2015-2016年湖南省郴州市初三上学期期末数学试卷含答案解析

合集下载

九年级上册郴州数学期末试卷专题练习(解析版)

九年级上册郴州数学期末试卷专题练习(解析版)

九年级上册郴州数学期末试卷专题练习(解析版) 一、选择题 1.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 72 2.二次函数y =3(x -2)2-1的图像顶点坐标是( ) A .(-2,1) B .(-2,-1)C .(2,1)D .(2,-1) 3.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.4.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(14,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .14-≤b ≤1B .54-≤b ≤1C .94-≤b ≤12D .94-≤b ≤1 5.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50°6.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC =B .AD AE AB AC = C .△ADE ∽△ABCD .:1:2ADE ABC S S =7.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;8.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)9.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( )A .14B .13C .12D .2310.下列条件中,一定能判断两个等腰三角形相似的是( )A .都含有一个40°的内角B .都含有一个50°的内角C .都含有一个60°的内角D .都含有一个70°的内角 11.如图,在正方形 ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .有下列结论: ①∠BAE =30°;②射线FE 是∠AFC 的角平分线;③CF =13CD ; ④AF =AB +CF .其中正确结论的个数为( )A .1 个B .2 个C .3 个D .4 个12.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°二、填空题13.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.14.抛物线286y x x =++的顶点坐标为______.15.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.16.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.17.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.18.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 19.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 20.若32x y =,则x y y+的值为_____. 21.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.22.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.23.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.24.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.三、解答题25.如图,BD 是⊙O 的直径.弦AC 垂直平分OD ,垂足为E .(1)求∠DAC 的度数;(2)若AC =6,求BE 的长.26.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE=ED ;(2)若AB=10,∠CBD=36°,求AC 的长.27.解方程:(1)x 2+4x ﹣21=0(2)x 2﹣7x ﹣2=028.如图,在矩形ABCD 中,AB=2,E 为BC 上一点,且BE=1,∠AED=90°,将AED 绕点E 顺时针旋转得到A ED ''△,A′E 交AD 于P , D′E 交CD 于Q ,连接PQ ,当点Q 与点C 重合时,AED 停止转动.(1)求线段AD 的长;(2)当点P 与点A 不重合时,试判断PQ 与A D ''的位置关系,并说明理由;(3)求出从开始到停止,线段PQ 的中点M 所经过的路径长.29.中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为 ;(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.30.如图,已知⊙O 的直径AC 与弦BD 相交于点F ,点E 是DB 延长线上的一点,∠EAB=∠ADB .(1)求证:AE 是⊙O 的切线;(2)已知点B 是EF 的中点,求证:△EAF ∽△CBA ;(3)已知AF=4,CF=2,在(2)的条件下,求AE 的长.31.在平面直角坐标系中,直线y =x +3与x 轴交于点A ,与y 轴交于点B ,抛物线y =a 2x +bx +c (a <0)经过点A ,B ,(1)求a 、b 满足的关系式及c 的值,(2)当x <0时,若y =a 2x +bx +c (a <0)的函数值随x 的增大而增大,求a 的取值范围,(3)如图,当a =−1时,在抛物线上是否存在点P ,使△PAB 的面积为32?若存在,请求出符合条件的所有点P 的坐标;若不存在,请说明理由,32.已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFCABCDS S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.2.D解析:D【解析】【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ),∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).故选:D .此题考查了二次函数的性质,二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ).3.A解析:A【解析】【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.4.B解析:B【解析】【分析】延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出PB PA NA NC=,设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y ,代入整理得到y =3x ﹣x 2=﹣(x ﹣32)2+94,根据二次函数的性质以及14≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围.【详解】 解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN ∠∠︒⎧⎨∠∠︒-∠⎩==== , ∴△PAB ∽△NCA , ∴PB PA NA NC=, 设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y , ∴31y x x =-, ∴y =3x ﹣x 2=﹣(x ﹣32)2+94,∵﹣1<0,14≤x≤3,∴x=32时,y有最大值94,此时b=1﹣94=﹣54,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣54≤b≤1.故选:B.【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.5.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC,然后根据圆周角定理计算∠ADC的度数.【详解】∵BC的度数为50°,∴∠BOC=50°,∵半径OC⊥AB,∴=AC BC,∴∠ADC=12∠BOC=25°.故选B.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.6.D解析:D【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AE AB AC =, ∴21()4ADE ABC S DE S BC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误.故选D.7.C解析:C【解析】【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】如图:由勾股定理得:22222133AC BC ++==,所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC === ,所以只有选项C 正确; 故选:C .【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键. 8.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .9.C解析:C【解析】【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12;故选:C.【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,10.C解析:C【解析】试题解析:因为A,B,D给出的角40,50,70可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A,B,D错误;C. 有一个60的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C正确.故选C.11.B解析:B【解析】【分析】根据点E为BC中点和正方形的性质,得出∠BAE的正切值,从而判断①,再证明△ABE∽△ECF,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE∽△AEF,可判断②③,过点E作AF的垂线于点G,再证明△ABE≌△AGE,△ECF≌△EGF,即可证明④.【详解】解:∵E是BC的中点,∴tan∠BAE=1=2 BEAB,∴∠BAE 30°,故①错误;∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=CD,∵AE ⊥EF ,∴∠AEF=∠B=90°,∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,∴∠BAE=∠CEF ,在△BAE 和△CEF 中,==B C BAE CEF ∠∠⎧⎨∠∠⎩, ∴△BAE ∽△CEF , ∴==2AB BE EC CF, ∴BE=CE=2CF ,∵BE=CF=12BC=12CD , 即2CF=12CD , ∴CF=14CD , 故③错误;设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,∴AE=,,AF=5a ,∴=5AE AF,=5BE EF , ∴=AE BE AF EF, 又∵∠B=∠AEF ,∴△ABE ∽△AEF ,∴∠AEB=∠AFE ,∠BAE=∠EAG ,又∵∠AEB=∠EFC ,∴∠AFE=∠EFC ,∴射线FE 是∠AFC 的角平分线,故②正确;过点E 作AF 的垂线于点G ,在△ABE 和△AGE 中,===BAE GAE B AGE AE AE ∠∠⎧⎪∠∠⎨⎪⎩,∴△ABE ≌△AGE (AAS ),∴AG=AB ,GE=BE=CE ,在Rt △EFG 和Rt △EFC 中,==GE CE EF EF ⎧⎨⎩, Rt △EFG ≌Rt △EFC (HL ),∴GF=CF ,∴AB+CF=AG+GF=AF ,故④正确.故选B.【点睛】此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.12.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB 上任意找一点D ,连接AD ,BD .∵∠D =180°﹣∠ACB =50°,∴∠AOB =2∠D =100°,故选:C .【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.二、填空题13.【解析】【分析】观察图象当时,直线在抛物线上方,此时二次函数值小于一次函数值,当或时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【解析:23x -<<【解析】【分析】观察图象当23x -<<时,直线在抛物线上方,此时二次函数值小于一次函数值,当2x <-或3x >时,直线在抛物线下方,二次函数值大于一次函数值,将不等式变形,观察图象确定x 的取值范围,即为不等式的解集.【详解】解:设21y ax h =+,2y kx b =+,∵2ax b kx h -<-∴2ax h kx b +<+,∴12y y <即二次函数值小于一次函数值,∵抛物线与直线交点为()3,A m ,()2,B n -,∴由图象可得,x 的取值范围是23x -<<.【点睛】本题考查不等式与函数的关系及函数图象交点问题,理解图象的点坐标特征和数形结合思想是解答此题的关键.14.【解析】【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为解析:()4,10--【解析】【分析】 直接利用公式法求解即可,横坐标为:2b a -,纵坐标为:244ac b a-. 【详解】解:由题目得出: 抛物线顶点的横坐标为:84221b a -=-=-⨯; 抛物线顶点的纵坐标为:22441682464104414ac b a -⨯⨯--===-⨯ 抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.15.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.16.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.17.115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【详解】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.18.3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x个,根据题意得:12123xx+=++,解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.20..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.解析:52.【解析】【分析】根据比例的合比性质变形得:325.22 x yy++==【详解】∵32xy=,∴325.22 x yy++==故答案为:5 2 .【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.21.60π【解析】【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC==10(cm ),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC ==10(cm ), ∴圆锥的侧面积是:12610602r l rl ππππ⋅⋅==⋅⨯=(cm 2). 故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键. 22.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 23.【解析】【分析】先在CB 上取一点F ,使得CF=,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=,再连接PF 、AF ,【解析】【分析】先在CB 上取一点F ,使得CF=12,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=12,再连接PF 、AF , ∵∠DCE=90°,DE=4,DP=PE ,∴PC=12DE=2, ∵14CF CP =,14CP CB = ∴CF CP CP CB= 又∵∠PCF=∠BCP ,∴△PCF ∽△BCP , ∴14PF CF PB CP == ∴PA+14PB=PA+PF ,∵PA+PF≥AF ,==∴PA+14PB ≥.1452∴PA+14PB的最小值为145,故答案为145.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.24.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.解析:80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.三、解答题25.(1)30°;(2)3【解析】【分析】(1)由题意证明△CDE≌△COE,从而得到△OCD是等边三角形,然后利用同弧所对的圆周角等于圆心角的一半求解;(2)由垂径定理求得AE=12AC=3,然后利用30°角的正切值求得333.【详解】解:连接OA,OC∵弦AC 垂直平分OD∴DE=OE ,∠DEC=∠OEC=90°又∵CE=CE∴△CDE ≌△COE∴CD=OC又∵OC=OD∴CD=OC=OD∴△OCD 是等边三角形∴∠DOC=60°∴∠DAC =30°(2)∵弦AC 垂直平分OD∴AE=12AC=3 又∵由(1)可知,在Rt △DAE 中,∠DAC =30° ∴tan 30DE AE =,即333DE = ∴3∵弦AC 垂直平分OD∴3∴直径3∴3-33【点睛】本题考查垂径定理,全等三角形的判定和性质及锐角三角函数,掌握相关定理正确进行推理判断是本题的解题关键.26.(1)证明见解析;(2)2AC π=【解析】【分析】【详解】分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;(2)根据弧长公式解答即可.详证明:(1)∵AB 是⊙O 的直径,∴∠ADB=90°,∵OC ∥BD ,∴∠AEO=∠ADB=90°,即OC ⊥AD ,∴AE=ED ;(2)∵OC ⊥AD ,∴AC BD = ,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴AC =7252180ππ⨯=. 点睛:此题考查弧长公式,关键是根据弧长公式和垂径定理解答.27.(1)x 1=3,x 2=﹣7;(2)x 1=72+x 2=72- 【解析】【分析】(1)根据因式分解法解方程即可;(2)根据公式法解方程即可.【详解】解:(1)x 2+4x ﹣21=0(x ﹣3)(x+7)=0解得x 1=3,x 2=﹣7;(2)x 2﹣7x ﹣2=0∵△=49+8=57∴x解得x 1=72+x 2=72-. 【点睛】本题考查了解一元二次方程,其方法有直接开平方法、公式法、配方法、因式分解法,根据一元二次方程特点选择合适的方法是解题的关键.28.(1)5;(2)PQ ∥A D '',理由见解析;(3 【解析】【分析】(1)求出AE =5,证明△ABE ∽△DEA ,由AD AE AE BE=可求出AD 的长; (2)过点E 作EF ⊥AD 于点F ,证明△PEF ∽△QEC ,再证△EPQ ∽△A'ED',可得出∠EPQ =∠EA'D',则结论得证;(3)由(2)知PQ ∥A ′D ′,取A ′D ′的中点N ,可得出∠PEM 为定值,则点M 的运动路径为线段,即从AD 的中点到DE 的中点,由中位线定理可得出答案.【详解】解:(1)∵AB =2,BE =1,∠B =90°,∴AE =22AB BE +=2221+=5,∵∠AED =90°,∴∠EAD+∠ADE =90°,∵矩形ABCD 中,∠ABC =∠BAD =90°,∴∠BAE+∠EAD =90°,∴∠BAE =∠ADE ,∴△ABE ∽△DEA ,∴AD AE AE BE=, ∴515=, ∴AD =5;(2)PQ ∥A ′D ′,理由如下:∵5,5AD AE ==,∠AED =90° ∴22DE DA AE =-=225(5)-=25,∵AD =BC =5,∴EC =BC ﹣BE =5﹣1=4,过点E 作EF ⊥AD 于点F ,则∠FEC =90°,∵∠A'ED'=∠AED =90°,∴∠PEF =∠CEQ ,∵∠C =∠PFE =90°,∴△PEF ∽△QEC ,∴2142 EP EFEQ EC===,∵51225EA EAED ED''===,∴EP EA EQ ED''=,∴PQ∥A′D′;(3)连接EM,作MN⊥AE于N,由(2)知PQ∥A′D′,∴∠EPQ=∠A′=∠EAP,又∵△PEQ为直角三角形,M为PQ中点,∴PM=ME,∴∠EPQ=∠PEM,∵∠EPF=∠EAP+∠AEA′,∠NEM=∠PEM+∠AEA′∴∠EPF=∠NEM,又∵∠PFE=∠ENM﹣90°,∴△PEF∽△EMN,∴NM EMEF PE==PQ2PE为定值,又∵EF=AB=2,∴MN为定值,即M的轨迹为平行于AE的线段,∵M初始位置为AD中点,停止位置为DE中点,∴M的轨迹为△ADE的中位线,∴线段PQ的中点M所经过的路径长=1AE2=5.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,勾股定理,平行线的判定,中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.29.(1)14;(2)16【解析】【分析】(1)根据小聪选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可;(2)此题需要两步完成,所以可采用树状图法或者采用列表法求解.【详解】解:(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为14.故答案为14;(2)将四部名著《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《孙子算经》为事件M.方法一:用列表法列举出从4部名著中选择2部所能产生的全部结果:第1部第2部A B C DA BA CA DAB AB CB DBC AC BC DCD AD BD CD12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即DB,BD,∴P(M)=21= 126.方法二:根据题意可以画出如下的树状图:由树状图可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等,所有可能的结果中,满足事件M的结果有2种,即BD,DB,∴P(M)=21= 126.故答案为:1 6 .【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.30.(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)连接CD ,根据直径所对的圆周角为直角得出∠ADB+∠EDC=90°,根据同弧所对的圆周角相等得出∠BAC=∠EDC ,然后结合已知条件得出∠EAB+∠BAC=90°,从而说明切线;(2)连接BC ,根据直径的性质得出∠ABC=90°,根据B 是EF 的中点得出AB=EF ,即∠BAC=∠AFE ,则得出三角形相似;(3)根据三角形相似得出AB AC AF EF =,根据AF 和CF 的长度得出AC 的长度,然后根据EF=2AB 代入AB AC AF EF=求出AB 和EF 的长度,最后根据Rt △AEF 的勾股定理求出AE 的长度.【详解】解:(1)如答图1,连接CD ,∵AC 是⊙O 的直径,∴∠ADC=90°∴∠ADB+∠EDC=90°∵∠BAC=∠EDC ,∠EAB=∠ADB ,∴∠BAC=∠EAB+∠BAC=90°∴EA 是⊙O 的切线;(2)如答图2,连接BC ,∵AC 是⊙O 的直径,∴∠ABC=90°. ∴∠CBA=∠ABC=90°∵B 是EF 的中点,∴在Rt △EAF 中,AB=BF∴∠BAC=∠AFE∴△EAF ∽△CBA . (3)∵△EAF ∽△CBA ,∴AB AC AF EF= ∵AF=4,CF=2, ∴AC=6,EF=2AB . ∴642AB AB=,解得∴∴【点睛】本题考查切线的判定与性质;三角形相似的判定与性质.31.(1)b=3a+1;c=3;(2)103a -≤<;(3)点P 35-+552+)或(352--,552-)或(3132-+,1132+)或(3132-,113-. 【解析】【分析】(1)求出点A 、B 的坐标,即可求解;(2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大,则函数对称轴02b x a =-≥,而b=3a+1,即:3102a a+-≥,即可求解; (3)过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,由S △PAB =32,则P Q y y -=1,即可求解.【详解】解:(1)y=x+3,令x=0,则y=3,令y=0,则x=3-,故点A 、B 的坐标分别为(-3,0)、(0,3),则c=3,则函数表达式为:y=ax 2+bx+3,将点A 坐标代入上式并整理得:b=3a+1;(2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大,则函数对称轴02b x a =-≥, ∵31b a =+,∴3102a a+-≥, 解得:13a ≥-,∴a 的取值范围为:103a -≤<; (3)当a=1-时,b=3a+1=2- 二次函数表达式为:223y x x =--+,过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,∵OA=OB ,∴∠BAO=∠PQH=45°,S △PAB =12×AB ×PH=12×32PQ ×22=32, 则PQ=P Q y y -=1,在直线AB 下方作直线m ,使直线m 和l 与直线AB 等距离,则直线m 与抛物线两个交点,分别与点AB 组成的三角形的面积也为32, ∴1P Q y y -=, 设点P (x ,-x 2-2x+3),则点Q (x ,x+3),即:-x 2-2x+3-x-3=±1, 解得:35x -±=313x -±=; ∴点P 的坐标为:(352-+,552+)或(352--,552-)或(3132-+,1132+)或(3132--,1132-). 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.32.(1)3yx ;(2)3;(3)APC ∆面积的最大值为278. 【解析】【分析】(1)由题意分别将x=0、y=0代入二次函数解析式中求出点C 、A 的坐标,再根据点A 、C 的坐标利用待定系数法即可求出直线AC 的解析式;(2)由题意先根据二次函数解析式求出顶点P ,进而利用割补法求APC ∆面积; (3)根据题意过点P 作PE y 轴交AC 于点E 并设点P 的坐标为()2,23m m m --+(30m -<<),则点E 的坐标为(),3+m m 进而进行分析.【详解】解:(1) 分别将x=0、y=0代入二次函数解析式中求出点C 、A 的坐标为()0,3C ;()30A -,;将()0,3C ;()30A -,代入223y x x =--+,得到直线AC 的解析式为3y x .(2)由223y x x =--+,将其化为顶点式为2(1)4y x =-++,可知顶点P 为(1,4)-, 如图P 为顶点时连接PC 并延长交x 轴于点G ,则有S APC S APG S ACG =-,将P 点和C 点代入求出PC 的解析式为3y x =-+,解得G 为(3,0),所有S APC S APG S ACG =-11646312922=⨯⨯-⨯⨯=-=3; (3)过点P 作PE y 轴交AC 于点E .设点P 的坐标为()2,23m m m --+(30m -<<),则点E 的坐标为(),3+m m ∴()2233PE m m m =--+-+2239324m m m ⎛⎫=--=-++ ⎪⎝⎭, 当32m =-时,PE 取最大值,最大值为94. ∵()1322APC C A S PE x x PE ∆=⋅-=, ∴APC ∆面积的最大值为278. 【点睛】 本题考查待定系数法求一次函数解析式、二次函数图象上点的坐标特征、等腰三角形的性质、二次函数的性质以及解二元一次方程组,解题的关键是利用待定系数法求出直线解析式以及利用二次函数的性质进行综合分析.。

2015—2016学年第一学期初三期末质量检测数学试卷附答案

2015—2016学年第一学期初三期末质量检测数学试卷附答案

2015—2016学年第一学期初三期末质量检测数学试卷考生须知1.本试卷共6页,共五道大题,29道小题,满分120分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一.选择题(共有10个小题,每小题3分,共30分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过―存水‖增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率. 将812000000用科学记数法表示应为 A .812×106 B .81.2×107 C .8.12×108 D .8.12×1092. 实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,相反数最大是A .aB .bC .cD .d3. 如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =2,DB =4,则AEAC的值为 A .12B .13C .14D .164. 若△ABC ∽△A ′B ′C ′,相似比为1:2,则△ABC 与△A ′B ′C ′的面积的比为A .1:2B . 2:1C .1:4D .4:1 5. 二次函数y =(x ﹣1)2+2的最小值为( )A .1B . -1C .2D .-2 6. 将抛物线2=-y x 向上平移2个单位,则得到的抛物线表达式为A .2y=-(x+2) B .2y=-(x-2) C .2y=-x -2 D .2y=-x +2 7. 已知Rt △ABC 中,∠C=90°,AC=3,BC=4,则cosA 的值为( ) A .34B . 43C . 35D . 458. 如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为–3–2–1012345–4c b a d 2题图EDCB A 3题图B A O骨柄长的34长:243cm宽:21cm 青铜展馆A .43米B .65米C .125米D . 24米9. 如图,⊙O 是△ABC 的外接圆,∠ACO =45°,则∠B 的度数为( )A.30°B. 35°C. 40°D. 45°10.小刚在实践课上要做一个如图1所示的折扇,折扇扇面的宽度AB 是骨柄长OA 的34,折扇张开的角度为120°.小刚现要在如图2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料长为243cm,宽为21cm.小刚经过画图、计算,在矩形布料上裁剪下了最大的扇面,若不计裁剪和粘贴时的损耗,此时扇面的宽度AB 为( )A . 21cmB .20 cmC .19cmD . 18cm二、填空题(本题共6个小题,每小题3分,共18分) 11.4的平方根是 .12.不等式组⎪⎩⎪⎨⎧->+≥-1230211x x 的正整数解是 .13.如图,tan ∠ABC= .14.写出一个抛物线开口向上,与y 轴交于(0,2)点的函数表达式 .15. 已知⊙O 的半径2,则其内接正三角形的面积为 .16. 学校组织社会大课堂活动去首都博物馆参观,明明提前上网做了功课,查到了下面的一段文字:首都博物馆建筑本身是一座融古典美和现代美于一体的建筑艺术品,既具有浓郁的民族特色,又呈现鲜明的现代感.首都博物馆建筑物(地面以上)东西长152米、南北宽66米左右,建筑高度41米.建筑内部分为三栋独立的建筑,即:矩形展馆,椭圆形专题展馆,条形的办公科研楼.椭圆形的青铜展馆斜出墙面寓意古代文物破土而出,散发着浓郁的历史气息. 明明对首都博物馆建筑物产生了浓厚的兴趣,站到首都博物馆北广场,他被眼前这座建筑物震撼了.整个建筑宏大壮13题图CB A30︒10题图1 10题图2观,斜出的青铜展馆和北墙面交出一条抛物线,抛物线与外立面之间和谐、统一,明明走到过街天桥上照了一张照片(如图所示).明明想了想,算了算,对旁边的文文说:―我猜想这条抛物线的顶点到地面的距离应是15.7米左右.‖ 文文反问:―你猜想的理由是什么‖?明明说:―我的理由是‖. 明明又说:―不过这只是我的猜想,这次准备不充分,下次来我要用学过的数学知识准确的测测这个高度,我想用学到的知识, 我要带等测量工具‖.三、解答题(本题共72分,第17—25题,每小题5分,第26题8分,第27题6分,第28题6分,第29题7分)17.计算:2012(3)3cos602π---+--︒.18.已知0362=--xx,求代数式()()311)3(2+-+--xxxx的值.19.已知如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,求DC的长.20.如图,一次函数y1=﹣x+2的图象与反比例函数y2=xk的图象相交于A,B两点,点B的坐标为(2m,-m).(1)求出m值并确定反比例函数的表达式;(2)请直接写出当x<m时,y2的取值范围.21.已知如图,在△ABC中,∠A=30°,∠C=105°,AC=32,求AB的长.22.已知如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接A C.若∠A=22.5°,CD=8cm,求⊙O的半径.23.如图,在数学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC为22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°= 0.53,cos32°= 0.85,tan32°= 0.62)19题图20题图21题图22题图24. 如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点D ,过点B 作BE 垂直于PD ,交PD 的延长线于点C ,连接AD 并延长,交BE 于点E . (1)求证:AB =BE ;(2)若PA =2,cosB =,求⊙O 半径的长.25.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB=xm .(1)若花园的面积为192m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求x 取何值时,花园面积S 最大,并求出花园面积S 的最大值.26.在―解直角三角形‖一章我们学习到―锐角的正弦、余弦、正切都是锐角的函数,统称为锐角三角函数‖ .小力根据学习函数的经验,对锐角的正弦函数进行了探究. 下面是小力的探究过程,请补充完成:(1)函数的定义是:―一般地,在一个变化的过程中,有两个变量x 和y ,对于变量x 的每一个值,变量y 都有唯一确定的值和它对应,我们就把x 称为自变量,y 称为因变量,y 是x 的函数‖.由函数定义可知,锐角的正弦函数的自变量是 ,因变量是 ,自变量的取值范围是___________.(2)利用描点法画函数的图象. 小力先上网查到了整锐角的正弦值,如下:sin1°=0.01745240643728351 sin2°=0.03489949670250097 sin3°=0.05233595624294383 sin4°=0.0697564737441253 sin5°=0.08715574274765816 sin6°=0.10452846326765346 sin7°=0.12186934340514747 sin8°=0.13917310096006544 sin9°=0.15643446504023087 sin10°=0.17364817766693033 sin11°=0.1908089953765448 sin12°=0.20791169081775931 sin13°=0.22495105434386497 sin14°=0.24192189559966773 sin15°=0.25881904510252074 sin16°=0.27563735581699916 sin17°=0.2923717047227367 sin18°=0.3090169943749474 sin19°=0.3255681544571567 sin20°=0.3420201433256687 sin21°=0.35836794954530027 sin22°=0.374606593415912 sin23°=0.3907311284892737 sin24°=0.40673664307580015 sin25°=0.42261826174069944 sin26°=0.4383711467890774 sin27°=0.45399049973954675 sin28°=0.4694715627858908 sin29°=0.48480962024633706 sin30°=0.5000000000000000 sin31°=0.5150380749100542 sin32°=0.5299192642332049 sin33°=0.544639035015027 sin34°=0.5591929034707468 sin35°=0.573576436351046 sin36°=0.5877852522924731 sin37°=0.6018150231520483 sin38°=0.6156614753256583 sin39°=0.629320391049837523题图24题图xyOyxO–112345–1–2–3–4–512345sin40°=0.6427876096865392 sin41°=0.6560590289905073 sin42°=0.6691306063588582 sin43°=0.6819983600624985 sin44°=0.6946583704589972 sin45°=0.7071067811865475 sin46°=0.7193398003386511 sin47°=0.7313537016191705 sin48°=0.7431448254773941 sin49°=0.7547095802227719 sin50°=0.766044443118978 sin51°=0.7771459614569708 sin52°=0.7880107536067219 sin53°=0.7986355100472928 sin54°=0.8090169943749474 sin55°=0.8191520442889918 sin56°=0.8290375725550417 sin57°=0.8386705679454239 sin58°=0.848048096156426 sin59°=0.8571673007021122 sin60°=0.8660254037844386 sin61°=0.8746197071393957 sin62°=0.8829475928589269 sin63°=0.8910065241883678 sin64°=0.898794046299167 sin65°=0.9063077870366499 sin66°=0.9135454576426009 sin67°=0.9205048534524404 sin68°=0.9271838545667873 sin69°=0.9335804264972017 sin70°=0.9396926207859083 sin71°=0.9455185755993167 sin72°=0.9510565162951535 sin73°=0.9563047559630354 sin74°=0.9612616959383189 sin75°=0.9659258262890683 sin76°=0.9702957262759965 sin77°=0.9743700647852352 sin78°=0.9781476007338057 sin79°=0.981627183447664 sin80°=0.984807753012208 sin81°=0.9876883405951378 sin82°=0.9902680687415704 sin83°=0.992546151641322 sin84°=0.9945218953682733 sin85°=0.9961946980917455 sin86°=0.9975640502598242 sin87°=0.9986295347545738sin88°=0.9993908270190958 sin89°=0.9998476951563913 ①列表(小力选取了10对数值);x … …y … …②建立平面直角坐标系(两坐标轴可视数值需要分别选取不同长度做为单位长度); ③描点.在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点; ④连线. 根据描出的点,画出该函数的图象;(3)结合函数的图象,写出该函数的一条性质: .27.已知:抛物线3bx x y 21++=与x 轴分别交于点A(-3,0),B (m ,0).将y 1向右平移4个单位得到y 2.(1)求b 的值;(2)求抛物线y 2的表达式;(点(3)抛物线y 2与y 轴交于点D ,与x 轴交于点E 、F E 在点F 的左侧),记抛物线在D 、F 之间的部分为图象G (包含D 、F 两点),若直线1-+=k kx y 与图象G 有一个公共点,请结合函数图象,求直线1-+=k kx y 与抛物线y 2的对称轴交点的纵坐标t 的值或取值范围.28. 如图1,点O 在线段AB 上,AO=2,OB=1,OC 为射线,且∠BOC=60°,动点P 以每秒2个单位长度的速度从点O 出发,沿射线OC 做匀速运动,设运动时间为t 秒. (1)当t=21秒时,则OP= ,S △ABP = ;(2)当△ABP 是直角三角形时,求t 的值;(3)如图2,当AP=AB 时,过点A 作AQ ∥BP ,并使得∠QOP=∠B ,求证:AQ·BP=3.为了证明AQ·BP=3,小华同学尝试过O 点作OE ∥AP 交BP 于点E.试利用小华同学给我们的启发补全图形并证明AQ·BP=3.29.如图,在平面直角坐标系中,抛物线)0(32≠-+=a bx ax y 与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C . (1)求抛物线的表达式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使2:5S P BQ CBK =△△:S ,求K 点坐标.2015—2016学年度第一学期期末初三质量检测28题图 128题备用图28题图2数学试卷答案及评分标准一、选择题(每小题有且只有一个选项是正确的,请把正确的选项前的序号填在相应的表格内. 本题共有10个小题,每小题3分,共30分)二、填空题(本题共6个小题,每小题3分,共18分) 11.2±. 12. 1,2. 13.33.14. a>0,c=2,答案不唯一. 15. 3. 16. 黄金分割,解直角三角形(答案不唯一),测角仪、皮尺(答案不唯一).三、解答题(本题共72分,第17—25题,每小题5分,第26题8分,第27题6分,第28题6分,第29题7分) 17.解:原式=11113422-+-⨯ ……………………………………………………4分 =2 ………………………………………………………………………5分 18.解:()()311)3(2+-+--x x x x=222613x x x --++ ……………………………………………………2分 =26x 4x -+. …………………………………………………………………3分 ∵0362=--x x , ∴263x x -=,∴原式=3+4=7. ………………………………………………………………… 5分 19.解:∵∠C=∠E ,∠ADC=∠BDE ,△ADC ∽△BDE ,………………………………………………… 2分 ∴BDAD DE DC =, 又∵AD :DE=3:5,AE=8, ∴AD=3,DE=5,…………………………………………………………………… 3分∵BD=4,……………………………………………………………………………… 4分 ∴435DC =, 题号 1 2 3 4 5 6 7 8 9 10答案 C A B C C D C B D D∴DC=415.……………………………………………………………………………… 5分 20.解:(1)∵据题意,点B 的坐标为(2m ,-m )且在一次函数y1=﹣x +2的图象上,代入得-m=-2m+2.∴m=2. ……………………………………………………… 1分 ∴B 点坐标为(4,-2)………………………………………… 2分 把B (4,﹣2)代入y 2=xk得k =4×(﹣2)=﹣8, ∴反比例函数表达式为y 2=﹣x8;…………………………………………………… 3分 (2)当x <4,y 2的取值范围为y 2>0或y 2<﹣2.……………………………… 5分 21.解:在△ABC 中,∠A=30°,∠C=105°∴∠B=45°,…………………………………………………… 1分 过C 作CD ⊥AB 于D , ∴∠ADC=∠BDC=90°, ∵∠B=45°, ∴∠BCD=∠B=45°,∴CD=BD ,…………………………………………………… 2分 ∵∠A=30°,AC=23,∴CD=3,…………………………………………………… 3分 ∴BD=CD=3,由勾股定理得:AD=22CD AC =3,…………………………………………………… 4分 ∴AB=AD+BD=3+3.…………………………………………………… 5分 22.解:连接OC ,………………………… 1分 ∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CE =DE =CD =4cm ,………………………… 2分∵∠A =22.5°,∴∠COE =45°,………………………… 3分∴△COE 为等腰直角三角形,………………………… 4分 ∴OC =2CE =42cm ,………………………… 5分23.解:过点B 作CD BE ⊥,垂足为E (如图),……………………………… 1分 在Rt △DEB 中,∠DEB= 90,22AC BE ==(米),BEDEtan32=……………………………… 2分 13.640.6222BEtan32DE =⨯≈=∴ (米)……………………………… 3分5.1==AB EC ……………………………… 4分15.115.1413.641.5ED CE CD ≈=+=+=∴(米)……………………… 5分答:旗杆CD 的高度为15.1米.24.解:(1)证明:连接OD ,……………………… 1分 ∵PD 切⊙O 于点D ,……………………… 2分 ∴OD ⊥PD , ∵BE ⊥PC , ∴OD ∥BE , ∴∠ADO=∠E ,∵OA=OD , ∴∠OAD=∠ADO , ∴∠OAD=∠E ,∴AB=BE ;……………………… 3分 (2)解:有(1)知,OD ∥BE , ∴∠POD=∠B ,……………………… 4分 ∴cos ∠POD=cosB=, 在Rt △POD 中,cos ∠POD=53=OP OD , ∵OD=OA ,PO=PA+OA=2+OA ,xy–1–2–3–4123456–1–2–3–412345DFO∴53=+OA 2OA ,∴OA=3,∴⊙O 半径为3.……………………… 5分 25.解:(1)∵AB=xm ,则BC=(28﹣x )m , ∴x (28﹣x )=192,解得:x 1=12,x 2=16,答:x 的值为12m 或16m ;……………………… 2分 (2)由题意可得出:⎩⎨⎧≥≥15x -286x ,………………… 3分解得:13x 6≤≤. 又S=x (28﹣x )=﹣x 2+28x=﹣(x ﹣14)2+196, ∴当x≤14时,S 随x 的增大而增大.∴x=13时,S 取到最大值为:S=﹣(13﹣14)2+196=195.……………………… 5分 答:x 为13m 时,花园面积S 最大,最大面积为195m 2.26.(1)锐角的角度;正弦值;大于0°且小于90°;…………………………………… 3分 (2)(3)答案不唯一. …………………………………… 8分 27.解:(1)把A (-3,0)代入3bx x y 21++= ∴b=4……………………………………2分 ∴y 1的表达式为:34x x y 21++= (2)将y 1变形得:y 1=(x+2)2-1 据题意y 2=(x+2-4)2-1=(x-2)2-1∴抛物线y 2的表达式为342+-=x x y …………………………………4分 (3)34x x y 22+-=的对称轴x=2 ∴顶点(2,-1)∵直线1-+=k kx y 过定点(-1,-1)当直线1-+=k kx y 与图像G 有一个公共点时1-=t …………………………………… 4分当直线过F (3,0)时,直线4341-=x y把x=2代入4341-=x y∴41-=y当直线过D (0,3)时,直线34+=x y 把x=2代入34+=x y ∴11=y即11=t∴结合图象可知1-=t 或1141≤<-t .…………………………………… 6分 28.解:(1)1,433;…………………………………… 2分 (2)①∵∠A<∠BOC=60°,∴∠A 不可能是直角.②当∠ABP=90°时,∵∠BOC=60°,∴∠OPB=30°.∴OP=2OB ,即2t=2.∴t =1. …………………………………… 3分③当∠APB=90°,如图,过点P 作PD ⊥AB 于点D ,则OP=2t ,OD=t ,PD=3t ,AD=2t +,DB=1t -. ∵∠APD+∠BPD=90°,∠B+∠BPD=90°,∴∠APD=∠B. ∴△APD ∽△PBD. ∴BD PD PD AD =,即2t 3t 1t 3t +=-,即24t t 20+-=,解得12133133t ,t 88-+--== (舍去). …………………………………… 4分(3)补全图形,如图∵AP=AB ,∴∠APB=∠B.∵OE ∥AP∴∠OEB=∠APB=∠B.∵AQ ∥BP ,∴∠QAB+∠B=180°.又∵∠3+∠OEB=180°,∴∠3=∠QAB.又∵∠AOC=∠2+∠B=∠1+∠QOP ,∵∠B=∠QOP ,∴∠1=∠2.∴△QAO ∽△OEP. ∴EPAO EO AQ =,即AQ·EP=EO·AO. ∵OE ∥AP ,∴△OBE ∽△ABP. ∴31BA BO BP BE AP OE ===. ∴OE=31AP=1,BP=23EP. ∴AQ·BP=AQ·23EP=23AO·OE=23×2×1=3. …………………………………… 6分 29.解:(1)将A (-2,0),B (4,0)两点坐标分别代入y=ax 2+bx-3(a≠0),即⎩⎨⎧=-+=--034b 16a 032b 4a ,………………………… 1分 解得:⎪⎪⎩⎪⎪⎨⎧-==43b 83a ∴抛物线的表达式为:3x 43x 83y 2--=……………………………… 2分 (2)设运动时间为t 秒,由题意可知: 2t 0<< …………………………………… 3分 过点Q 作QD ⊥AB,垂直为D ,易证△OCB ∽△DQB, ∴BQBC DQ OC =…………………………………… 4分 OC=3,OB=4,BC=5,AP=3t,PB=6-3t,BQ=t ,t5DQ 3=∴t 53DQ =∴ ∴t 533t)(621DQ PB 21S ΔPBQ ⋅-=⋅=t59t 1092+-=对称轴1)(2t 10959=-⨯-=∴当运动1秒时,△PBQ 面积最大,10959109S ΔPBQ =+-=,最大为109. …………………………………… 5分(3)如图,设K(m,3m 43m 832--) 连接CK 、BK ,作KL ∥y 轴交BC 与L , 由(2)知:109S ΔPBQ =, 2:5S :S PBQ ΔCBK = ∴49S ΔCBK = 设直线BC 的表达式为y=kx+n3)C(0,B(4,0),-⎩⎨⎧-==+∴3n 0n 4k ,解得: ∴直线BC 的表达式为y=43x-3 ∴3)m 43L(m,- 2m 83m 23KL -= ΔKLB ΔKLC ΔCBK S S S += ∴m)(4)m 83m 23(21m )m 83m 23(2122-⋅-⋅+⋅-⋅= )m 83m 23(4212-⋅⋅= 即:49)m 83m 232(2=- 解得:31或m m ==∴K 坐标为(1,827-)或(3,815-)…………………………………… 7分⎪⎩⎪⎨⎧-==3n 43k。

湖南省郴州市2016届九年级上期末数学试题含答案(pdf版)

湖南省郴州市2016届九年级上期末数学试题含答案(pdf版)
"!$5£zQXY¤(& "'$¥¦§¨"& "*$©ªS« !')) ¬XY!­®¦S~X"e.XY¤(#
!"#$%&'( % )* + )
!"# !"# $! $%&'()*+,-./0(123,)456 ! $ "7 ! 689:(1%-;<=>6 %& ?@$ !ABCD(1=E6 '& ?@$%-;< FGCAHIJ45FGKCALM
,(& (
% &'$ ,/,% $% ( 1#*#" $% ! 1#$#' $% ,* 1#( % ,# 12 !# 1
,/& 345
-# "

" #
0).$
" #
#
" 1
-"0)." ' 1
LM!"##$%#
! %
"
#$
!"#$%&'( & )* ( )
!"# !"!#$%&'()*+,-(."/012 "$%&$'#!(&%$34# %!$5*+,-(.6789: .;<& %'$=>"/?@AB'CDEF GHIJKL!%M-(.NO2*P,'(QN#
')# RSTUVWXY.Z[! \]^_XY`abcdefg GhMfgi!(jkl m)den^opqrstuvwSQxyXY!z{|}~Q"e""eyT X* **|$!z!3."# "iQB ¡¢'

2015-2016学年第一学期期末教学质量监测九年级数学试题附答案

2015-2016学年第一学期期末教学质量监测九年级数学试题附答案

2015-2016 学年第一学期期末教学质量监测九年级数学试题2016.1亲爱的考生:欢迎参加考试!请你认真审题,积极思考,仔细答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共 6 页,满分 150 分,考试时间 120 分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效. 3.答题前,请认真阅读答题纸上的《注意事项》 按规定答题. 4.本次考试不得使用计算器,请耐心解答.祝你成功!一、选择题(本大题共 10 小题,每小题 4 分,共 40 分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.下列函数的图象是双曲线的是( ▲ )A . y = 2 x - 1B . y =1C . y = xD . y = x 2x2.下列事件是随机事件的是( ▲ )A .火车开到月球上;B .抛出的石子会下落;C .明天临海会下雨;D .早晨的太阳从东方升起.3.二次函数 y =x 2+4x -5 的图象的对称轴为( ▲ )A .x =4B .x =﹣4C .x =2D .x =﹣24.如图,⊙O 是△ABC 的内切圆,D ,E ,F 是切点,∠A =50°,∠C =60°,则∠DOE =( ▲ )A .70°B .110°C .120°D .130°C B ′ CC ′E F OBD(第 4 题)A B(第 5 题)A△5.如图,把 ABC 绕着点 A 顺时针方向旋转 34°,得到△AB ′C ′,点 C 刚好落在边 B ′C ′上.则∠C ′=( ▲ )A .56°B .62°C .68°D .73°6.将抛物线 y =3x 2 先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为( ▲ )A .y =3(x +1)2+1B .y =3(x +1)2-1C .y =3(x -1)2+1D .y =3(x -1)2-17.小洋用一张半径为 24 cm 的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计), 如果做成的圆锥形小丑帽子的底面半径为 10 cm ,那么这张扇形纸板的面积是( ▲ )A .120 π cm 2B .240 π cm 2C .260 π cm 2D .480 π cm 224 cmy A nA 4 A 3 A 2 A 1…B nB 4C 3C 2B 3B 2C 1B 1O(第 10 题)x4 (1 + k )2 = 1 B . k + k 2 = 1 4 4 (1 + k )2 = 1(x - 1)2 = ( 2 ) ,所以 x8.用锤子以均匀的力敲击铁钉入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的 k 倍(0<k <1).已知一个钉子受击 3 次后恰好全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的 4 7,设铁钉的长度为 1,那么符合这一事实的方程是( ▲ )A .4 4 7 7 74 4 4 C . + k + k 2 = 1 D . + 7 7 7 7 79.利用平方根去根号可以构造一个整系数方程.例如: x =2 + 1 时,移项得 x - 1 = 2 ,两边平方得22 - 2 x + 1 = 2 ,即 x 2 - 2 x - 1 = 0 .仿照上述构造方法,当 x =6 - 1 2时,可以构造出一个整系数方程是( ▲ )A . 4 x 2 + 4 x + 5 = 0B . 4 x 2 + 4 x - 5 = 0C . x 2 + x + 1 = 0D . x 2 + x - 1 = 010.如图,在 y 轴正半轴上依次截取 OA 1=A 1A 2=A 2A 3=…=A n-1A n (n 为正整数),过 A 1,A 2,A 3,…,A n 分别作 x 轴的平行线,与反比例函数 y =2 x(x >0)交于点 B 1,B 2,B 3,…,B n ,如图所示的 Rt △B 1C 1B 2,△Rt B 2C 2B 3,△Rt B 3C 3B 4,…,△Rt B n-1C n-1B n 面积分别记为 S 1,S 2,S 3,…,S n-1,则 S 1+S 2+S 3+…+S n-1=( ▲ )A .1B .2C .1﹣1 1D .2﹣n n二、填空题(本大题共 6 小题,每小题 5 分,共 30 分)11.点 A (1,19)与点 B 关于原点中心对称,则点 B 的坐标为▲ .12.如果反比例函数 y = m - 3x的图象在 x <0 的范围内,y 随 x 的增大而减小,那么 m 的取值范围是 ▲13.如图,点 O 是正五边形 ABCDE 的中心,则∠BAO 的度数为▲ .AyD CPBOEH GAOBC D(第 13 题)A E O FB x(第 15 题) (第 16 题)14.一个盒子中装有大小、形状一模一样的白色弹珠和黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是13.如果盒子中白色弹珠有4颗,则盒中有黑色弹珠▲颗.15.如图,正方形ABCD的顶点A,B与正方形EFGH的顶点G,H同在一段抛物线上,且抛物线的顶点同时落在CD和y轴上,正方形边AB与EF同时落在x轴上,若正方形ABCD的边长为4,则正方形EFGH的边长为▲.2-1-c-n-j-y16.如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=▲秒时,点P与点C中心对称,且对称中心在直径AB上.三、解答题(本大题共8小题,第17题10分,第18题7分,第19题8分,第20题9分,第21题10分,第22题10分,第23题12分,第24题14分,共80分)17.解方程:(1)4x2-20=0;(2)x2+3x-1=0.18.动手画一画,请把下图补成以A为对称中心的中心对称图形.A19.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD∥AC;(2)若BC=8,DE=3,求⊙O的直径.D CB EOA20.已知关于x的一元二次方程x2+2(k-1)x+k2-1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)x=0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.同时从袋中各随机摸出 1 个球,并计算摸出的这 2 个小球上数字之和,记录后都将小球放回袋中搅匀,进行重21.一只不透明的袋子中装有 4 个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x .甲、乙两人每次..复试验.实验数据如下表:摸球总次数“和为 8”出现的频数102 2010 3013 6024 9030 12037 18058 24082 330110 450150“和为 8”出现的频率0.20 0.50 0.43 0.40 0.33 0.31 0.32 0.34 0.33 0.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为 8”的频率将稳定在它的概率附近.估计出现“和为 8” 的概率是▲;(2)当 x =7 时,请用列表法或树状图法计算“和为 8”的概率;并判断 x =7 是否可能.22.如图是一种新型娱乐设施的示意图,x 轴所在位置记为地面,平台 AB ∥x 轴,OA =6 米,AB =2 米, BC 是反比例函数 y = k x的图象的一部分,CD 是二次函数 y =﹣x 2+mx +n 图象的一部分,连接点 C 为抛物线的顶点,且 C点到地面的距离为 2 米, D 点是娱乐设施与地面的一个接触点.(1)试求 k ,m ,n 的值;(2)试求点 B 与点 D 的水平距离.yA BCOD x23.如图 1,正方形 ABCD 与正方形 AEFG 的边 AB ,AE (AB <AE )在一条直线上,正方形 AEFG 以点 A 为旋转中心逆时针旋转,设旋转角为 α.在旋转过程中,两个正方形只有点 A 重合,其它顶点均不重合,连接 BE ,DG .(1)当正方形 AEFG 旋转至如图 2 所示的位置时,求证:BE =DG ;(2)如图 3,如果 α=45°,AB =2,AE =3 2 .①求 BE 的长;②求点 A 到 BE 的距离;(3)当点 C 落在直线 BE 上时,连接 FC ,直接写出∠FCD 的度数.GGADGADB CBCFABDCFE(图 1)FE(图 2)E(图 3)24.定义:把一个半圆与抛物线的一部分组成的封闭图形称为“蛋圆”.如图,抛物线 y =x 2-2x -3 与 x 轴交于点 A ,B ,与 y 轴交于点 D ,以 AB 为直径,在 x 轴上方作半圆交 y 轴于点 C ,半圆的圆心记为 M ,此时这个半圆与这条抛物线 x 轴下方部分组成的图形就称为“蛋圆”.(1)直接写出点 A ,B ,C 的坐标及“蛋圆”弦 CD 的长;A▲ ,B ▲ ,C ▲ , CD = ▲ ;(2)如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.①求经过点 C 的“蛋圆”切线的解析式;②求经过点 D 的“蛋圆”切线的解析式;(3)由(2)求得过点 D 的“蛋圆”切线与 x 轴交点记为 E ,点 F 是“蛋圆”上一动点,试问是否存在 S △CDE =△S CDF ,若存在请求出点 F 的坐标;若不存在,请说明理由;(4)点 P 是“蛋圆”外一点,且满足∠BPC =60°,当 BP 最大时,请直接写出点 P 的坐标.yC yCAO M B x A O M B xDD(备用图)9数学参考答案2016.1一、选择题(每小题4分,共40分)题号答案1B2C3D4B5D6A7B8C9B10C二、填空题(每小题 5 分,共 30 分)11.(﹣1,﹣19)12.m >3 13.54° 14.815. 2 5 - 216. 4914 22 32或 或 或9 9三、解答题(共 80 分)17.(10 分,每小题 5 分)(1)4x 2-20=0;(2)x 2+3x -1=0.4x 2=20a =1,b =3,c =﹣1x 2=5△=32-4×1×(﹣1)=13x = ± 5x =- 3 ± 13 218.(7 分)略(图形基本形状差不多就给分)19.(8 分)(1)∵AB 是⊙O 的直径∴∠C =90°∵OD ⊥BC∴∠OEB =∠C =90°∴OD ∥AC………4 分(2)令⊙O 的半径为 r ,根据垂径定理可得:r 2=42+(r -3)2,解得:r = 25 25,所以⊙O 的直径为 . ………8 分6 320.(9 分)(△1) =[2(k -1)]2-4(k 2-1)=﹣8k +8∵方程有两个不相等的实数根,∴﹣8k +8>0,解得:k <1.………4 分(2)把 x =0 代入方程得:k 2-1=0,解得:k =±1∵k <1 ∴k=﹣1 ∴x=0 可能是方程的一个根∴原方程为:x 2-4x =0 解得:x 1=0,x 2=4 ∴方程的另一个根为 4.………9 分21.(10 分)(1)13(或者 0.33) ………3 分(2)列表略,可得:P 和为 8= 2 1 1= ≠ ,所以 x 的值不可以取 7.………10 分12 6 322.(10 分)(1)把 B (2,6)代入 y =k 12,可得 y = . x x把 y =2 代入 y =12x, 可得 x =6,即 C 点坐标为(6,2).23.(12 分)(1)由题意可得: ⎨∠BAE = ∠DAG = a ⎪ A B = AD ⎩ y = x 2 - 2x - 3得: x 2-(2 +k)x =∵二次函数 y =﹣x 2+mx +n 的顶点为 C ,∴y =﹣(x -6)2+2,∴y =﹣x 2+12x -34. AE∴k =12,m =12,n =﹣34.………6 分C(2)把 y =0 代入 y =﹣(x -6)2+2,解得:x 1=6+ 2 ,x 2=6- 2 .点 B 与点 D 的距离为 6+ 2 -2=4+ 2 .………10 分ODB⎧ A E = AG ⎪⎩∴△ABE ≌△ADG (SAS )G∴BE =DG………4 分(2)①作 BN ⊥AE 于点 NANDF在△ABN 中可求得 AN =BN = 2 .在△BEN 中可求得 BE = 10 .………7 分MBCE(图 3)②作 AM ⊥BE 于点 M .S △ABE = 1 1⨯ AE ⨯ BN = ⨯ 3 2 ⨯ 2 =32 2又∵S △ABE = 1 1⨯ BE ⨯ AM = ⨯ 10 ⨯ AM2 21 3∴ ⨯ 10 ⨯ AM =3 ∴AM = 2 510即点 A 到 BE 的距离 3 510 .………10 分(3)∠FCD 的度数为 45°或 135°.………12 分(注:可以构造三垂直的基本图形求两个角度,也可用四点共圆求两个角度)24.(14 分)(1)A (﹣1,0),B (3,0),C (0,3 ),CD = 3+ 3………4 分(2)①如图 1,NC ⊥CM ,可求得 N (﹣3,0)yCN E A O M B x3∴经过点 C 的“蛋圆”切线的解析式为: y =x + 3 …7 分 3A②过点 D 的“蛋圆”切线的解析式为:y =kx -3D⎧ y = kx - 3 由 ⎨ ∵直线与抛物线只有一个交点,∴k =﹣2,(图 1) yCF 1∴经过点 D 的“蛋圆”切线的解析式为: y = -2 x - 3 .………10 分A EO M Q B x(3)如图 2∵经过点 D 的“蛋圆”切线的解析式为: y = -2 x - 3ADF 2,),F 2(, -).………12 分∴E 点坐标为( -∵S △CDE =S △CDF3 2,0),∴F 点的横坐标为 3 2,在 △Rt MQF 1 中可求得 F 1Q = 15 2,把 x = 3 15 代入 y =x 2-2x -3,可求得 y = - .2 4∴F 1( 3 2 2 2 4(4)如图 3,考虑到∠BPC =60°保持不变,因此点 P 在一圆弧上运动.yP此圆是以 K 为圆心(K 在 BC 的垂直 平分线上,且∠BKC =120°),BK 为半径. 当 BP 为直径时,BP 最大.在 △Rt PCR 中可求得 PR =1,RC = 3 . RC KA OM B x所以点 P 的坐标为(1,2 3 ).………14 分AD(图 3)。

【初中数学】湖南省郴州市2015-2016学年上学期基础教育教学质量监测九年级数学试卷 人教版

【初中数学】湖南省郴州市2015-2016学年上学期基础教育教学质量监测九年级数学试卷 人教版

郴州市2015-2016学年上学期基础教育教学质量监测试卷九年级数学一、选择题(共8小题,每小题3分,满分24分)1.已知反比例函数y=kx(k≠0)的图象经过点M(-2,2),则k的值是A.-4 B.-1 C.1 D.4 2.下列一元二次方程中.没有实数根的是A.x2+ 2x -4=0 B.x2- 4x +4=0C.x2—2x -5 =0D.x2+ 3x +4=03.在Rt△ABC中,∠C=90°,BC=3,4B=5,则sinA的值为A.34B.35C.45D.544.某班为调查每个学生用于课外作业的平均时间,从该班学生中随机抽取了10名学生进行调查,得到他们用于课外作业的时间(单位:min)如下:75,80,85,65,95,80,85,85,80,90.由此估计该班的学生用于课外作业的平均时间是A.80 B.81 C.82 D.835.△ABC与△A'B'C'是位似图形,且△ABC与△A'B'C'的位似比是1:2.已知△ABC的面积是2.则△A'B'C'的面积是A.1 B.2 C.4 D.86.已知点4(一1,y1),B(l,y2),C(2,y3)是函数y= 一5x图象上的三点,则y1,y2,y3的大小关系是A.y1< y2< y3B.y2< y3< y l C.y3<y2<y1D.无法确定7.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端O点30米的B处,测得树顶4的仰角∠ABO为α,则树OA的高度为A.30tan米B.30sinα米C.30tanα米D.30cosα米8.如图,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使得点4落在4 7处.若A'为CE的中点,则折痕DE的长为A.1 B.2 C.3 D.4二、填空题(共8小题,每小题3分,满分24分)9.已知65a b =,则ba的值为 10.一元二次方程x 2—2x=0的实数根是____. 11.已知反比例函数y=kx(k 为常数,且k ≠0)的图象位于第一、三象限,请写出一个符合 条件的k 的值12.在Rt △ABC 中,∠C=90°.若sinA=35,则cosB 的值是 13.已知某实验区甲、乙品种水稻的平均产量相等,且甲、乙品种水稻产量的方差分别为2S 甲=79.6,2S 乙=68.5.由此可知:在该地区____种水稻更具有推广价值.14.关于戈的方程(m-3)27m x- -3x-4=0是一元二次方程,则m= 。

湖南省郴州市九年级上学期期末数学试卷

湖南省郴州市九年级上学期期末数学试卷

湖南省郴州市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·武汉模拟) 下列字母中,不是轴对称图形的是()A .B .C .D .2. (2分) (2019九上·长春月考) 方程的解是()A . x1=x2=2.B . x1=x2=-2.C . x1=2,x2=-2.D . x1=2,x2=4.3. (2分)将二次函数y=3x2的图象向右平移3个单位,再向下平移4个单位后,所得图象的函数表达式是()A .y=3(x-3)2-4B . y=3(x+3)2-4C .y=3(x+3)2+4D . y=3(x-3)2+44. (2分)如图,以O为圆心的两个同心圆中,大圆的弦AB切小圆于点C,若∠AOB=120°,则大圆半径R 与小圆半径r之间的关系满足()A . R=2rB . R=3rC . R=rD . R=r5. (2分) (2018九上·武汉月考) 如图,将△ABC绕点C(0,-1)旋转180°得到△A′B′C.设点A′的坐标为(a,b),则点A的坐标为()A . (-a,-b)B . (-a,-b-1)C . (-a,-b+1)D . (-a,-b-2)6. (2分)(2019·北京) 已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A . ∠COM=∠CODB . 若OM=MN,则∠AOB=20°C . MN∥CDD . MN=3CD7. (2分)(2019·云南) 如图,△AB C的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A . 4B . 6.25C . 7.5D . 98. (2分) (2016九上·海珠期末) 反比例函数y=﹣和一次函数y=kx﹣k在同一直角坐标系中的大致图象是()A .B .C .D .9. (2分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为()A . 0B . -1C . 1D . 210. (2分)下列函数中,当x>0时,y值随x值增大而减小的是()A . y=x2B . y=x﹣1C .D . y=二、填空题:每小题3分,共18分. (共6题;共6分)11. (1分) (2019九上·盐城月考) 一元二次方程x2-ax+6=0, 配方后为(x-3)2=3, 则a=________.12. (1分) (2019九上·乌鲁木齐期末) 如图,正方形ABCD绕点B逆时针旋转30°后得到正方形BEFG,EF 与AD相交于点H,延长DA交GF于点K.若正方形ABCD边长为,则AK=________.13. (1分) (2019九上·郑州期末) 若点A(3,-4)、B(-2,,m)在同一个反比例函数的图象上,则m的值为________。

郴州市九年级数学上学期期末试卷(含解析)

郴州市九年级数学上学期期末试卷(含解析)

湖南省郴州市九年级数学上学期期末试卷一、选择题(共8小题,每小题3分,满分24分)1.已知反比例函数y=(k≠0)的图象经过点M(﹣2,2),则k的值是()A.﹣4 B.﹣1 C.1 D.42.下列一元二次方程中,没有实数根的是()A.x2﹣2x﹣1=0 B.x2﹣2x+1=0 C.x2﹣1=0 D.x2+2x+3=03.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为()A.B.C.D.4.某班为调查每个学生用于课外作业的平均时间,从该班学生中随机抽取了10名学生进行调査,得到他们用于课外作业的时间(单位:min )如下:75,80,85,65,95,80,85,85,80,90.由此估计该班的学生用于课外作业的平均时间是()A.80 B.81 C.82 D.835.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC 的面积是2,则△A′B′C′的面积是()A.4 B.6 C.8 D.126.已知点A(﹣1,y1),B(1,y2),C(2,y3)是函数y=﹣图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定7.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米 B.30sinα米C.30tanα米D.30cosα米8.如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在 AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.2 C.3 D.4二、填空题(共8小题,每小题3分,满分24分)9.已知=,则的值为.10.一元二次方程x2﹣2x=0的解是.11.已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.12.在△ABC中,∠C=90°,sinA=,则cosB= .13.已知某实验区甲、乙品种水稻的平均产量相等.且甲、乙品种水稻产量的方差分別为S甲2=79.6,S乙2=68.5.由此可知:在该地区种水稻更具有推广价值.14.关于x的方程(m﹣3)x m2﹣7﹣3x﹣4=0是一元二次方程,则m= .15.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF= ..16.如图,已知函数y1=,y2=在第一象限的图象.过函数y1=的图象上的任意一点A作x轴的平行线交函数y2=的图象于点B,交y轴于点C,若△AOB的面积S=1,则k 的值为.三、解答题(17~19每题6分,20~23每题8分,24~25每题10分,26题12分,共82分)17.计算:2cos30°+tan45°﹣4sin260°.18.如图,在△ABC和△CDE中,∠B=∠D=90°,C为线段BD上一点,且AC⊥CE,证明:△ABC∽△CDE.19.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?20.某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?21.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.22.如图,郴州北湖公园的小岛上有为了纪念唐代著名诗人韩愈而建的韩愈铜像,其底部为A,某人在岸边的B处测得A在B的北偏东60°的方向上,然后沿岸边直行200米到达C处,再次测得A在C的北偏东30°的方向上(其中A,B,C在同一平面上).求这个铜像底部A 到岸边BC的距离(结果精确到0.1米,参考数据:≈1.732)23.已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a,b,c分別为△ABC三边长.(1)若方程有两个相等的实数根.试判断△ABC的形状,并说明理由;(2)若△ABC是等边三角形,试求这个一元二次方程的根.24.如图,反比例函数y=与一次函数y=k2x+b图象的交点为A(m,1),B(﹣2,n),OA 与x轴正方向的夹角为α,且tanα=.(1)求反比例函数及一次函数的表达式;(2)设直线AB与x轴交于点C,且AC与x轴正方向的夹角为β,求tanβ的值.25.如图,矩形ABCD中,AB=10,BC=5,点P为AB边上一动点(不与点A,B重合),DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)当PD⊥AC时,求线段PA的长度;(3)当点P在线段AC的垂直平分线上时,求sin∠CPB的值.26.如图,在Rt△ABC中,AB=10cm,sinA=.如果点P由B出发沿BA向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动.已知点P的速度为2cm/s,点Q的速度为1cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤5)(1)求AC,BC的长;(2)当t为何值时,△APQ的面积为△ABC面积的;(3)当t为何值时,△APQ与△ABC相似.湖南省郴州市2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.已知反比例函数y=(k≠0)的图象经过点M(﹣2,2),则k的值是()A.﹣4 B.﹣1 C.1 D.4【考点】反比例函数图象上点的坐标特征.【分析】把点(﹣2,2)代入反比例函数y=(k≠0)中,可直接求k的值.【解答】解:把点(﹣2,2)代入反比例函数y=(k≠0)中得2=所以,k=xy=﹣4,故选A.【点评】本题主要考查反比例函数图象上点的坐标特征,反比例函数的比例系数等于在函数图象上面的点的横纵坐标的乘积.2.下列一元二次方程中,没有实数根的是()A.x2﹣2x﹣1=0 B.x2﹣2x+1=0 C.x2﹣1=0 D.x2+2x+3=0【考点】根的判别式.【分析】直接利用根的判别式的知识分别对各选项进行分析求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、∵△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,∴有不相等的实数根;B、∵△=b2﹣4ac=(﹣2)2﹣4×1×1=0,∴有相等的实数根;C、∵△=b2﹣4ac=02﹣4×1×(﹣1)=4>0,∴有不相等的实数根;D、∵△=b2﹣4ac=22﹣4×1×3=﹣8<0,∴没有实数根.故选D.【点评】此题考查了根的判别式.注意△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.3.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为()A.B.C.D.【考点】锐角三角函数的定义.【分析】直接根据三角函数的定义求解即可.【解答】解:∵Rt△ABC中,∠C=90°,BC=3,AB=5,∴sinA==.故选A.【点评】此题考查的是锐角三角函数的定义,比较简单,用到的知识点:正弦函数的定义:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边:斜边=a:c.4.某班为调查每个学生用于课外作业的平均时间,从该班学生中随机抽取了10名学生进行调査,得到他们用于课外作业的时间(单位:min )如下:75,80,85,65,95,80,85,85,80,90.由此估计该班的学生用于课外作业的平均时间是()A.80 B.81 C.82 D.83【考点】用样本估计总体;加权平均数.【分析】根据平均数的定义解答即可.【解答】解:(75+80+85+65+95+80+85+85+80+90)÷10=82,故选C【点评】本题考查数据的分析.解题的关键是理解平均数的意义.5.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC 的面积是2,则△A′B′C′的面积是()A.4 B.6 C.8 D.12【考点】位似变换.【分析】利用位似比得出三角形面积比,进而得出答案.【解答】解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,∴=,∵△ABC的面积是2,∴△A′B′C′的面积是:8.故选:C.【点评】此题主要考查了位似变换,利用位似比得出面积比是解题关键.6.已知点A(﹣1,y1),B(1,y2),C(2,y3)是函数y=﹣图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】把点A、B、C的坐标分别代入函数解析式,求得y1、y2、y3的值,然后比较它们的大小.【解答】解:∵点A(﹣1,y1),B(1,y2),C(2,y3)是函数y=﹣图象上的三点,∴y1=﹣=5,y2=﹣=﹣5,y3=﹣=﹣2.5.∵﹣5<﹣2.5<5,∴y2<y3<y1故选B.【点评】本题考查了反比例函数图象上点的坐标特征.函数图象上点坐标都满足该函数解析式.7.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米 B.30sinα米C.30tanα米D.30cosα米【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意,在Rt△ABO中,BO=30米,∠ABO为α,利用三角函数求解.【解答】解:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数求解.8.如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在 AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.2 C.3 D.4【考点】相似三角形的判定与性质;翻折变换(折叠问题).【专题】计算题.【分析】△ABC沿DE折叠,使点A落在点A′处,可得∠DEA=∠DEA′=90°,AE=A′E,所以,△ACB∽△AED,A′为CE的中点,所以,可运用相似三角形的性质求得.【解答】解:∵△ABC沿DE折叠,使点A落在点A′处,∴∠DEA=∠DEA′=90°,AE=A′E,∴DE∥BC∴△ACB∽△AED,又A′为CE的中点,∴AE=A′E=A′C=AC,∴,即,∴ED=2.故选:B.【点评】本题考查了翻折变换和相似三角形的判定与性质,翻折变换后的图形全等及两三角形相似,各边之比就是相似比.二、填空题(共8小题,每小题3分,满分24分)9.已知=,则的值为.【考点】比例的性质.【分析】根据比例的性质,可得5a与6b的关系,根据等式的性质,可得答案.【解答】解:由比例的性质,得5a=6b.两边都除以6a,得=,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质,等式的性质.10.一元二次方程x2﹣2x=0的解是x1=0,x2=2 .【考点】解一元二次方程-因式分解法.【分析】本题应对方程左边进行变形,提取公因式x,可得x(x﹣2)=0,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0.”,即可求得方程的解.【解答】解:原方程变形为:x(x﹣2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.11.已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为 1 .【考点】反比例函数的性质.【专题】开放型.【分析】反比例函数y=(k为常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)【解答】解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:1.故答案为:1.【点评】此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.12.在△ABC中,∠C=90°,sinA=,则cosB= .【考点】互余两角三角函数的关系.【分析】解答此题要利用互余角的三角函数间的关系:sin(90°﹣α)=cosα,cos(90°﹣α)=sinα.【解答】解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=.【点评】能考查互余两角的三角函数关系式.13.已知某实验区甲、乙品种水稻的平均产量相等.且甲、乙品种水稻产量的方差分別为S甲2=79.6,S乙2=68.5.由此可知:在该地区乙种水稻更具有推广价值.【考点】方差.【分析】首先根据题意,可得甲、乙两种水稻的平均产量相同,然后比较出它们的方差的大小,再根据方差越小,则它与其平均值的离散程度越小,稳定性越好,判断出产量稳定,适合推广的品种为哪种即可.【解答】解:根据题意,可得甲、乙两种水稻的平均产量相同,∵68.5<79.6,∴S乙2<S甲2,即乙种水稻的产量稳定,∴产量稳定,适合推广的品种为乙种水稻.故答案为:乙【点评】此题主要考查了方差的性质和应用,要熟练掌握,解答此题的关键是要明确:方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.14.关于x的方程(m﹣3)x m2﹣7﹣3x﹣4=0是一元二次方程,则m= ﹣3 .【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.【解答】解:由x的方程(m﹣3)x m2﹣7﹣3x﹣4=0是一元二次方程,得m2﹣7=2且m﹣3≠0.解得m=﹣3,故答案为:﹣3.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.15.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF= ..【考点】相似三角形的判定与性质;平行四边形的性质.【专题】压轴题.【分析】由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,继而可判定△BEF∽△DCF,根据相似三角形的对应边成比例,即可得BF:DF=BE:CD问题得解.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE:BE=4:3,∴BE:AB=3:7,∴BE:CD=3:7.∵AB∥CD,∴△BEF∽△DCF,∴BF:DF=BE:CD=3:7,即2:DF=3:7,∴DF=.故答案为:.【点评】此题考查了相似三角形的判定与性质与平行四边形的性质.此题比较简单,解题的关键是根据题意判定△BEF∽△DCF,再利用相似三角形的对应边成比例的性质求解.16.如图,已知函数y1=,y2=在第一象限的图象.过函数y1=的图象上的任意一点A作x轴的平行线交函数y2=的图象于点B,交y轴于点C,若△AOB的面积S=1,则k 的值为 6 .【考点】反比例函数系数k的几何意义.【分析】根据y1=,过y1上的任意一点A,得出△CAO的面积为2,进而得出△CBO面积为3,即可得出k的值.【解答】解∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S△AOC=×4=2,又∵S△A OB=1,∴△CBO面积为3,∴k=xy=6,故答案为:6.【点评】此题主要考查了反比例函数系数k的几何意义,根据已知得出△CAO的面积为2,进而得出△CBO面积为3是解决问题的关键.三、解答题(17~19每题6分,20~23每题8分,24~25每题10分,26题12分,共82分)17.计算:2cos30°+tan45°﹣4sin260°.【考点】特殊角的三角函数值.【分析】首先利用特殊角的三角函数值代入进而求出答案.【解答】解:2cos30°+tan45°﹣4sin260°=2×+1﹣4×()2=3+1﹣4×=1.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.18.如图,在△ABC和△CDE中,∠B=∠D=90°,C为线段BD上一点,且AC⊥CE,证明:△ABC∽△CDE.【考点】相似三角形的判定.【专题】证明题.【分析】证出∠A=∠ECD,再由∠B=∠D=90°,即可得出△ABC∽△CDE.【解答】证明:∵∠B=90°,∴∠A+∠ACB=90°,∵C为线段BD上一点,且AC⊥CE,∴∠ACB+∠ECD=90°,∴∠A=∠ECD,∵∠B=∠D=90°,∴△ABC∽△CDE.【点评】本题考查了相似三角形的判定;熟记两角相等的两个三角形相似是解决问题的关键.19.如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)设反比例函数解析式为y=,把点A的坐标代入解析式,利用待定系数法求反比例函数解析式即可,把点B的坐标代入反比例函数解析式进行计算求出a的值,从而得到点B的坐标;(2)写出一次函数图象在反比例函数图象上方的x的取值范围即可.【解答】解:(1)设反比例函数的解析式为y=(k≠0),∵反比例函数图象经过点A(﹣4,﹣2),∴﹣2=,∴k=8,∴反比例函数的解析式为y=,∵B(a,4)在y=的图象上,∴4=,∴a=2,∴点B的坐标为B(2,4);(2)根据图象得,当x>2或﹣4<x<0时,一次函数的值大于反比例函数的值.【点评】本题考查了反比例函数与一次函数的交点问题,根据点A的坐标求出反比例函数解析式是解题的关键.20.某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(2)利用(1)中所求得出喜欢艺体类的学生数进而画出图形即可;(3)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.【解答】解:(1)被调查的学生人数为:12÷20%=60(人);(2)喜欢艺体类的学生数为:60﹣24﹣12﹣16=8(人),如图所示:;(3)全校最喜爱文学类图书的学生约有:1200×=480(人).【点评】此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.21.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设围成的矩形一边长为x米,则矩形的邻边长为:32÷2﹣x,根据矩形的面积的计算方法列出方程求解;(2)同(1)列出方程,利用根的判别式进行判断方程的根的情况即可.【解答】解:(1)设围成的矩形一边长为x米,则矩形的邻边长为:32÷2﹣x.依题意得x2+16x=60,即(x﹣6)(x﹣10)=0.解得 x1=6,x2=10,即当x是6或10时,围成的养鸡场面积为60平方米;(2)不能围成面积为70平方米的养鸡场.理由如下:由(1)知,﹣x2+16x=70,即x2﹣16x+70=0因为△=(﹣16)2﹣4×1×70=﹣24<0,所以该方程无解.即:不能围成面积为70平方米的养鸡场.【点评】本题考查了一元二次方程的应用.解题的关键是熟悉矩形的周长与面积的求法,以及一元二次方程的根的判别式.22.如图,郴州北湖公园的小岛上有为了纪念唐代著名诗人韩愈而建的韩愈铜像,其底部为A,某人在岸边的B处测得A在B的北偏东60°的方向上,然后沿岸边直行200米到达C处,再次测得A在C的北偏东30°的方向上(其中A,B,C在同一平面上).求这个铜像底部A 到岸边BC的距离(结果精确到0.1米,参考数据:≈1.732)【考点】解直角三角形的应用-方向角问题.【分析】过A作AD⊥BC于D,根据已知条件和方向角得出∠ABC=∠BAC,从而得出AC=BC=200,在Rt△ACD中,根据sin∠ACD=,求出AD即可.【解答】解:过A作AD⊥BC于D,则AD的长度就是A到岸边BC的距离,∵在岸边的B处测得A在B的北偏东60°的方向上,∴∠ABC=30°,∵A在C的北偏东30°的方向上,∴∠ACD=60°,∴∠BAC=30°,∴∠ABC=∠BAC,∴AC=BC=200,∵在Rt△ACD中,sin∠ACD=,∴sin60°=,∴AD=200sin60°=100≈173.2(米);答:这个铜像底部A到岸边BC的距离是173.2米.【点评】本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.23.已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a,b,c分別为△ABC 三边长.(1)若方程有两个相等的实数根.试判断△ABC的形状,并说明理由;(2)若△ABC是等边三角形,试求这个一元二次方程的根.【考点】根的判别式;等边三角形的性质;勾股定理的逆定理.【分析】(1)根据方程有两个相等的实数根得出△=0,即可得出a2=b2+c2,根据勾股定理的逆定理判断即可;(2)根据等边进行得出a=b=c,代入方程化简,即可求出方程的解.【解答】解:(1)△ABC是直角三角形,理由是:∵关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0有两个相等的实数根,∴△=0,即(﹣2b)2﹣4(a+c)(a﹣c)=0,∴a2=b2+c2,∴△ABC是直角三角形;(2)∵△ABC是等边三角形,∴a=b=c,∴方程(a+c)x2﹣2bx+(a﹣c)=0可整理为2ax2﹣2ax=0,∴x2﹣x=0,解得:x1=0,x2=1.【点评】此题考查了根的判别式,等边三角形的性质,解一元二次方程,勾股定理的逆定理的应用,用到的知识点是一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根;等边三角形的三边相等等.24.如图,反比例函数y=与一次函数y=k2x+b图象的交点为A(m,1),B(﹣2,n),OA 与x轴正方向的夹角为α,且tanα=.(1)求反比例函数及一次函数的表达式;(2)设直线AB与x轴交于点C,且AC与x轴正方向的夹角为β,求tanβ的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)过点A作AE⊥x轴于点E,根据tanα=可得出m的值,进而得出反比例函数的解析式,根据B(﹣2,n)在反比例函数y=的图象上得出B点坐标,再把A、B两点的坐标代入直线y=k2x+b即可得出其解析式;(2)先求出C点坐标,再由A点坐标可得出AE的长,根据锐角三角函数的定义即可得出结论.【解答】解:(1)过点A作AE⊥x轴于点E,∵tan∠AOE=tanα=,∴OE=4AE.∵A(m,1),∴AE=1,∴OE=4,∴A(4,1).∵点A在反比例函数y=的图象上,∴k1=4,∴反比例函数的解析式为y=.∵B(﹣2,n)在反比例函数y=的图象上,∴n=2,∴B(﹣2,﹣2).将A、B两点的坐标代入直线y=k2x+b得,,解得,∴直线AB的解析式为y=x﹣1.(2)∵直线AB的解析式为y=x﹣1,令y=0,则x=2,∴C(2,0).∵A(4,1),∴CE=2,AE=1,∴tanβ==.【点评】本题考查的是反比例函数与一次函数的交点问题,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.25.如图,矩形ABCD中,AB=10,BC=5,点P为AB边上一动点(不与点A,B重合),DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)当PD⊥AC时,求线段PA的长度;(3)当点P在线段AC的垂直平分线上时,求sin∠CPB的值.【考点】相似形综合题.【分析】(1)根据矩形的性质和相似三角形的判定定理证明即可;(2)根据垂直的定义、相似三角形的性质列出比例式,计算即可;(3)连接PC,根据线段垂直平分线的性质得到PC=PA,设PA=x,根据勾股定理列出关于x 的方程,解方程即可.【解答】(1)证明:∵四边形ABCD是矩形,∴DC∥AB,∴∠QAP=∠QCD,∠QPA=∠QDC,∴△APQ∽△CDQ;(2)解:∵PD⊥AC,∴∠QDC+∠QCD=90°,又∠QDC+∠QDA=90°,∴∠QCD=∠QDA,又∠DAP=∠CDA=90°,∴△DAP∽△CDA,∴=,即=,解得,AP=;(3)解:连接PC,∵点P在线段AC的垂直平分线上,∴PC=PA,设PA=x,则PC=x,PB=10﹣x,由勾股定理得,PC2=PB2+BC2,即x2=(10﹣x)2+25,解得,x=,∴PC=PA=,∴sin∠CPB==.【点评】本题考查的是相似三角形的判定和性质、矩形的性质、线段垂直平分线的性质以及锐角三角函数的定义,掌握相关的定理、性质、定义是解题的关键.26.如图,在Rt△ABC中,AB=10cm,sinA=.如果点P由B出发沿BA向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动.已知点P的速度为2cm/s,点Q的速度为1cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤5)(1)求AC,BC的长;(2)当t为何值时,△APQ的面积为△ABC面积的;(3)当t为何值时,△APQ与△ABC相似.【考点】相似形综合题.【分析】(1)根据正弦的定义和勾股定理求出AC,BC的长;(2)作PE⊥AC于E,根据相似三角形的性质用t表示出PE,根据三角形的面积公式和题意列出方程,解方程即可;(3)分△APQ∽△ABC和△APQ∽△ACB两种情况,根据相似三角形的性质列出方程,解方程即可.【解答】解:(1)∵Rt△ABC中,AB=10cm,sinA=,∴=,∴BC=6cm,则AC==8cm,∴AC=8cm,BC=6cm;(2)作PE⊥AC于E,由题意得,BP=2tcm,AQ=tcm,则AP=(10﹣2t)cm,∵PE∥BC,∴=,即=,解得,PE=6﹣t,∴△APQ的面积=×t×(6﹣t),△ABC面积=×6×8=24,由题意得,×t×(6﹣t)=×24,解得,t1=1,t2=4,则当t为1s或4s时,△APQ的面积为△ABC面积的;(3)当△APQ∽△ABC时,=,即=,解得,t=,当△APQ∽△ACB时,=,即=,解得,t=,故当t为s或s时,△APQ与△ABC相似.【点评】本题考查的是相似三角形的判定和性质、锐角三角函数的定义、一元二次方程的解法,灵活运用相关的定理、定义是解题的关键,注意分情况讨论思想的应用.。

湖南省郴州市九年级上学期数学期末考试试卷

湖南省郴州市九年级上学期数学期末考试试卷

湖南省郴州市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)已知a=+2,b=﹣2,则(﹣)÷的值为()A . 1B .C .D .2. (2分)若关于x的一元二次方程x2-4x+5-a=0有实数根,则a的取值范围是()A . a≥1B . a>1C . a≤1D . a<13. (2分)若α是锐角,sinα=cos50°,则α的值为()A . 20°B . 30°C . 40°D . 50°4. (2分)在一次捐款活动中,某班50名同学都拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的,如图所示的统计图反映了不同捐款数的人数比例,那么根据图中信息,该班同学平均每人捐款()A . 30元B . 33元C . 36元D . 35元5. (2分)已知圆锥的底面半径为6㎝,高为8㎝,圆锥的侧面积为()A . 48πB . 96πC . 30πD . 60π6. (2分) (2015九上·宁海月考) 如图,点A,B,C在⊙O上,已知∠ABC=130°,则∠AOC=()A . 100°B . 110°C . 120°D . 130°7. (2分)如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A . (6,0)B . (6,3)C . (6,5)D . (4,2)8. (2分)边长为1的正六边形的内切圆的半径为().A . 2B . 1C .D .9. (2分) (2020九上·长兴期末) 如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连结AC交DE于点F若sin∠CAB= ,DF=5,则BC的长为()A . 8B . 10C . 12D . 1610. (2分) (2016九上·嵊州期中) 抛物线y=﹣x2+bx+c的部分图象如图所示,要使y>0,则x的取值范围是()A . ﹣4<x<1B . ﹣3<x<1C . x<﹣4或x>1D . x<﹣3或x>1二、填空题 (共8题;共8分)11. (1分)已知关于x的一元二次方程x2-4x+1=0的两个实数根是x1、x2,那么x1+x2=________.12. (1分) (2015九上·阿拉善左旗期末) 在Rt三角形ABC中,∠ACB=90°,∠A=30° CD⊥AB于点D,那么△ACD与△BCD的面积之比为________.13. (1分) (2019九上·博白期中) 如图,是由绕点O顺时针旋转40°后得到的图形,若点D恰好落在AB上,且,则的度数是________°.14. (1分) (2019九上·宜兴期末) 如图,AB是的直径,弦于点E,,,则 ________cm.15. (1分) (2017九上·海宁开学考) 已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是________.16. (1分) (2020九上·海曙期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有以下结论:①abc>0;②a+b+c<0;③4a+b=0:④若点(1,y1)和(3,y2)在该图象上,则y1=y2 ,其中正确的结论是________(填序号)17. (1分)一个扇形的圆心角为120°,弧长为6π,则此扇形的半径为________18. (1分)(2018·平房模拟) 如图,在△ABC中,AC=BC,D为AB的中点,F为BC边上一点,连接CD、AF交干点E.若∠FAC=90°-3∠BAF,BF:AC=2:5,EF=2,则AB长为________.三、解答题 (共10题;共110分)19. (5分)已知a、b互为相反数,求.20. (5分) (2017九上·福州期末) 已知关于x的一元二次方程(x﹣1)2= m﹣1有两个不相等的实数根,求m的取值范围.21. (20分) (2019八下·绍兴期中) 图甲和图乙分别是A,B两家酒店去年下半年的月营业额(单位:百万元)统计图.A酒店去年下半年的月营业额扇形统计图B酒店去年下半年的月营业额(1)求A酒店12月份的营业额a的值.(2)已知B酒店去年下半年的月平均营业额为2.3百万元,求8月份的月营业额,并补全折线统计图.(3)完成下面的表格(单位:百万元)平均数中位数众数方差A酒店 2.3 2.20.73B酒店 2.30.55(4)综合以上分析,你认为哪一些数据更能较为准确的反映酒店的经营业绩?你认为哪家酒店的经营状况较好?请简述理由.22. (10分)在平面直角坐标系中,O为原点.(1)点A的坐标为(3,﹣4),求线段OA的长;(2)点B的坐标为(2,2),点C的坐标为(5,6),求线段BC的长.23. (15分)(2019·北京模拟) 如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.24. (5分)已知:如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻,AB在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6m,请你计算DE的长.25. (15分) (2019八上·宝安期中) 如图(含备用图),在直角坐标系中,已知直线y=kx+3与x轴相交于点A(2,0),与y轴交于点B.(1)求k的值及△AOB的面积;(2)点C在x轴上,若△ABC是以AB为腰的等腰三角形,直接写出点C的坐标;(3)点M(3,0)在x轴上,若点P是直线AB上的一个动点,当△PBM的面积与△AOB的面积相等时,求点P的坐标.26. (15分) (2016八上·鞍山期末) 如图,排球运动员站在点O处练习发球,将球从O点正上方2 的A 处发出,把球看成点,其运行的高度与运行的水平距离满足关系式.已知球网与O 点的水平距离为9 ,高度为2.43 ,球场的边界距O点的水平距离为18 .(1)当 =2.6时,求与的关系式(不要求写出自变量的取值范围);(2)当 =2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求二次函数中的取值范围.27. (10分)(2011·泰州) 如图,四边形ABCD是矩形,直线l垂直平分线段AC,垂足为O,直线l分别与线段AD、CB的延长线交于点E、F.(1)△ABC与△FOA相似吗?为什么?(2)试判定四边形AFCE的形状,并说明理由.28. (10分) (2017九上·赣州开学考) 如图,对称轴为x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标.(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标.②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共110分)19-1、20-1、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、23-3、24-1、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、28-1、28-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年湖南省郴州市初三上学期期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)已知反比例函数y=(k≠0)的图象经过点M(﹣2,2),则k的值是()A.﹣4B.﹣1C.1D.42.(3分)下列一元二次方程中,没有实数根的是()A.x2﹣2x﹣1=0B.x2﹣2x+1=0C.x2﹣1=0D.x2+2x+3=0 3.(3分)在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为()A.B.C.D.4.(3分)某班为调查每个学生用于课外作业的平均时间,从该班学生中随机抽取了10名学生进行调査,得到他们用于课外作业的时间(单位:min )如下:75,80,85,65,95,80,85,85,80,90.由此估计该班的学生用于课外作业的平均时间是()A.80B.81C.82D.835.(3分)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是2,则△A′B′C′的面积是()A.4B.6C.8D.126.(3分)已知点A(﹣1,y1),B(1,y2),C(2,y3)是函数y=﹣图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定7.(3分)如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米B.30sinα米C.30tanα米D.30cosα米8.(3分)如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.2C.3D.4二、填空题(共8小题,每小题3分,满分24分)9.(3分)已知=,则的值为.10.(3分)一元二次方程x2﹣2x=0的解是.11.(3分)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.12.(3分)在△ABC中,∠C=90°,sinA=,则cosB=.13.(3分)已知某实验区甲、乙品种水稻的平均产量相等.且甲、乙品种水稻产量的方差分別为S甲2=79.6,S乙2=68.5.由此可知:在该地区种水稻更具有推广价值.14.(3分)关于x的方程(m﹣3)x m2﹣7﹣3x﹣4=0是一元二次方程,则m=.15.(3分)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=..16.(3分)如图,已知函数y1=,y2=在第一象限的图象.过函数y1=的图象上的任意一点A作x轴的平行线交函数y2=的图象于点B,交y轴于点C,若△AOB的面积S=1,则k的值为.三、解答题(17~19每题6分,20~23每题8分,24~25每题10分,26题12分,共82分)17.(6分)计算:2cos30°+tan45°﹣4sin260°.18.(6分)如图,在△ABC和△CDE中,∠B=∠D=90°,C为线段BD上一点,且AC⊥CE,证明:△ABC∽△CDE.19.(6分)如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B (a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?20.(8分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?21.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.22.(8分)如图,郴州北湖公园的小岛上有为了纪念唐代著名诗人韩愈而建的韩愈铜像,其底部为A,某人在岸边的B处测得A在B的北偏东60°的方向上,然后沿岸边直行200米到达C处,再次测得A在C的北偏东30°的方向上(其中A,B,C在同一平面上).求这个铜像底部A到岸边BC的距离(结果精确到0.1米,参考数据:≈1.732)23.(8分)已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a,b,c分別为△ABC三边长.(1)若方程有两个相等的实数根.试判断△ABC的形状,并说明理由;(2)若△ABC是等边三角形,试求这个一元二次方程的根.24.(10分)如图,反比例函数y=与一次函数y=k2x+b图象的交点为A(m,1),B(﹣2,n),OA与x轴正方向的夹角为α,且tanα=.(1)求反比例函数及一次函数的表达式;(2)设直线AB与x轴交于点C,且AC与x轴正方向的夹角为β,求tanβ的值.25.(10分)如图,矩形ABCD中,AB=10,BC=5,点P为AB边上一动点(不与点A,B重合),DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)当PD⊥AC时,求线段PA的长度;(3)当点P在线段AC的垂直平分线上时,求sin∠CPB的值.26.(12分)如图,在Rt△ABC中,AB=10cm,sinA=.如果点P由B出发沿BA 向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动.已知点P的速度为2cm/s,点Q的速度为1cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤5)(1)求AC,BC的长;(2)当t为何值时,△APQ的面积为△ABC面积的;(3)当t为何值时,△APQ与△ABC相似.2015-2016学年湖南省郴州市初三上学期期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)已知反比例函数y=(k≠0)的图象经过点M(﹣2,2),则k的值是()A.﹣4B.﹣1C.1D.4【解答】解:把点(﹣2,2)代入反比例函数y=(k≠0)中得2=所以,k=xy=﹣4,故选:A.2.(3分)下列一元二次方程中,没有实数根的是()A.x2﹣2x﹣1=0B.x2﹣2x+1=0C.x2﹣1=0D.x2+2x+3=0【解答】解:A、∵△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,∴有不相等的实数根;B、∵△=b2﹣4ac=(﹣2)2﹣4×1×1=0,∴有相等的实数根;C、∵△=b2﹣4ac=02﹣4×1×(﹣1)=4>0,∴有不相等的实数根;D、∵△=b2﹣4ac=22﹣4×1×3=﹣8<0,∴没有实数根.故选:D.3.(3分)在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为()A.B.C.D.【解答】解:∵Rt△ABC中,∠C=90°,BC=3,AB=5,∴sinA==.故选:A.4.(3分)某班为调查每个学生用于课外作业的平均时间,从该班学生中随机抽取了10名学生进行调査,得到他们用于课外作业的时间(单位:min )如下:75,80,85,65,95,80,85,85,80,90.由此估计该班的学生用于课外作业的平均时间是()A.80B.81C.82D.83【解答】解:(75+80+85+65+95+80+85+85+80+90)÷10=82,故选:C.5.(3分)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是2,则△A′B′C′的面积是()A.4B.6C.8D.12【解答】解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,∴=,∵△ABC的面积是2,∴△A′B′C′的面积是:8.故选:C.6.(3分)已知点A(﹣1,y1),B(1,y2),C(2,y3)是函数y=﹣图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定【解答】解:∵点A(﹣1,y1),B(1,y2),C(2,y3)是函数y=﹣图象上的三点,∴y1=﹣=5,y2=﹣=﹣5,y3=﹣=﹣2.5.∵﹣5<﹣2.5<5,∴y2<y3<y1故选:B.7.(3分)如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米B.30sinα米C.30t anα米D.30cosα米【解答】解:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选:C.8.(3分)如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.2C.3D.4【解答】解:∵△ABC沿DE折叠,使点A落在点A′处,∴∠DEA=∠DEA′=90°,AE=A′E,∴DE∥BC∴△ACB∽△AED,又A′为CE的中点,∴A E=A′E=A′C=AC,∴,即,∴ED=2.故选:B.二、填空题(共8小题,每小题3分,满分24分)9.(3分)已知=,则的值为.【解答】解:由比例的性质,得5a=6b.两边都除以6a,得=,故答案为:.10.(3分)一元二次方程x2﹣2x=0的解是x1=0,x2=2.【解答】解:原方程变形为:x(x﹣2)=0,x 1=0,x2=2.故答案为:x1=0,x2=2.11.(3分)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为1.【解答】解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:1.故答案为:1.12.(3分)在△ABC中,∠C=90°,sinA=,则cosB=.【解答】解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=.13.(3分)已知某实验区甲、乙品种水稻的平均产量相等.且甲、乙品种水稻产量的方差分別为S甲2=79.6,S乙2=68.5.由此可知:在该地区乙种水稻更具有推广价值.【解答】解:根据题意,可得甲、乙两种水稻的平均产量相同,∵68.5<79.6,∴S乙2<S甲2,即乙种水稻的产量稳定,∴产量稳定,适合推广的品种为乙种水稻.故答案为:乙14.(3分)关于x的方程(m﹣3)x m2﹣7﹣3x﹣4=0是一元二次方程,则m=﹣3.【解答】解:由x的方程(m﹣3)x m2﹣7﹣3x﹣4=0是一元二次方程,得m2﹣7=2且m﹣3≠0.解得m=﹣3,故答案为:﹣3.15.(3分)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=..【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE:BE=4:3,∴BE:AB=3:7,∴BE:CD=3:7.∵AB∥CD,∴△BEF∽△DCF,∴BF:DF=BE:CD=3:7,即2:DF=3:7,∴DF=.故答案为:.16.(3分)如图,已知函数y1=,y2=在第一象限的图象.过函数y1=的图象上的任意一点A作x轴的平行线交函数y2=的图象于点B,交y轴于点C,若△AOB的面积S=1,则k的值为6.【解答】解∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S=×4=2,△AOC=1,又∵S△AOB∴△CBO面积为3,∴k=xy=6,故答案为:6.三、解答题(17~19每题6分,20~23每题8分,24~25每题10分,26题12分,共82分)17.(6分)计算:2cos30°+tan45°﹣4sin260°.【解答】解:2cos30°+tan45°﹣4sin260°=2×+1﹣4×()2=3+1﹣4×=1.18.(6分)如图,在△ABC和△CDE中,∠B=∠D=90°,C为线段BD上一点,且AC⊥CE,证明:△ABC∽△CDE.【解答】证明:∵∠B=90°,∴∠A+∠ACB=90°,∵C为线段BD上一点,且AC⊥CE,∴∠ACB+∠ECD=90°,∴∠A=∠ECD,∵∠B=∠D=90°,∴△ABC∽△CDE.19.(6分)如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B (a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?【解答】解:(1)设反比例函数的解析式为y=(k≠0),∵反比例函数图象经过点A(﹣4,﹣2),∴﹣2=,∴k=8,∴反比例函数的解析式为y=,∵B(a,4)在y=的图象上,∴4=,∴a=2,∴点B的坐标为B(2,4);(2)根据图象得,当x>2或﹣4<x<0时,一次函数的值大于反比例函数的值.20.(8分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?【解答】解:(1)被调查的学生人数为:12÷20%=60(人);(2)喜欢艺体类的学生数为:60﹣24﹣12﹣16=8(人),如图所示:;(3)全校最喜爱文学类图书的学生约有:1200×=480(人).21.(8分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.【解答】解:(1)设围成的矩形一边长为x米,则矩形的邻边长为:32÷2﹣x.依题意得x2+16x=60,即(x﹣6)(x﹣10)=0.解得x1=6,x2=10,即当x是6或10时,围成的养鸡场面积为60平方米;(2)不能围成面积为70平方米的养鸡场.理由如下:由(1)知,﹣x2+16x=70,即x2﹣16x+70=0因为△=(﹣16)2﹣4×1×70=﹣24<0,所以该方程无解.即:不能围成面积为70平方米的养鸡场.22.(8分)如图,郴州北湖公园的小岛上有为了纪念唐代著名诗人韩愈而建的韩愈铜像,其底部为A,某人在岸边的B处测得A在B的北偏东60°的方向上,然后沿岸边直行200米到达C处,再次测得A在C的北偏东30°的方向上(其中A,B,C在同一平面上).求这个铜像底部A到岸边BC的距离(结果精确到0.1米,参考数据:≈1.732)【解答】解:过A作AD⊥BC于D,则AD的长度就是A到岸边BC的距离,∵在岸边的B处测得A在B的北偏东60°的方向上,∴∠ABC=30°,∵A在C的北偏东30°的方向上,∴∠ACD=60°,∴∠BAC=30°,∴∠ABC=∠BAC,∴AC=BC=200,∵在Rt△ACD中,sin∠ACD=,∴sin60°=,∴AD=200sin60°=100≈173.2(米);答:这个铜像底部A到岸边BC的距离是173.2米.23.(8分)已知关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0,其中a,b,c分別为△ABC三边长.(1)若方程有两个相等的实数根.试判断△ABC的形状,并说明理由;(2)若△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)△ABC是直角三角形,理由是:∵关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0有两个相等的实数根,∴△=0,即(﹣2b)2﹣4(a+c)(a﹣c)=0,∴a2=b2+c2,∴△ABC是直角三角形;(2)∵△ABC是等边三角形,∴a=b=c,∴方程(a+c)x2﹣2bx+(a﹣c)=0可整理为2ax2﹣2ax=0,∴x2﹣x=0,解得:x1=0,x2=1.24.(10分)如图,反比例函数y=与一次函数y=k2x+b图象的交点为A(m,1),B(﹣2,n),OA与x轴正方向的夹角为α,且tanα=.(1)求反比例函数及一次函数的表达式;(2)设直线AB与x轴交于点C,且AC与x轴正方向的夹角为β,求tanβ的值.【解答】解:(1)过点A作AE⊥x轴于点E,∵tan∠AOE=tanα=,∴OE=4AE.∵A(m,1),∴AE=1,∴OE=4,∴A(4,1).∵点A在反比例函数y=的图象上,∴k1=4,∴反比例函数的解析式为y=.∵B(﹣2,n)在反比例函数y=的图象上,∴n=2,∴B(﹣2,﹣2).将A、B两点的坐标代入直线y=k2x+b得,,解得,∴直线AB的解析式为y=x﹣1.(2)∵直线AB的解析式为y=x﹣1,令y=0,则x=2,∴C(2,0).∵A(4,1),∴CE=2,AE=1,∴tanβ==.25.(10分)如图,矩形ABCD中,AB=10,BC=5,点P为AB边上一动点(不与点A,B重合),DP交AC于点Q.(1)求证:△APQ∽△CDQ;(2)当PD⊥AC时,求线段PA的长度;(3)当点P在线段AC的垂直平分线上时,求sin∠CPB的值.【解答】(1)证明:∵四边形ABCD是矩形,∴DC∥AB,∴∠QAP=∠QCD,∠QPA=∠QDC,∴△APQ∽△CDQ;(2)解:∵PD⊥AC,∴∠QDC+∠QCD=90°,又∠QDC+∠QDA=90°,∴∠QCD=∠QDA,又∠DAP=∠CDA=90°,∴△DAP∽△CDA,∴=,即=,解得,AP=;(3)解:连接PC,∵点P在线段AC的垂直平分线上,∴PC=PA,设PA=x,则PC=x,PB=10﹣x,由勾股定理得,PC2=PB2+BC2,即x2=(10﹣x)2+25,解得,x=,∴PC=PA=,∴sin∠CPB==.26.(12分)如图,在Rt△ABC中,AB=10cm,sinA=.如果点P由B出发沿BA 向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动.已知点P的速度为2cm/s,点Q的速度为1cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤5)(1)求AC,BC的长;(2)当t为何值时,△APQ的面积为△ABC面积的;(3)当t为何值时,△APQ与△ABC相似.【解答】解:(1)∵Rt△ABC中,AB=10cm,sinA=,∴=,∴BC=6cm,则AC==8cm,∴AC=8cm,BC=6cm;(2)作PE⊥AC于E,由题意得,BP=2tcm,AQ=tcm,则AP=(10﹣2t)cm,∵PE∥BC,∴=,即=,解得,PE=6﹣t,∴△APQ的面积=×t×(6﹣t),△ABC面积=×6×8=24,由题意得,×t×(6﹣t)=×24,解得,t1=1,t2=4,则当t为1s或4s时,△APQ的面积为△ABC面积的;(3)当△APQ∽△ABC时,=,即=,解得,t=,当△APQ∽△ACB时,=,即=,解得,t=,故当t为s或s时,△APQ与△ABC相似.附加:初中数学几何模型【模型一】“一线三等角”模型:图形特征:60°60°60° 45°45°45°运用举例: 1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标; x yB C AO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .l s 4s 3s 2s 1321第21页(共21页)3. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D作∠ADE =45°,DE 交AC 于E .(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

相关文档
最新文档