(整理)奥数 六年级 千份讲义 378 第10讲——分数百分数应用题

合集下载

小学六年级奥数 第十章 分数、百分数应用题

小学六年级奥数 第十章 分数、百分数应用题

第十章 分数、百分数应用题知识要点分数、百分数应用题是日常生活和生产实践中应用最广泛的一类数学问题,并且这类知识与生活有着紧密的联系。

如何掌握此类问题的特征,并能熟练、灵活地加以运用,是研究此类问题所要思考的。

在解题过程中要着重解决以下几个方面的问题: 1.准确地确定单位“1”的量。

2.确定类型。

单位“1”的量×分率=分率对应量 分率对应量÷分率=单位“1”的量 分率对应量÷单位“1”的量=分率 3.确定好对应关系。

例1 (“希望杯”邀请赛试题)小红和小明帮刘老师修补一批破损图书,根据图中的信息,计算小红、小明一共修补图书 本。

点拨 从图中可知小红和小明一共修补破损图书为:40%-2+14+3=40%+25%+1=65%+1,则这批破损图书一共有(20+1)÷(1-65%)=60(本)。

再减去刘老师修补的图书20本,则为小红和小明一共修补的图书。

解 (20+1)÷[1-(4+40%)]-20 =21÷[1-65%]-20 =21÷35%-20 =60-20 =40(本)答:小红、小明一共修补图书40本。

例2 张、王、李三人共有54元钱,张用了自己钱数的35,王用了自己钱数的34,李用了自己钱数的23,各买了一支相同的钢笔,那么张和李两人剩下的钱共有多少元? 点拨一 先假设钢笔的价格是“1”,则有 张的钱数是钢笔的:1÷35=53王的钱数是钢笔的:1÷34=43李的钱数是钢笔的:1÷23=32三人的总钱数是这支钢笔的(53+43+32)倍,这样就可以求出钢笔的价格。

解54÷(53+43+32)=12(元)张剩下的钱数:12×(53-1)=8(元)李剩下的钱数:12×(32-1)=6(元)张、李两人剩下的钱共有:8+6=14(元) 答:张和李两人剩下的钱共有14元。

点拨二据张用了自己钱数的35,王用了自己钱数的34,李用了自己钱数的23,各买了一支相同的钢笔,即张钱数的35=王钱数的34=李钱数的23,据此可推知张钱数的610=王钱数的68=李钱数的69(根据分数的基本性质,把这几个分率转化成分子相同的分数,即“分子同化法”。

(完整版)六年级奥数分数百分数应用题汇总,推荐文档

(完整版)六年级奥数分数百分数应用题汇总,推荐文档

分数百分数应用题一、单位“1”定长短。

1)两根1米长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?3)一根绳子,第一次用去1/4,第二次用去1/4米。

哪一次用去的长一些?4)一根绳子,第一次用去4/7,第二次用去4/7米。

哪一次用去的长一些?5)一根绳子分两次用完,第一次用去1/3,第二次用去1/3米。

哪一次用去的长一些?6)一根绳子分两次用完,第一次用去2/3,第二次用去余下的部分。

哪一次用去的长一些?练一练:1)两根1米长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?3)一根绳子,第一次用去1/6,第二次用去1/6米。

哪一次用去的长一些?3)一根绳子,第一次用去3/5,第二次用去2/5米。

哪一次用去的长一些?4)一根绳子分两次用完,第一次用去2/5,第二次用去3/5米。

哪一次用去的长一些?5)一根绳子分两次用完,第一次用去3/8,第二次用去余下的部分。

哪一次用去的长一些?二、量率对应1、修一条水渠,已经修好了2/5.(1)水渠全长20千米,已经修了的比剩下没修的少多少千米?(2)正好已经修了8千米,这条水渠全长多少千米?(3)还剩12千米没修,已经修了多少千米?(4)已经修好了的比剩下没修好的少4千米,还剩下多少千米没修?2、六年级一班,男学生人数相当于女学生人数的4/5,问:(1)女生20人,全班多少人?(2)男生人数比女生人数少4人,女生有多少人?(3)男生16人,女生人数比男生人数多多少人?(4)全班36人,男生有多少人?3、等候公共汽车的人整齐的排成一排,小明也在其中。

他数了数,排在他前面的人数是总人数的2/3,排在他后面的是总人数的1/4.小明排在第几位?4、 甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是元.在人民市场,甲买86一双运动鞋花去了所带钱的,乙买一件衬衫花去了人民币元.这样两人身上所剩的钱4916正好一样多.问甲、乙两人原先各带了多少钱?【巩固】一实验五年级共有学生152人,选出男同学的和5名女同学参加科技小组,剩下的男、女人111数正好相等。

六年级奥数专题讲解:分数与百分数的应用

六年级奥数专题讲解:分数与百分数的应用

六年级奥数专题讲解:分数与百分数的应用
六年级奥数专题讲解:分数与百分数的应用
基本概念与性质:
分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的`大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:
①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。

最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。

常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。

有以下三种情况:A、分量发生变化,总量不变。

B、总量发生变化,但其中有的分量不变。

C、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

六年级数学百分数,分数,小数,面积奥数题

六年级数学百分数,分数,小数,面积奥数题

六年级数学百分数,分数,小数,面积奥数题摘要:一、六年级数学百分数的概念和应用1.百分数的定义2.百分数与分数、小数的关系3.百分数的应用题二、六年级数学分数的概念和运算1.分数的定义2.分数的分类3.分数的运算方法4.分数在实际问题中的应用三、六年级数学小数的概念和运算1.小数的定义2.小数的分类3.小数的运算方法4.小数在实际问题中的应用四、六年级数学面积的概念和计算1.面积的定义2.面积的计算公式3.面积在实际问题中的应用五、六年级数学奥数题解析1.百分数、分数、小数、面积的综合应用2.奥数题解题技巧和方法正文:一、六年级数学百分数的概念和应用百分数是表示一个数是另一个数的百分之几的数,它是一个比值,可以用于表示比例、增长、降低等概念。

在实际生活中,百分数经常用于统计、分析数据,帮助我们更好地理解和掌握事物的发展变化。

例如,某班级男生占60%,女生占40%,这里的60%和40%就是百分数。

二、六年级数学分数的概念和运算分数是表示一个整体被分成若干份中的一份或几份的数。

分数分为整数分数和真分数,整数分数等于1,真分数小于1。

分数的运算包括加、减、乘、除等运算,这些运算需要遵循一定的运算规则。

在实际问题中,分数可以用于表示部分与整体的关系,帮助我们更好地理解和解决实际问题。

例如,一个蛋糕分给两个人,每个人得到蛋糕的1/2。

三、六年级数学小数的概念和运算小数是整数和分数之间的数,它可以表示为有限小数或无限循环小数。

小数分为纯小数和混小数,纯小数整数部分为零,混小数整数部分不为零。

小数的运算方法与分数相似,也需要遵循一定的运算规则。

在实际问题中,小数可以用于表示精确的数值,帮助我们更好地理解和解决实际问题。

例如,购买一件商品,价格是3.5元。

四、六年级数学面积的概念和计算面积是表示平面图形的大小,通常用平方单位来表示。

计算面积需要使用相应的面积公式,例如矩形的面积公式是长乘以宽,三角形的面积公式是底乘以高除以2。

(整理)奥数 六年级 千份讲义 378 第10讲——分数百分数应用题.

(整理)奥数 六年级 千份讲义 378 第10讲——分数百分数应用题.

一、知识点概述分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几? 方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.891199÷=1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题第10讲分数百分数应用题教学目标知识点拨二、怎样找准分数应用题中单位“1”(一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

奥数百分数应用题

奥数百分数应用题

奥数百分数应用题 SANY GROUP system office room 【SANYUA16H-小学六年级奥数题——分数、百分数应用题1.一列火车从甲地开往乙地,如果将车速提高20%,可以比原计划提前1小时到达;如果先以原速度行驶240千米后,再将速度提高25%,则可提前40分钟到达.求甲、乙两地之间的距离及火车原来的速度。

2.甲、乙、丙三人合作生产一批机器零件,甲生产的零件数量的一半与乙生产的零件数量的五分之三相等,又等于丙生产的零件数量的四分之三,已知乙比丙多生产50个零件,问:这批零件共有多少个?3.菜园里西红柿获得丰收,收下全部的3/8时,装满3筐还多24千克,收完其余部分时,又刚好装满6筐,求共收西红柿多少千克?4.服装厂一车间人数占全厂的25%,二车间人数比一车间少1/5,三车间人数比二车间多3/10,三车间是156人,这个服装厂全厂共有多少人?5.二年级两个班共有学生90人,其中少先队员有71人,又知一班少先队员占本班人数的3/4,二班少先队员占本班人数的5/6,求两个班各有多少人?参考答案:1.甲、乙两地相距540千米,原来火车的速度为每小时90千米。

2.7503.3844.6005.一班48人,二班42人六百分数应用题(2)年级班姓名得分一、填空题1.甲数比乙数少20%,那么乙数比甲数多百分之.2.每天水分排出量(单位为毫升)如图所示.由肺呼出的水分占每天水分排出的百分之.(400:肺呼出;500:;100:固体废物;1500:水性废物)3.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%.那么,这堆糖中有奶糖块.4.把25克盐放进,制成的这种盐水,含盐量是百分之几有200克这样的盐水,里面含盐克.5.一个有弹性的球从A 点落下到地面,弹起到B 点后又落下高20厘米的平台上,再弹起到C 点,最后落到地面(如图).每次弹起的高度都是落下高度的80%,已知A 点离地面比C 点离地面高出68厘米,那么C 点离地面的高度是厘米..100 500 400 150A B C6.某次会议,昨天参加会议的男代表比女代表多700人,今天男代表减少10%,女代表增加了5%,今天共1995人出席会议,那么昨天参加会议的有人.7.有甲、乙两家商店,如果甲店的利润增加20%,乙店的利润减少10%,那么这两店的利润就相同,原来甲店的利润是原来乙店的利润的百分之.8.开明出版社出版某种书.今年每册书的成本比去年增加10%.但是仍保持原售价,因此每本盈利下降了40%,但今年的发行册数比去年增加80%,那么今年发行这种书获得的总盈利比去年增加的百分数是.9.甲、乙二人分别从A 、B 两地同时出发,相向而行,出发时他们的速度比是3:2.他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B 地时,乙离A 还有14千米.那A 、B 两地间的距离是.10.有两堆棋子,A 堆有黑子350个和白子500个,B 堆有黑子400个和白子100个,为了使A 堆中黑子占50%,B 堆中黑子占75%,要从B 堆中拿到A 堆;黑子. 个,白子个.二、解答题11.有一位精明的老板对某商品用下列办法来确定售价:设商品件数是N ,那么N 件商品售价(单位:元)按:每件成本?(1+20%)?N 算出后,凑成5的整数倍(只增不减),按这一定价方法得到:1件50元;2件95元;3件140元;4件185元;…,如果每件成本是整元,那么这一商品每件成本是多少元12.盈利百分数=买入价买入价买出价-?100% 某电子产品去年按定价的80%出售,能获得20%的盈利,由于今年买入价降低,按同样定价的75%出售,却能获得25%的盈利,那么去年买入价今年买入价是多少13.北京九章书店对顾客实行一项优惠措施:每次买书200元至499.99元者优惠5%,每次买500元以上者(包含500元)优惠10%.某顾客到书店买了三次书,如果第一次与第二次合并一起买,比分开买便宜13.5元;如果三次合并一起买比三次分开买便宜38.4元.已经知道第一次的书价是第三次书价的85,问这位顾客第二次买了多少钱的书.14.有A 、B 、C 三根管子,A 管以每秒4克的流量流出含盐20%的盐水,B 管以每秒6克的流量流出含盐15%的盐水,C 管以每秒10克的流量流出水.C 管打开后开始2秒不流,接着流5秒,然后又停2秒,再流5秒…三管同时打开,1分种后都关上,这时得到的混合液中含盐百分之几———————————————答案——————————————————————1. 20%?(1-20%)=25%2. 400?(400+500+100+1500)=16%3. 16?[(1-25%)?25%-(1-45%)?45%]=9(块)4. 含盐量是:%20%1001002525=⨯+ 200克这样的盐水里面含盐200?20%=40克5. [68+20?(1-80%)]?(1-80%?80%)-68=132(厘米)6. (1995-700?90%)?(1+5%+90%)?2+700=2100(人)7. (1-10%)?(1+20%)=75%8. 假设每册书成本为4元,售价5元,每册盈利1元,而现在成本为4?(1+10%)=4.4元,售价仍为5元,每册盈利0.6元,比原来每册盈利下降了40%.但今年发行册数比去年增加80%,若去年发行100册,则今年发行100?(1+80%)=180(册).原来盈1?100=100(元),现在盈利0.6?180=108(元).故今年获得的总盈利比去年增加了(108-100)?100=8%.9.相遇到后,甲乙速度之比为1?(1+20%):⨯32(1+30%)=18:13,故A 、B 两地之间的距离是14?4513185253=⎪⎭⎫ ⎝⎛÷-(千米) 10.设要从B 堆中拿到A 堆黑子x 个,白子y 个,则有:()()[]()()[]⎩⎨⎧⨯++-=-⨯+++=+%75100400400%50500350350y x x y x x 解得x =175,y =25. 11. 45?[(1+20%)?1]=37.512. [75%?(1+25%)]?[80%?(1+20%)]=109. 13. 第一次与第二次共应付款13.5?5%=270(元),故第三次书价必定在 500-270=230(元)以上,这样才能使三次书价总数达到优惠10%的钱数.如果分三次购买,第三次的书价也能优惠5%,从而有:第三次书价总数为518-270=248(元)第一次书价总数为24885⨯=155(元) 第二次书价总数为270-155=115(元)14.因60?(5+2)=8…4,故C 管流水时间为5?8+2=42(秒),从而混合液中含盐百分数为()()%10%1004210606460%156%2040=⨯⨯+⨯+⨯⨯+⨯ 在日常生活中和生产中我们经常会遇到一些百分数应用题。

六年级下册数学奥数讲义-分数、百分数应用题(二)(无答案)全国通用

六年级下册数学奥数讲义-分数、百分数应用题(二)(无答案)全国通用

1
,第二天比
2
【巩固】 迎 春农机厂计划生产一批插秧机,现已完成计划的 划产量的 16%.那么,原计划生产插秧机台.
56%,如果再生产 5040 台,总产量就超过计
【例 9】 某运输队运一批大米. 第一天运走总数的 1 多 60 袋,第二天运走总数的 1 少 60 袋.还剩下 220
5
4
袋没有运走。这批大米原来一共有多少袋?
我国人口是部分数, 世界人口就是单
位“ 1”。
解答题关键:只要找准总数和部分数,确定单位“
1”就很容易了。
(二)、两种数量比较
分数应用题中,两种数量相比的关键句非常多。有的是“比”字句,有的则没有“比”字,而是
带有指向性特征的“占”、“是”、“相当于”。在含有“比”字的关键句中,比后面的那个数量通
常就作为标准量,也就是单位“ 1”。
分数、百分数应用题(二)
知识框架
一、 知识点概述:
分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一
方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”
之间的对应是解题的关键. 关键: 分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称
【例 6】 一个机关精简机构后有工作人员 120 人,比原来工作人员少 40 人,精简了百分之几?
【巩固】 小 强看一本书,每天看 15 页, 4 天后加快进度,又看了全书的 多少页?
2 ,还剩下 30 页,这本故事书有 5
【例 7】 有男女同学 325 人,新学年男生增加 25 人, 女生减少 5%,总人数增加 16 人,那么现有男同学 多少人?

(完整版)分数百分数应用题典型解法的整理和复习

(完整版)分数百分数应用题典型解法的整理和复习

分数(百分数)应用题典型解法的整理和复习分数(百分数)应用题是小学数学应用题的主要内容之一,它是整、小数倍数关系应用题的继续和深化,是研究数量之间份数关系的典型应用题。

分数应用题涉及的知识面广,题目变化的形式多,解题的思路宽,既有独特的思维模式,又有基本的解题思路。

小学即将毕业阶段,如何通过分数(百分数)应用题方法的复习,让孩子们掌握一些基本解题方法,感悟数学的基本思想,从而达到培养初步的逻辑思维能力和运用所学知识解决实际问题能力之目的,笔者根据长期的教学实践和体会,总结出以下一些典型方法,以飨读者。

一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。

画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。

1【例1】一桶油第一次用去-,第二次比第一次多用去20千克,还剩下22千克。

原5来这桶油有多少千克?[分析与解]| ■克剩下師克I _________ J_________ I _____________ I ______________* 7------ 卜--------------- *----------------- "第一挨用去第二;ir用去1 1从图中可以清楚地看出:这桶油的千克数X(1 -------------------- )=20+225 5则这桶油的千克数为:(20+22)-(1- 1—1)=70 (千克)5 5【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数X(1 —20%—50%)=290+10则这堆煤的千克数为:(290+10)-(1—20%—50%)=1000 (千克)、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、知识点概述
分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.
关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系
例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.
(2)甲比乙多
1
8
,乙比甲少几分之几? 方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191
889
÷=.
891
199
÷=
1. 分析题目确定单位“1”
2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题
第10讲
分数百分数应用题
教学目标
知识点拨
二、怎样找准分数应用题中单位“1”
(一)、部分数和总数
在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:
我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较
分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),
解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量
有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

需要将题目文字完善成我们熟悉的类似带“比”的文字,然后在分析。

例如:水结成冰后体积增加了,冰融化成水后,体积减少了。

例题精讲
【巩固】 一实验五年级共有学生152人,选出男同学的
1
11
和5名女同学参加科技小组,剩下的男、女人数正好相等。

五年级男、女同学各有多少人?
【巩固】 五年级有学生238人,选出男生的
1
4
和14名女生参加团体操,这时剩下的男生和女生人数一样多,问:五年级女生有多少人?
【巩固】 把金放在水里称,其重量减轻
119,把银放在水里称,其重量减轻1
10
.现有一块金银合金重770克,放在水里称共减轻了50克,问这块合金含金、银各多少克?
例题3
3
例题2
2
例题1
1
【巩固】 二年级两个班共有学生90人,其中少先队员有71
人,又知一班少先队员占全班人数的
3
4
,二班少先队员占全班人数的
5
6
,求两个班各有多少人?
【巩固】 甲乙两班的同学人数相等,各有一些同学参加课外天文小组,已知甲班参加的人数恰好是乙班
未参加人数的三分之一,乙班参加人数恰好是甲班未参加人数的四分之一,问甲班没有参加的人数是乙班没有参加的人数的几分之几?
例题6
6
例题5
5
例题4
4
【巩固】 某校男生比女生多
3
7
,女生比男生少几分之几?
【巩固】 (2009年五中小升初入学测试题)工厂原有职工128人,男工人数占总数的
1
,后来又调入男例题10
10
例题9
9
例题8
8
例题7
7
职工若干人,调入后男工人数占总人数的
2
5
,这时工厂共有职工 人.
【巩固】 有甲、乙两桶油,甲桶油的质量是乙桶的
5
2
倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的
4
3
倍,乙桶中原有油 千克.
【巩固】 把100
个人分成四队,一队人数是二队人数的113倍,一队人数是三队人数的114
倍,那么四队
有多少个人?
例题13
13
例题12
12
例题11
11
【巩固】 甲、乙、丙三人共同加工一批零件,甲比乙多加工20个,丙加工零件数是乙加工零件数的
45
,甲加工零件数是乙、丙加工零件总数的5
6
,则甲、丙加工的零件数分别为 个、 个.
【巩固】 甲、乙、丙、丁四个筑路队共筑1200米长的一段公路,甲队筑的路是其他三个队的1
2 ,乙队筑
的路是其他三个队的1
3 ,丙队筑的路是其他三个队的1
4 ,丁队筑了多少米?
【巩固】 五(一)班原计划抽1
5
的人参加大扫除,临时又有2个同学主动参加,实际参加扫除的人数是其余
人数的1
3
.原计划抽多少个同学参加大扫除?
例题15
15
例题14
14
【巩固】 某校学生参加大扫除的人数是未参加大扫除人数的
1
4
,后来又有20名同学参加大扫除,实际参加的人数是未参加人数的
1
3
,这个学校有多少人?
【巩固】 某班一次集会,请假人数是出席人数的
9
1
,中途又有一人请假离开,这样一来,请假人数是出席人数的
22
3
,那么,这个班共有多少人?
例题18
18
例题17
17
例题16
16
【巩固】 某工厂对一、二两个车间的职工进行重组,将原来的一车间人数的
1
2
和二车间人数的13分到一
车间,将原来的一车间人数的13和二车间人数的1
2
分到二车间,两个车间剩余的140人组成劳
动服务公司,现在二车间人数比一车间人数多1
17
,现在一车间有 人,二车间有
人.
例题21
21
例题20
20
例题19
19
【巩固】 水结成冰后体积增大它的
1
10
. 问:冰化成水后体积减少它的几分之几?
2
例题23
23
例题22
22
练习1
1
家庭作业
-------------
-------------
6
练习4
4
练习3 3。

相关文档
最新文档