,∴AM=CN,∵∠ADC﹣∠BAC=90°,∴∠ADC=90°+∠BAC,∵∠ADC=∠N+∠DCN=90°+∠DCN,∴∠BAC=∠DCN,在△AFM和△CDN中,,∴△AFM≌△CDN(ASA),∴AF=CD=16,∴BF=AB﹣AF=20﹣16=4,∴BE=BF=2;故答案为:2.14.解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=3,∴△BCD的面积=×BC×DF=12(cm2),故答案为:12.15.解:延长CE至H,使CH=CB,连接BH,作DG∥CH交BH于G,延长AC至F,使AF=AD,连接DF、EG,如图所示:则∠ADF=∠AFD,∠EDG=∠AED,∠DGB=∠H,设∠AED=x,∵∠DAE=2∠AED=2x,∴∠ADF=∠AFD=∠DAE=x=∠AED=∠DEG,∴DE=DF,∵∠ACB=60°,AH=CB,∴△BCH是等边三角形,∴CB=BH,∠CBH=∠H=60°,∴∠DGB=∠CBH=60°,∴△BDG是等边三角形,∴BD=GD=BG=AD=AF,∴GH=BG=,在△ADF和△GED中,,∴△ADF≌△GED(SAS),∴AF=AD=GE=DG,∠ADF=∠GED=x,∴∠AEG=2x=∠EAD,∴∠GEH=∠DAC,在△HEG和△CAD中,,∴△HEG≌△CAD(AAS),∴EH=AC=3,∵BC=CH=3+AE+3,BC=4AE,∴6+AE=4AE,解得:AE=2,∴BC=8;故答案为:8.三.解答题(共5小题)16.证明:(1)∵AD=BC,∴AC=BD,又AE=BF,CE=DF,∴△ACE≌△BDF(SSS)∴∠FDC=∠ECD,∴DF∥CE;(2)由(1)可得∠A=∠B,AD=BC,AE=BF,∴△ADE≌△BCF(SAS),∴DE=CF17.解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.18.解:(1)∵△ABE和△APQ是等边三角形,∴AB=AE,AP=AQ,∠BAE=∠PAQ=∠ABE=∠AEB=60°,∴∠BAE﹣∠PAE=∠PAQ﹣∠PAE,∴∠BAP=∠EAQ.在△ABP和△AEQ中,,∴△QAE≌△PAB(SAS);(2)∵△QAE≌△PAB∴∠ABP=∠AEQ=90°.∴∠AEF=90°,∴∠ABP=∠AEF∴∠ABP﹣∠AEB=∠AEF﹣∠ABE,∴∠BEF=∠EBF,∴BF=EF.19.解:(1)∵DB⊥AM,DC⊥AN,∴∠DBE=∠DCF=90°,在△BDE和△CDF中,∵∴△BDE≌△CDF(AAS).∴DE=DF;(2)EF=FC+BE,理由:过点D作∠CDG=∠BDE,交AN于点G,在△BDE和△CDG中,,∴△BDE≌△CDG(ASA),∴DE=DG,BE=CG.∵∠BDC=120°,∠EDF=60°,∴∠BDE+∠CDF=60°.∴∠FDG=∠CDG+∠CDF=60°,∴∠EDF=∠GDF.在△EDF和△GDF中,,∴△EDF≌△GDF(SAS).∴EF=GF,∴EF=FC+CG=FC+BE.20.(1)证明:如图1,在直线m上,取点M,使ME=EA,∴∠EMA=∠EAM,∵BC=AB,∴∠CAB=∠ACB,∵m∥n,∴∠MAC=∠ACB,∠FAB=∠ABC,∴∠MAC=∠CAB,∴∠CAB=∠EMA,∵∠BEF=∠ABC,∴∠FAB=∠BEF,∵∠AHF=∠EHB∴∠AFE=∠EBA,∴△AEB≌△MEF(AAS),∴EF=EB;(2)解:EF=BE.理由如下:如图2,在直线m上截取AN=AB,连接NE,∵∠ABC=90°,∴∠CAB=∠ACB=45°,∵m∥n,∴∠NAE=∠ACB=∠CAB=45°,∠FAB=90°,∵AE=AE∴△NAE≌△ABE(SAS),∴EN=EB,∠ANE=∠ABE,∵∠ABE+∠EFA=180°,∠ANE+∠ENF=180°∴∠ENF=∠EFA,∴EN=EF,∴EF=BE.。
2020-2021学年度人教版八年级数学上册12.2三角形全等的判定课时练习(含答案解析)

2020-2021学年度人教版八年级数学上册12.2三角形全等的判定课时练习一、选择题1.如图,ΔA'B'C≌ΔABC,点B'在AB边上,线段A'B',AC交于点D.若∠A=40°,∠B=60°,则∠A'CB的度数为( )A.100°B.120°C.135°D.140°2.如图所示,AB=CD,∠ABD=∠CDB,则图中全等三角形共有( )A.5对B.4对C.3对D.2对3.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去4.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°5.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A .SSSB .SASC .ASAD .AAS6.下列命题:(1)无限小数是无理数(2)绝对值等于它本身的数是非负数(3)垂直于同一直线的两条直线互相平行(4)有两边和其中一边的对角对应相等的两个三角形全等,(5)面积相等的两个三角形全等,是真命题的有( )A .1个B .2个C .3个D .4个 7.如图,有一塘,要测池塘两端A ,B 间的距离,可先在平地上取一个不经过池塘就可以直接到达点A ,B 的点C ,连接AC 并延长至D ,使CD CA =,连接BC 并延长至E ,使CE CB =,连接ED .若量出58ED =米,则A ,B 间的距离为( )A .58米B .29米C .60米D .116米 8.如图,,CD AB BE AC ⊥⊥,垂足分别为D 、,E BE 、CD 相交于点,O OB OC =,则图中全等三角形共有( )A .3对B .4对C .5对D .6对9.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是( ).A .SSSB .SASC .ASAD .AAS 10.如图所示,ABC 中,BD 平分角ABC ,AD 垂直于BD ,BCD 的面积为45,ADC 的面积为20,则ABD △的面积等于( )A .15B .20C .25D .30二、填空题 11.如图,在Rt △ABC ,∠C=90°,AC=12,BC=6,一条线段PQ=AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP= ______ .12.如图点C ,D 在AB 同侧,AD=BC ,添加一个条件____________就能使△ABD ≌△BAC .13.如图,在△ABC 中,AD 是∠A 的外角平分线,P 是 AD 上异于点 A 的任意一点,设 PB =m ,PC =n ,AB =c ,AC =b ,则 m +n _____b +c (填“>”“<”或“=”).14.如图, BD 是ABC ∆的角平分线,延长BD 至点E ,使DE AD =,若60ADB ∠=,78BAC ∠=, 则BEC ∠=__________.。
第12章《全等三角形》人教版八年级数学上册课时练能力篇(含答案)

课时练:第十二章《全等三角形》(能力篇)一.选择题1.下列说法正确的是()A.形状相同的两个三角形全等B.能完全重合的两个三角形全等C.两个等腰直角三角形全等D.面积相等的两个三角形全等2.如图所示,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OBC的度数是()A.130°B.85°C.105°D.95°3.如图,∠ADC=∠AEB=90°,补充下列一个条件,仍无法判定△ABE≌△ACD的是()A.AD=AE B.∠B=∠C C.BE=CD D.AB=AC4.如图,△ABC≌A′CB′,若∠BCB′=40°,AC⊥A′B′,则∠A′的度数是()A.50°B.60°C.70°D.80°5.用尺规作图,不能唯一确定一个直角三角形的是()A.已知两直角边B.已知一个直角边和斜边C.已知两个锐角D.已知一斜边和一锐角6.如图,AB,BC,AC表示的是三条河流,现决定在这三条河流中间修建一个木材厂,使该厂到三条河流的距离相等,以便利用走水路向外运木柴,则这个木柴长应建在()A.AC,BC两边高线的交点处B.AC,BC两边中线的交点处C.AC,BC两边垂直平分线的交点处D.∠A,∠B两角的平分线的交点处7.如图,在△ABC中,∠ACB=90°,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于()A.1cm B.2cm C.3cm D.4cm8.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第4块B.第3块C.第2块D.第1块9.如图所示,△ABC中,AB=AC,BE=CF,AD⊥BC,则图中共有全等三角形()A.4对B.3对C.2对D.1对10.如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,将△ABC沿直线BC方向平移2.5个单位得到△DEF,AC与DE相交于G点,连接AD,AE,则下列结论:①△AGD≌△CGE;②△ADE为等腰三角形;③AC平分∠EAD;④四边形AEFD的面积为9.其中正确的个数是()A.1个B.2个C.3个D.4个二.填空题11.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件.12.在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为.(点C不与点A重合)13.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,△ABC的面积为70,AB=16,BC=12,则DE的长为.14.如图,在△ABC中,∠C=90°,DE⊥AB于D,BC=BD,若AC=4cm,则AE+DE=.15.如图,△ABC≌△ADE,且∠EAB=120°,∠B=30°,∠CAD=10°,∠CFD=°.三.解答题16.已知如图,在△ABC中,BE、CF分别是AC、AB边上的高,在BE的延长线上截取BM =AC,在CF的延长线上截取CN=AB,请说明:(1)AM=AN.(2)AM⊥AN.17.如图,△ABC中,BD⊥AC于点D,CE⊥AB于点E,且BD、CE交于点F,点G是线段CD上一点,连接AF、GF,若AF=GF,BD=CD.(1)求∠CAF的度数;(2)判断线段FG与BC的位置关系,并说明理由.18.(1)如图①,在Rt△ABC中,∠C=90°,∠B=45°,AD平分∠BAC,交BC于点D.如果作辅助线DE⊥AB于点E,则可以得到AC、CD、AB三条线段之间的数量关系为;(2)如图,△ABC中,∠C=2∠B,AD平分∠BAC,交BC于点D.(1)中的结论是否仍然成立?若不成立,试说明理由;若成立,请证明.19.如图,在△ABC中,D是BC的中点,过点D的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF,交AB于点E,连接EG,EF.(1)求证:EG=EF.(2)请你判断BE+CF与EF的大小关系,并说明理由.20.已知,点D是△ABC内一点,满足AD=AC(1)已知∠CAD=2∠BAD,∠ABD=30°,如图1,若∠BAC=60°,∠ACB=80°,请判断BD和CD的数量关系(直接写出答案)(2)如图2,若∠ACB=2∠ABC,BD=CD,试证明∠CAD=2∠BAD.参考答案一.选择题1.解:A、如教师用的三角板和学生用的三角板形状相同,但不全等,故本选项错误;B、能够完全重合的两个三角形全等,故本选项正确;C、如图:图中的两个等腰直角三角形不全等,故本选项错误;D、当一个三角形的底是2,对应的高是1,而另一个三角形的底是1,对应的高是2,两三角形的面积相等,但是两三角形不全等,故本选项错误;故选:B.2.解:∵在△OAD和△OBC中,,∴△OAD≌△OBC,(SAS)∴∠OBC=∠OAD=180°﹣∠O﹣∠D=95°,故选:D.3.解:A、在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),故本选项错误;B、根据∠A=∠A,∠AEB=∠ADC,∠B=∠C不能推出△ABE≌△ACD(ASA),故本选项正确;C、在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),故本选项错误;D、在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),故本选项错误;故选:B.4.解:∵△ABC≌A′CB′,∴∠ACB=∠B′CA′,∴∠BCB′=∠ACA′=40°,∵AC⊥A′B′,∴∠A′=90°﹣∠ACA′=50°,故选:A.5.解:A、符合全等三角形的判定定理SAS,所以能作出唯直角一三角形.故本选项不符合题意;B、符合全等三角形的判定定理HL,所以能作出唯一直角三角形.故本选项不符合题意;C、因为已知两个锐角,而边长不确定,故这样的三角形可作很多,而不是唯一的.故本选项符合题意;D、故选符合全等三角形的判定定理AAS,所以能作出唯直角一三角形.故本选项不符合题意;故选:C.6.解:根据角平分线的性质,木材厂应建在∠A、∠B两内角平分线的交点处.故选:D.7.解:∵AC⊥BC,AE为∠BAC的平分线,DE⊥AB,∴CE=DE,在Rt△ACE和Rt△ADE中,,∴Rt△ACE≌Rt△ADE(HL),∴AC=AD,∵AB=7cm,AC=3cm,∴BD=AB﹣AD=AB﹣AC=7﹣3=4cm.故选:D.8.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:C.9.解:∵AD⊥BC,AB=AC,∴∠ADB=∠ADC=90°,BD=DC,∵BE=CF,∴DE=DF,∵AD⊥BC,∴AE=AF,在△ADB和△ADC中,,∴△ADB≌△ADC(SAS),同理△ADF≌△ADE,在△AEB和△AFC中,,∴△AEB≌△AFC(SSS),∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△AEC和△AFB中,,∴△AEC≌△AFB(SSS),即共4对全等三角形.故选:A.10.解:由平移的性质得:AD∥BE,AD=BE=2.5,∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴CE=2.5,∴AD=CE,∵AD∥BE,∴∠DAG=∠ECG,在△AGD和△CGE中,,∴△AGD≌△CGE(AAS),∴①正确;∵∠BAC=90°,BE=CE,∴AE=BC=CE=2.5,∴AE=AD,∴△ADE为等腰三角形,∴②正确;∵AE=CE,∴∠EAC=∠ECG,∵∠DAG=∠ECG,∴∠EAC=∠DAG,∴AC平分∠EAD,∴③正确;作AH⊥BC于H,如图所示:∵△ABC的面积=BC•AH=AB•AC,∴AH==,∴四边形AEFD的面积=(AD+EF)×AH=(2.5+5)×=9,∴④正确;正确的个数有4个,故选:D.二.填空题(共5小题)11.解:还需添加条件AB=AC,∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故答案为:AB=AC.12.解:如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(﹣2,0),C2(﹣2,4),C3(2,4).故答案为:(2,4)或(﹣2,0)或(﹣2,4).13.解:作DF⊥BC于F,∵BD是△ABC的角平分线,DE⊥AB,DF⊥BC,∴DF=DE,∴×AB×DE+×BC×DF=70,∴DF=DE=5.故答案为:5.14.解:∵DE⊥AB,∴∠C=∠BDE,在Rt△CBE和Rt△DBE中∴Rt△CBE≌Rt△DBE(HL),∴CE=DE,∴AE+DE=AE+CE=AC=4cm,故答案为:4cm.15.解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∵∠EAB=120°,∠CAD=10°,∴∠EAD=∠CAB=55°,∴∠CFD=∠FAB+∠B=10°+55°+30°=95°,故答案为:95.三.解答题(共5小题)16.证明:(1)∵CF⊥AB,BE⊥AC,∴∠AEB=∠AFC=90°,∴∠ABE=∠ACF=90°﹣∠BAC,在△AMB和△ANC中,,∴△AMB≌△NAC(SAS),∴AM=AN;(2)∵△AMB≌△NAC,∴∠BAM=∠N,∵∠N+∠NAF=90°,∴∠BAM+∠NAF=90°,∴∠MAN=90°,∴AM⊥AN.17.解:(1)∵BD⊥AC,CE⊥AB,∴∠BEF=∠CDF=90°,∵∠EFB=∠DFC,∴∠EBF=∠FCD,∵BD=CD,∠ADB=∠CDF,∴△ABD≌△FCD,∴AD=DF,∴△ADF是等腰直角三角形,∴∠CAF=45°;(2)FG∥BC,理由是:∵AF=FG,∴∠FGA=∠CAF=45°,∵BD⊥AC,BD=CD,∴△BDC是等腰直角三角形,∴∠DCB=45°,∴∠FGA=∠DCB,∴FG∥BC.18.解:(1)如图1,∵AD平分∠BAC,∴∠CAD=∠EAD,在△CAD和△EAD中,∴△CAD≌△EAD(AAS),∴CD=DE,AC=AE,∵∠B=45°,∠DEB=90°,∴DE=EB,∴DC=BE,∴AE+BE=AC+DC=AB;故答案为:AB=AC+CD.(2)成立.证明:如图2,在AB上截取AE=AC,连接DE.∵在△ACD和△AED中,∴△ACD≌△AED(SAS),∴CD=ED,∠C=∠AED,又∵∠C=2∠B,∴∠AED=2∠B,又∵∠AED=∠B+∠EDB,∴2∠B=∠B+∠EDB,∴∠B=∠EDB,∴ED=EB∵AB=AE+EB,ED=EB=CD,AE=AC,∴AB=AC+CD.19.解:(1)∵BG∥AC,∴∠DBG=∠C,在△DBG和△DCF中,,∴△DBG≌△DCF,∴DG=DF,∵DE⊥GF,∴EG=EF.(2)结论:BE+CF>EF.理由:∵△DBG≌△DCF,∴CF=BG,在△EBG中,∵BE+BG>EG,∵BG=CF,EG=EF,∴BE+CF>EF.20.解:(1)BD和CD的数量关系是BD=CD;理由:∵在△ABC中,∠BAC=60°,∠ACB=80°,∴∠ABC=40°,∵∠CAD=2∠BAD,∴∠CAD=40°,∠BAD=20°,又∵AD=AC,∴∠ADC=∠ACD=70°,∴∠DBC=∠ABC﹣∠ABD=40°﹣30°=10°,∠DCB=∠ACB﹣∠ACD=80°﹣70°=10°,∴∠DBC=∠DCB,∴DB=DC;(2)作∠EBC=∠ACB,使EB=AC,连接ED、EA,则四边形AEBC是等腰梯形,∴AE∥BC,∴∠EAB=∠ABC,∵BD=CD,∴∠DBC=∠DCB,∴∠EBD=∠ACD,在△EBD和△ACD中∴△EBD≌△ACD(SAS),∴ED=AD,∵∠ACB=2∠ABC,∠EBC=∠ACB,∴∠EBC=2∠ABC,∴∠ABE=∠ABC,∴∠EAB=∠ABE,∴BE=AE,∵AD=AC=EB,∴EA=ED=AD,∴△AED是等边三角形,∴∠EAD=60°,∴∠BAD=60°﹣∠EAB=60°﹣∠ABC,∴2∠BAD=120°﹣2∠ABC=120°﹣∠ACB,∵AE∥BC,∴∠ACB+∠EAC=180°,∴∠ACB=180°﹣∠EAC,∵∠EAC=60°+∠DAC,∴2∠BAD=120°﹣(180°﹣60°﹣∠DAC)=∠DAC,∴∠DAC=2∠BAD.。
人教版八年级数学上册课时练:第12章 《全等三角形》 (培优篇)

课时练:第12章《全等三角形》(培优篇)一.选择题1.如果两个三角形全等,那么下列结论不正确的是()A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等2.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE3.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可4.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE、下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个5.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点6.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°7.如图,已知AB=CD,∠1=∠2,AO=3,则AC=()A.3 B.6 C.9 D.128.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,BC 恰好平分∠ABF,下列结论错误的是()A.DE=DF B.AC=3BF C.BD=DC D.AD⊥BC9.如图,∠A=∠EGF,点F为BE、CG的中点,DB=4,DE=7,则EG长为()A.1.5 B.2 C.3 D.5.510.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定二.填空题11.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=.12.如图,若△ABC≌△ADE,且∠B=60°,∠C=30°,则∠DAE=.13.如图,AC=AD,∠1=∠2,只添加一个条件使△ABC≌△AED,你添加的条件是.14.如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点P从A点出发沿A→C→B路径向终点运动,终点为B点;点Q从B点出发沿B→C→A路径向终点运动,终点为A点.点P和Q分别以每秒1cm和3cm的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,则当t=秒时,△PEC与△QFC全等.15.如图,△ABC的周长是12,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.=36cm2,AB=18cm,BC=12cm,则DE 16.如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=cm.17.如图所示的方格中,∠1+∠2+∠3=度.三.解答题18.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=48°,求∠BDE的度数.19.如图,在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=,直接写出CE﹣BE的值为.20.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.21.如图、在△ABC中,∠ABC=60°,AC=2AB,AD平分∠BAC交BC于点D,延长DB点F,使BF=BD,连接AF.(1)求证:AF=CD;(2)若CE平分∠ACB交AB于点E,试猜想AC、AF、AE三条线段之间的数量关系,并证明你猜想的结论.22.如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE 的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.23.已知∠MAN=120°,AC平分∠MAN.(1)在图1中,若∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.参考答案一.选择题1.解:因为能够完全重合的两个三角形是全等三角形,所以:A、这两个三角形的对应边相等,正确;B、直角三角形,钝角三角形也能全等,所以全等三角形可以是锐角三角形、直角三角形或钝角三角形,故本选项错误;C、能够完全重合,所以这两个三角形的面积相等,正确;D、能够完全重合,所以这两个三角形的周长相等,正确.故选:B.2.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.3.解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选:D.4.解:∵AD是△ABC的中线,∴BD=CD,又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底等高,∴△ABD和△ACD面积相等,故②正确;由△BDF≌△CDE,可知∠FBD=∠ECD∴BF∥CE,故③正确.故选:D.5.解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交于点P.故选:D.6.解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选:B.7.解:∵AB=CD,∠1=∠2,∠AOB=∠COD,∴△AOB≌△COD(AAS)∴AO=CO=3,∴AC=6故选:B.8.解:∵BF∥AC,∴∠C=∠CBF,∵BC平分∠ABF,∴∠ABC=∠CBF,∴∠C=∠ABC,∴AB=AC,∵AD是△ABC的角平分线,∴BD=CD,AD⊥BC,故CD正确,在△CDE与△DBF中,,∴△CDE≌△DBF,∴DE=DF,CE=BF,故A正确;∵没有指明AE=2BF,∴不能得出AC=3BF,故B错误.故选:B.9.解:∵∠A=∠EGF,∠AGD=∠EGF,∴∠A=∠AGD,∴AD=DG,设AD=x,则DG=x,在△EGF和△BCF中,∵,∴△EGF≌△BCF(SAS),∴BC=EG,∠E=∠EBC,∴EG∥BC,∴∠AGD=∠C=∠A,∴BC=AB=x+4=EG,∵DE=7,∴x+x+4=7,x=,∴EG=x+4==5.5.故选:D.10.解:在BA的延长线上取点E,使AE=AC,连接EP,∵AD是∠A的外角平分线,∴∠CAD=∠EAD,在△ACP和△AEP中,,∴△ACP≌△AEP(SAS),∴PE=PC,在△PBE中,PB+PE>AB+AE,∵PB=m,PC=n,AB=c,AC=b,∴m+n>b+c.故选:A.二.填空题(共7小题)11.解:∵AC⊥DC,∴∠ACB+∠ECD=90°∵AB⊥BE,∴∠ACB+∠A=90°,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴AB=CE=2cm,BC=DE=1cm,∴BE=BC+CE=3cm.故答案为3cm.12.解:∵在△ABC中,∠B=60°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=90°,∵△ABC≌△ADE,∴∠DAE=∠BAC=90°,故答案为:90°.13.解:添加∠C=∠D或∠B=∠E或AB=AE.(1)添加∠C=∠D.∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE,在△ABC与△AED中,,∴△ABC≌△AED(ASA);(2)添加∠B=∠E.∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,∴∠CAB=∠DAE,在△ABC与△AED中,,∴△ABC≌△AED(AAS);(3)添加AB=AE∵∠1=∠2∴∠1+∠BAD=∠2+∠BAD∴∠CAB=∠DAE在△ABC与△AED中,,∴△ABC≌△AED(SAS)故填:∠C=∠D或∠B=∠E或AB=AE.14.解:分为三种情况:①如图1,P在AC上,Q在BC上,∵PE⊥l,QF⊥l,∴∠PEC=∠QFC=90°,∵∠ACB=90°,∴∠EPC+∠PCE=90°,∠PCE+∠QCF=90°,∴∠EPC=∠QCF,则△PCE≌△CQF,∴PC=CQ,即6﹣t=8﹣3t,t=1;②如图2,P在BC上,Q在AC上,∵由①知:PC=CQ,∴t﹣6=3t﹣8,t=1;t﹣6<0,即此种情况不符合题意;③当P、Q都在AC上时,如图3,CP=6﹣t=3t﹣8,t=;④当Q到A点停止,P在BC上时,AC=PC,t﹣6=6时,解得t=12.P和Q都在BC上的情况不存在,∵P的速度是每秒1cm,Q的速度是每秒3cm;故答案为:1或或12.15.解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=3,∴△ABC的面积=×12×3=18.故答案为:18.16.解:过点D作DF⊥BC于点F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∵AB=18cm,BC=12cm,∴S△ABC =S△ABD+S△BCD=AB•DE+BC•DF=DE•(AB+BC)=36cm2,∴DE=2.4(cm).故答案为:2.4.17.解:如图,根据网格结构可知,在△ABC与△ADE中,,∴△ABC≌△ADE(SSS),∴∠1=∠DAE,∴∠1+∠3=∠DAE+∠3=90°,又∵AD=DF,AD⊥DF,∴△ADF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.三.解答题(共6小题)18.证明:(1)∵∠ADE=∠1+∠C ∴∠2+∠BDE=∠1+∠C,且∠1=∠2,∴∠C=∠BDE,且AE=BE,∠A=∠B,∴△AEC≌△BED(AAS);(2)∵△AEC≌△BED,∴ED=EC,∠BDE=∠C,∴∠EDC=∠C==66°.19.(1)证明:∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∵∠CDB=∠A+∠ACD=∠CDE+∠BDE∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(2)解:∵CD=BD,∴∠B=∠DCB,由(1)知:∠CDE=∠B,∴∠DCB=∠CDE,∴CE=DE,如图②,在DE上取点F,使得FD=BE,在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),∴CF=DE=CE,又∵CH⊥EF,∴FH=HE,∴CE﹣BE=DE﹣DF=EF=2HE=2×=.20.证明:(1)作DF∥BC交AC于F,如图①所示:则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,∵△ABC是等腰三角形,∠A=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,∴△ADF是等边三角形,∠DFC=120°,∴AD=DF,∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD;(2)解:EB=AD成立;理由如下:作DF∥BC交AC的延长线于F,如图②所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD.21.(1)证明:如图1,取AC的中点G,连接DG,∴AC=2AG=2CG,∵AC=2AB,∴AG=AB=CG,∵AD平分∠BAG,∴∠BAD=∠GAD,在△ADB和△ADG中,∵,∴△ADB≌△ADG(SAS),∴BD=DG,∠ABD=∠AGD,∴∠DGC=∠ABF,∵BD=BF,∴BF=DG,在△ABF和△CGD中,∵,∴△ABF≌△CGD(SAS),∴AF=CD;(2)解:AC=AE+AF,理由是:如图2,在AC上取一点H,使AH=AE,连接OH,同理得△AOE≌△AOH(SAS),∴∠AOE=∠AOH,∵∠ABO=60°,∴∠BAC+∠ACB=120°,∵AD平分∠BAC,CE平分∠ACB,∴∠BAO=∠OAC,∠ACE=∠BCE,∴∠OAC+∠ACO=∠AOE=60°,∴∠AOH=60°,∴∠COH=∠COD=60°,∵∠HCO=∠DCO,OC=OC,∴△HCO≌△DCO(ASA),∴CD=CH,∴AC=AH+CH=AE+CD=AE+AF.22.(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=60.23.解:(1)在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°∴AC=2AD,AC=2AB,∴2AD=2AB∴AD=AB∴AD+AB=AC.(2)(1)中的结论AD+AB=AC成立,理由如下:如图2,在AN上截取AE=AC,连接CE,∵∠CAE=60°,∴△ACE是等边三角形,∴∠DAC=∠CEB=60°,∵∠ADC+∠ABC=180°,∠ABC+∠EBC=180°,∴∠ADC=∠EBC,∵在△ADC和△EBC中,,∴△ADC≌△EBC∴DA=BE∵△CAE为等边三角形,∴AC=AE,∴AD+AB=AB+BE=AE=AC,∴AD+AB=AC.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年人教版八年级数学上册课时练:第十二章全等三角形(提升篇)
(含答案)
时间:100分钟满分:100分
一.选择题(每小题3分,共30分)
1.下列所给的四组条件,能作出唯一三角形的是()
A.AB=4cm,BC=3cm,AC=5cm B.AB=2cm,BC=6cm,AC=4cm
C.∠A=∠B=∠C=60°D.∠A=30°,∠B=60°,∠C=90°2.如图,在△ABC中,∠C=90°,DE⊥AB于点E,CD=DE,∠CBD=26°,则∠A的度数为()
A.40°B.34°C.36°D.38°
3.如图,已知AC=AD,∠ACB=∠ADB=90°,则全等三角形共有()
A.1对B.2对C.3对D.4对
4.下列说法不正确的是()
A.面积相等的两个三角形全等
B.全等三角形对应边上的中线相等
C.全等三角形的对应角的角平分线相等
D.全等三角形的对应边上的高相等
5.如图,△ABC≌△A'B'C,∠BCB'=30°,则∠ACA'的度数为()
A.30°B.45°C.60°D.15°
6.如图,D为△ABC边BC上一点,AB=AC,∠BAC=56°,且BF=DC,EC=BD,则∠EDF 等于()
A.62°B.56°C.34°D.124°
7.如图,△ABC中,AB=5,AC=4,以点A为圆心,任意长为半径作弧,分别交AB、AC于D和E,再分别以点D、E为圆心,大于二分之一DE为半径作弧,两弧交于点F,连接AF 并延长交BC于点G,GH⊥AC于H,GH=2,则△ABG的面积为()
A.4 B.5 C.9 D.10
8.如图,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,则∠AFE的度数等于()
A.148°B.140°C.135°D.128°
9.如图,D是AB延长线上一点,DF交AC于点E,AE=CE,FC∥AB,若AB=3,CF=5,则BD的长是()
A.0.5 B.1 C.1.5 D.2
10.如图,在直角三角形ABC中,∠ACB=90°,AC=3,BC=4,点P在边AB上,∠CPB的平分线交边BC于点D,DE⊥CP于点E,DF⊥AB于点F.当△PED与△BFD的面积相等时,BP的值为()
A.B.C.D.
二.填空题(每小题4分,共20分)
11.如图,已知∠1=∠2、AD=AB,若再增加一个条件不一定能使结论△ADE≌△ABC成立,则这个条件是.
12.图所示,A,B在一条河的两侧,若BE=DE,∠B=∠D=90°,CD=160m,则河宽AB 等于m.
13.如图,AB∥CD,BP和DP分别平分∠ABD和∠CDB,EF过点P与AB垂直于点E,交CD 于点F,若EF=8,则点P到BD的距离是.
14.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S
=10,
△ABC DE=2,AB=6,则AC长是.
15.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC上,且BE=BD,连接AE、DE、DC.若∠CAE=30°,则∠BDC=.
三.解答题(每题10分,共50分)
16.如图,四边形ABCD中,AD∥BC,DE=EC,连接AE并延长交BC的延长线于点F,连接BE.
(1)求证:AE=EF;
(2)若BE⊥AF,求证:BC=AB﹣AD.
17.如图,在△ABC中,BD,CE分别是AC,AB边上的高,在BD上截取BF=AC,延长CE至点G使CG=AB,连接AF,AG.
(1)如图1,求证:AG=AF;
(2)如图2,若BD恰好平分∠ABC,过点G作GH⊥AC交CA的延长线于点H,请直接写出图中所有的全等三角形并用全等符号连接.
18.如图,AB∥CD,AD与BC相交于点E,AF平分∠BAD,交BC于点F,交CD的延长线于点G.
(1)若∠G=29°,求∠ADC的度数;
(2)若点F是BC的中点,求证:AB=AD+CD.
19.如图,△ADC中,DB是高,点E是DB上一点,AB=DB,EB=CB,M,N分别是AE,CD 上的点,且AM=DN.
(1)求证:△ABE≌△DBC.
(2)探索BM和BN的关系,并证明你的结论.
20.已知,在△ABC中,AC=BC.分别过A,B点作互相平行的直线AM和BN.过点C的直线分别交直线AM,BN于点D,E.
(1)如图1.若CD=CE.求∠ABE的大小;
(2)如图2.∠ABC=∠DEB=60°.求证:AD+DC=BE.
参考答案一.选择题
1. A.
2. D.
3. C.
4. A.
5. A.
6. A.
7. B.
8. A.
9. D.
10. D.
二.填空题
11. DE=BC.
12. 160.
13. 4.
14.4.
15. 75°.
三.解答题
16.证明:(1)∵AD∥BC,
∴∠DAE=∠F,∠ADE=∠FCE,
又∵DE=CE,
∴△ADE≌△FCE(AAS),
∴AE=EF;
(2)∵AE=EF,BE⊥AF,
∴AB=BF,
∵△ADE≌△FCE,
∴AD=CF,
∴AB=BC+CF=BC+AD,
∴BC=AB﹣AD.
17.证明:(1)∵BD、CE分别是AC、AB两条边上的高,
∴∠AEC=∠ADB=90°,
∴∠ABD+∠BAD=∠ACE+∠CAE=90°,
∴∠ABD=∠ACG,
在△AGC与△FAB中,,
∴△AGC≌△FAB(SAS),
∴AG=AF;
(2)图中全等三角形有△AGC≌△FAB,由得出△CGH≌△BAD,由得出Rt△AGH≌Rt△AFD,△ABD≌△CBD;△CBD≌△GCH.
18.证明:(1)∵AB∥CD,
∴∠BAG=∠G,∠BAD=∠ADC.
∵AF平分∠BAD,
∴∠BAD=2∠BAG=2∠G.
∴∠ADC=∠BAD=2∠G.
∵∠G=29°,
∴∠ADC=58°;
(2)∵AF平分∠BAD,
∴∠BAG=∠DAG.
∵∠BAG=∠G,
∴∠DAG=∠G.
∴AD=GD.
∵点F是BC的中点,
∴BF=CF.
在△ABF和△GCF中,
∵
∴△ABF≌△GCF(AAS),
∴AB=GC.
∴AB=GD+CD=AD+CD.
19.(1)证明:∵DB是高,
∴∠ABE=∠DBC=90°.
在△ABE和△DBC中,,
∴△ABE≌△DBC.
(2)解:BM=BN,MB⊥BN.
证明如下:
∵△ABE≌△DBC,
∴∠BAM=∠BDN.
在△ABM和△DBN中,
∴△ABM≌△DBN(SAS).
∴BM=BN,∠ABM=∠DBN.
∴∠DBN+∠DBM=∠ABM+∠DBM=∠ABD=90°.∴MB⊥BN.
20.(1)解:如图1,延长AC交BN于点F,∵AM∥BN,
∴∠DAF=∠AFB,
在△ADC和△FEC中,,
∴△ADC≌△FEC(AAS),
∴AC=FC,
∵AC=BC,
∴BC=AC=FC=AF,
∴△ABF是直角三角形,
∴∠ABE=90°;
(2)证明:如图2,在EB上截取EH=EC,连CH,∵AC=BC,∠ABC=60°,
∴△ABC为等边三角形,
∵∠DEB=60°,
∴△CHE是等边三角形,
∴∠CHE=60°,∠HCE=60°,
∴∠BHC=120°,
∵AM∥BN,
∴∠ADC+∠BEC=180°,
∴∠ADC=120°,
∴∠DAC+∠DCA=60°,
又∵∠DCA+∠ACB+∠BCH+∠HCE=180°,
∴∠DCA+∠BCH=60°,
∴∠DAC=∠BCH,
在△DAC与△HCB中,,
∴△DAC≌△HCB(AAS),
∴AD=CH,DC=BH,
又∵CH=CE=HE,
∴BE=BH+HE=DC+AD,
即AD+DC=BE.。