2019年小学六年级奥数题-专题训练之比和比例应用题
六年级奥数题比和比1

六年级奥数题比和比1比和比例(一)11、小明和小方各走一段路程,小明走的路程比小方多,小方用的时间比小明 51多。
小明和小方的速度之比是多少? 82、东街小学六年级有学生46人,分成三个课外科技小组。
第一组与第二组人数比是2:3,第一组与第三组的人数比是3:4。
三个组各有多少人?3、一列火车3小时行驶150千米。
从A地到B地有240千米,需要行几小时?如果速度加快20%,要行多少小时?4、有一自助餐厅,规定每次每人用餐费是:先生交30元,女士交20元,儿童交10元。
某一天前来用餐的先生与女士人数之比是2:9,女士与儿童的人数之比是3:7,共收到所交的用餐费9450元。
求这一天用餐的先生、女士和儿童的人数。
125、圆A和圆B一局部重叠,重叠局部的面积是圆A的,也是圆B的,求A、B 515的面积比。
6、某高速公路收费站对于过往车辆收费标准是:大客车30元,小客车15元,小轿车10元。
某日通过该收费站的大客车和小客车数量之比是5:6,小客车与小轿车之比是4:11,收取小轿车的通行费比大客车多210元。
求这天三种车辆通过的数量。
比和比例〔二〕111、小军行走的路程比小红多,而小红行走所用的时间却比小军多,求小军 410和小红的速度比。
2、甲、乙两个正方体棱长的比是1:2,求他们的外表积的比和体积的比。
3、白玉兰学校有运发动108人,分成甲、乙、丙三个队进行训练,甲队与乙队人数之比为2:3,乙队与丙队的人数之比为3:4,求各队的人数。
14、三个运输队,A队有载重3吨的汽车8辆,B队有载重4吨的汽车5辆,C 2队有载重5吨的汽车4辆。
把运输612吨货物的任务按他们的运输能力分配给三个队,各应分配多少吨?5、甲、乙、丙三人共同种树,他们种树棵数的比是3:4:5,丙比甲多种6棵?问三人各种树多少棵?6、海水中水与盐的比是183:17。
现在要使它改变成水与盐之比为19:1,在400千克海水中应掺入多少千克清水?7、一根木材,据成四段,付锯板费8.4元,如果锯成5段,应付锯板费多少元?8、一次爬山活动,路程为18千米,分为上坡、平路和下坡三段,各段路长之比是2:1:3,而走各段路程所用的时间之比为5:4:6。
六年级:比和比例应用题(奥数培优有难度)

六年级:比和比例应用题(奥数培优有难度)例1 淘淘和笑笑原有邮票张数的比是5:4,如果淘淘给笑笑48张后,淘淘和笑笑的张数比是3:4,淘淘原来有多少张?解析如下:练习1:甲,乙两个建筑队原有水泥的重量之比是4:3,当甲队给乙队54吨水泥后,甲乙两队水泥重量之比是3:4,原来甲队有多少水泥?(答案:216吨)例2 某学校有若干名学生参加电视邀请赛,其中男生人数与女生人数的比为8:5,后来又有20名女生报名参赛,这时女生人数占参赛总人数的 5/11 。
现在参赛的学生共有多少人?解析如下:练习2 某校图书室有图书210本,其中新书占5/7,又买进一些新书后,新书本数与现在图书本数的比是4:5,现在图书室一共有多少新书?(答案:240本)例3 有一袋糖分配给甲,乙,丙三人,三人依次所得数目之比是5:4:3,如果把糖重新分配给甲,乙,丙三人,使其比依次为7:6:5,则其中一人会比原来所得的数目多10颗,求此人原来所得的数目。
解析如下:练习3 马小跳和刘超,唐飞三人斗地主,游戏前,三人游戏币之比是6:5:4,游戏结束后,游戏币之比是5:4:3,其中一个人赢了200枚,那么这个人是?他开始有多少游戏币?(答案:马小跳,4800枚)例4 车过河需要交渡费3元,马过河需要交渡费2元,人过河需要交渡费1元。
某天过河的车与马数目比是2:9,马和人数目比是3:7,共收渡费945元,则这天车,马,人数目各是?解析如下:练习4 某商贩按大个桃子每个3角,小个桃子每个2角的价格卖出了一批桃子,共收51元。
已知他卖出的桃子大小个数比是8:5,则卖出的大小桃子各有多少个?(答案:卖出大桃120个,小桃75个)例5 一个盒子里有黑棋子和白棋子若干,若取出一粒黑子,则余下的黑白数比是9:7,若放回黑子,再取出一粒白子,则余下黑白之比是7:5,那么盒子原有黑比白多多少?解析如下:练习5 同学周末登山,男背红包,女背蓝包,他们每人只能看到背包,其中一位男生说:我看到的红蓝包之比是5:3,另一女生说:我看到的蓝包是红包的一半。
(完整)六年级数学比和比的应用题

一、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10= 23(比值通常用分数表示,也可以用小数或整数表示)3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
4、 比和除法、分数的联系:二、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
三、化简比与求比值的区别1、 求比值 (前项除以后项的商叫做比值。
比值是一个数) 方法:整数比或者小数比求比值,可以把它写成分数形式(后项前项),再把它约分,约成最简分数或整数。
这个结果就是比值。
练习:14:35 120:30 0.25:2 1.8:2.4 方法:分数比,可以把它看成分数除法来做,求得的结果就是比值。
58 ∶56 14:7152、 化简比 (最后结果是一个比,且是前项和后项只有公因数1,而不是一个数)方法:可以采用求比值的方法,先求比值,再把比值转化为最简整数比。
(比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
)练习: 14:35 120:30 0.25:2 1.8:2.4 58 ∶56练习一1、两个数( )又叫做两个数的( )。
2、 如果A ∶B=C ,那么A 是比的( ),B 是比的( ),C 是比的( )。
3、4÷5=( )∶( )=()()4、从A 地到B 地共180千米,客车要行2小时,货车要行3小时。
客车所行的路程与所用时间的比是( ),比值是( );客车所用的时间与货车所用的时间比是( ),比值是( );货车与客车的速度比是( ),比值是( );客车与货车所行的路程比是( ),比值是( )。
小学六年级奥数第2课《比和比例》试题附答案

小学六年级上册数学奥数知识点讲解第2课《比和比例》试题附答案第二讲比和比例在应用题的各种类型中,有一类与数量之间的(正、反)比例关系有关. 在解答这类应用题时,我们需要对题中各个量之间的关系作出正确的判断.成正比或反比的量中都有两种相关联的量.一种量(记作X)变化时另一种量(记作y)也随着变化.与这两个量联系着,有一个不变的量(记为k). 在判断变量x与谣否成正、反比例时,我们要紧紧抓住这个不变量k.如果不变量k是变量y 与x的商,即在x变化时y与x的商不变:工=k,那么y与x成正比例;如果k是y与x的积,即在x变化时,y与x的积不变:xy=k,那么y与x 成反比例.如果这两个关系式都不成立,那么y与x不成(正和反)比例.下面我们从最基本的判断两种量是否成比例的例题开始.例1下列各题中的两种量是否成比例?成什么比例?①速度一定,路程与时间.②路程一定,速度与时间.③路程一定,己走的路程与未走的路程.④总时间一定,要制造的零件总数和制造每个零件所用的时间.⑤总产量一定,亩产量和播种面积.⑥整除情况下被除数一定,除数和商.⑦同时同地,竿高和影长.⑧半径一定,圆心角的度数和扇形面积.⑨两个齿轮啮合转动时转速和齿数.⑪圆的半径和面积.(11)长方体体积一定,底面积和高.(12)正方形的边长和它的面积.习题二解答321.24+ (自一黑)=120 m ,3120X - = 72 (米),2120X - = 48 (米),72 X 48= 3456 (平方米).2.120 + 2 = 60 (米),360X-= 36 (米),60X-= 24 (米),36X24 = 864 (平方米)・5 + 3=8,96 X G = 60筐(橘子),O96X -= 36筐(苹果). 84.设剩下的任务还需x天完成.25% 1-25% = ,25%x=75%X5,x=15.5.设一件上衣与一条裤子的价钱之比是1 : x,则小强和小明用去钱数的比是:l + 2x 4 1 + x =?3(1 + 2x) = 4 (1 + x),3+ 6x= 4 + 4x,2x=l,1X= 2,7x1 = 3. 5 (元)(一条裤子). 乙3276.6+(齐亍一百X2)X百7 = 126 (页).7.设乙车行完全程用x小时.13x = 2X5-,乙2x= 3y,1+(3+』)=2:(小时).3 三545328.顺水船速:逆水船速=(21-12):(7-4)=3: 1.附:奥数技巧分享分享四个奥数小技巧。
小学六年级奥数:比和比例应用题

比和比例应用题知识要点:例1: 甲乙两站间的铁路长360千米,两列火车同时从两站相向开出,252小时相遇,相遇时两车所行路程的比是8:7.两列火车每小时各行多少千米?例2:某工厂有甲乙两个车间,甲车间与乙车间人数之比为3:5.如果从甲车间调150人到乙车间,则甲车间与乙车间的人数比为3:7.求原来两个车间各有多少人?例3、某小学四五六年级共有学生820人,已知六年级学生人数的21等于五年级学生人数的52,六年级学生人数的31等于四年级学生人数的72。
那么四、五、六年级各有学生多少人?同步练习:例4、某班一次数学考试中,平均成绩是88分,男生平均成绩是85.5分,女生平均成绩是91分,求这个班级男生与女生的人数之比是多少?例5、一辆车在AB两站之间行驶,往返一次共用了5小时,汽车去时每小时行45千米,回来时每小时行30千米。
求AB两站之间的距离是多少千米?同步练习:1、有一块长方形土地,它的周长是500米,长与宽的比是3:2.求这个长方形的面积是多少平方米?2、甲乙两个粮仓共存粮4000吨,甲仓库运进950吨,而乙仓库运出450吨后,甲乙两仓库存粮的吨数之比是8:7.求甲乙两仓库原来各存粮多少吨?3、甲乙两校原有图书的比是7:5,如果甲校给乙校600本,那么甲乙两校的图书之比是1:2.甲校原有图书图书多少本?4、一班和二班的人数比是5:6,如果将二班的10名同学调到一班去,则一班和二班的人数比为6:5.求两个班原来各有多少人?5、一个长方体,长与宽的比是4:3,宽与高的比是5:4,体积是450立方米。
那么这个长方体的长、宽、高各是多少米?6、甲乙丙三人分207只贝壳,甲每取走5只乙就取走4只,乙每取走5只丙就取走6只。
那么最后三人各分到多少只贝壳?7、在献爱心捐款活动中,六年一中队平均每人捐款5元。
其中男生平均每人捐款4元,女生平均每人捐5.8元。
求六年一中队男生与女生人数之比。
8、某停车厂停放着若干辆两轮摩托车和若干小轿车,车的总辆数与车的轮子总数之比是3:7.那么摩托车的辆数与小轿车的辆数之比是多少?9、两支成分不同但长度相同的蜡烛,其中一只以均匀速度要3小时烧完,另一支则可以燃烧4小时。
小学六年级奥数比和比例问题、发车问题练习题

小学六年级奥数比和比例问题、发车问题练习题1.小学六年级奥数比和比例问题练习题篇一(1)用同样的砖铺地,铺36平方米要用1236块,铺90平方米要用多少块砖?这道题里的()是一定的。
A、总面积B、每块砖的面积C、砖的。
总块数(2)下面两种量成正比例的是()。
A、分数值一定,分数的分子和分母B、利息一定,利率和本金C、长方体的体积一定,底面积和高(3)在一定的时间里,做一个零件所用的时间与所做零件的个数()。
A、成正比例B、成反比例C、不成比例(4)平行四边形的底一定,高和面积()。
A、成正比例B、成反比例C、不成比例(5)王强看一本故事书,每天看的页数和所用的天数()。
A、成正比例B、成反比例C、不成比例2.小学六年级奥数比和比例问题练习题篇二一、选择正确答案的序号填在括号内。
1.下面第()组的两个比不能组成比例。
①8:7和14:16②0.6:0.2和3:1③19:110和10:92、在钟面上,分针和时针旋转速度的比是()。
①60:1②360:1③12:13、因为3a=4b,所以()。
①a∶b=3∶4②a∶4=3∶b③b∶3=a∶4④3∶a=4∶b二、应用题:1、合唱组男女生人数的比是5∶7,其中有女生25人,这个合唱组男生多少人?1、一辆客车和一辆小汽车的速度比是1:2,如果小汽车的速度是120千米,那么客车的速度是多少千米?2、花园小区1号楼的实际高度是45米,它的高度与模型高度的比是500:1。
模型的高度是多少厘米?3、用某洗洁精洗水果以1:1000稀释,现在有3000毫升的水,要加入多少毫升的洗洁精?3.小学六年级奥数发车问题练习题篇三1、小红在环形公路上行走,每隔6分钟就可以看见一辆公共汽车迎面开来,每隔9分钟就有一辆公共汽车从背后超过她。
如果小红步行的速度和公共汽车的速度各自都保持一定,而汽车站每隔相等的时间向相反的方向各发一辆公共汽车,那么汽车站发车的间隔时间是多少?2、小明从东城到西城去,一共用了24分钟。
六年级比和比例应用题

六年级比和比例应用题一、比和比例的基础知识1. 比的意义- 两个数相除又叫做两个数的比。
例如:公式,其中公式是前项,公式是后项,公式是比号。
- 比值是比的前项除以后项所得的商,如公式的比值为公式。
2. 比例的意义- 表示两个比相等的式子叫做比例。
例如:公式,其中公式和公式是比例的外项,公式和公式是比例的内项。
- 比例的基本性质:在比例里,两个外项的积等于两个内项的积。
如在公式中,公式。
二、比和比例应用题类型及解析1. 按比例分配问题- 题目:学校把公式本图书按照公式分给四、五、六年级,每个年级各分得多少本图书?- 解析:- 首先求出总份数:公式(份)。
- 然后计算每份的本数:公式(本)。
- 四年级分得的本数:公式(本)。
- 五年级分得的本数:公式(本)。
- 六年级分得的本数:公式(本)。
2. 比例尺问题- 题目:在一幅比例尺为公式的地图上,量得甲、乙两地的距离是公式厘米,那么甲、乙两地的实际距离是多少千米?- 解析:- 根据比例尺的定义,图上距离与实际距离的比等于比例尺。
设甲、乙两地的实际距离是公式厘米。
- 可得公式,根据比例的基本性质公式厘米。
- 因为公式千米公式厘米,所以公式厘米公式千米。
3. 比例关系问题(正比例和反比例)- 正比例题目:一辆汽车公式小时行驶公式千米,照这样的速度,公式小时行驶多少千米?- 解析:- 因为速度一定,路程和时间成正比例关系。
设公式小时行驶公式千米。
- 速度公式路程公式时间,先求出速度为公式(千米/小时)。
- 可列出比例公式,根据比例的基本性质公式,解得公式千米。
- 反比例题目:一间教室,如果用边长为公式分米的方砖铺地,需要公式块。
如果改用边长为公式分米的方砖铺地,需要多少块?- 解析:- 教室地面的面积是一定的,方砖的面积和所需块数成反比例关系。
- 边长为公式分米的方砖面积为公式平方分米,公式块的面积就是公式平方分米。
- 边长为公式分米的方砖面积为公式平方分米。
(完整word版)六年级奥数比例应用题

六年级奥数 比例应用题【指点迷津】比例解题是小学数学综合能力的一个重要方面,这里的比例题主要包括正比例和反比例的应用 。
它常常同分数应用题、工程问题、行程问题等交织在一起,使数量关系变得复杂。
解题的关键在于找出与问题有关的几种相关联的量,并判断它们的关系。
【经典例题】1、小明和小方各走一段路,小明走的路程比小方多15 ,小方用的时间比小明多18 ,小明和小方的速度之比是多少?【思路导航】根据题意,小明和小方路程之比为6 : 5,小明和小方所用的时间的比是8:9,我们把这两个比看作最简整数比,利用路程与时间的关系, 可求出小明和小方的速度之比。
解: 68 : 59 =27:20答:小明和小方的速度之比是27: 20。
【举一反三】1、1. 张师傅和李师傅加工一些零件,张师傅加工的个数比李师傅多16 ,李师傅用的时间比张师傅多18 ; ,张师傅和李师傅每小时加工的个数之比是多少?2.李刚和张亮各走一段路,李刚走的路程比张亮多25 ,张亮用的时问比李刚多38,李刚和张亮的速度之比是多少?【经典例题】2、甲、乙两仓库存货吨数比为4 : 3,如果由甲库中取出8吨放到乙库中,则甲、乙两仓库存货吨数比为4 : 5 ,两仓库原存货总吨数是多少吨?【思路导航】甲库中原来存货占甲、乙两库总数的44+3 =47 ,取出8吨后,那么甲库余下的吨数是甲、乙两库总吨数的 49 ,所以取出的8 吨是占甲、乙两库总数的47 — 49解:8÷(47 — 49 )= 63(吨)答:两仓库原存货总吨数是63吨。
【举一反三】2、1、甲、乙两厂的人数比是7: 6,从甲厂调360人到乙厂后,甲、乙两厂人数的比是2:3, 甲、乙两厂原来一共有多少人?2 甲、乙两工程队的人数比是6: 5,从甲队调50人到乙队后,甲、乙两队人数的比是4 5,甲、乙两队原来一共有 多少人?【经典例题】3、A、B两地相距360 米,前一半时间小华用速度A行走,后一半时间用速度B走完全程,又知A: B =5:4,前一半路程所用时间与后一半路程所用时间的比是多少?【思路导航】全程的一半是360 ÷ 2 = 180(米)第一种速度行:360×55+4=200(米) ,多于一半20米第二种速度行:360×45+4= 160(米) ,少于一半20米第一种速度行的后20米应属于后一半的路程了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年小学六年级奥数题-专题训练之比和比例应用题
例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人?
提示:单价比:成年人:儿童:残疾人=3:2:1
人数比:50:20:1
[练习]甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?
例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元。
已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元。
提示:根据已知条件可先求三种商品的数量比。
[练习]一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克32.4元,混合前的酥糖每千克是多少元?
例3、A、B、C是三个顺次咬合的齿轮。
当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少?
提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例。
习题:
1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?
2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少?
3、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?
4、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个?
附送:
2019年小学六年级奥数题-专题训练之逻辑推理问题 (I)
1、甲、乙、丙、丁四位同学的运动衫上印了不同的号码。
赵说:甲是2号,乙是3号;钱说:丙是4号,乙是2号;孙说:丁是2号,丙是3丙;李说:丁是1号,乙是3号。
又知道赵、钱、孙、李每人都说对了一半,那么,丙的号码是( )号。
2、有一种俱乐部,里面的成员可以分成两类。
第一类是老实人,永远说真话。
第二类是骗子,永远说假话。
某天俱乐部全体成员围着一张圆桌坐下,每个老实人的两旁都是骗子,每个骗子的两旁都是老实人。
记者问俱乐部成员张三:俱乐部共有多少成员?张三回答:有45人。
李四说:张三是老实人,那么李四是老实人还是骗子?
3、一次游泳比赛,由甲、乙、丙、丁四个人参加决赛,赛前他们对比赛各说了一句话。
甲说:我第一,乙第二。
乙说:我第一,甲第四。
丙说:我第一,乙第四。
丁说:我第四,丙第一。
比赛结果无并列名次,且各人都只说对了一半。
那么,丁是第()。
4、30名学生参加数学竞赛,已知参赛者中任何10人里都至少有一名男生,那么男生至少有()人。
5、甲、乙、丙、丁四人进行羽毛球双打比赛,已知:(1)甲比乙年轻;(2)丁比他的两个对手年龄都大;(3)甲比他的同伴年龄大;(4)甲与乙的年龄差距要比丙与丁的年龄差距大。
试判断谁与谁是同伴,并说出四人年龄从小到大的顺序。
6、一次国际足球邀请赛上,来自欧洲、美洲、亚洲、大洋洲、非洲的5支队伍均已到齐了,分组抽签仪式上,几位记者对各队的编号展开了讨论。
A记者:3号是欧洲队,2号是美洲队;B记者:4号是亚洲队,2号是大洋洲队;C记者:1号是亚洲队,5号是非洲队;D记者:4号是非洲队,3号是大洋洲队;E记者:2号是欧洲队,5号是美洲队。
结果,每人都只猜对了一半,那么1号是()队,3号是()队。
7、老师给甲、乙、丙各发一张写着不同整数的卡片。
老师:甲的卡片上写着一个两位整数,乙的卡片上写着一个一位整数,丙的卡片上写着一个比60小的两位整数,且甲的数×乙的数=丙的数。
请大家先看一下自己的数,然后猜一猜其他两位同学的数是多少?
甲:我猜不出其他两个人的数。
丙:我也猜不出其他两个人的数。
甲听了丙的话,问乙:你能猜出我和丙的数吗?
乙:我猜不出你们两人的数。
听到这里,甲:我已经道乙丙的数,乙的数是(),丙的数是()。
对不对?
那么,三个人手中的卡片上的数各是多少?
甲是(),乙是(),丙是()
8、三个盒子里分别装有两个红球,两个白球和一红一白球,但盒子外面的标签都贴错了。
如果只从其中一盒里摸出一个球,就要肯定判断出三个盒子里各装什么球,必须从贴()球的盒子里摸出一个球;若是()色球,则这个盒子装的是()球,那么贴()球的盒子里装的是()球,剩下的盒子里是()球。
9、甲、乙、丙三个学生分别戴着三种不同颜色的帽子,穿着三种不同颜色的衣服去参加一次争办奥运会的活动,已知:
(1)帽子和衣服的颜色都只有红、黄、蓝三种;
(2)甲没戴红帽子,乙没戴黄帽子;
(3)戴红帽子的学生没有穿蓝衣服;
(4)戴黄帽子的学生没有穿红衣服;
(5)乙没有穿黄色衣服。
试问:甲、乙、丙三人各戴什么颜色的帽子?穿什么颜色的衣服?
10、小明、小华、小强、小英和小兰同坐一排,小华、小强和小兰各讲了三句话。
(1)小华:有两个人在我和小强之间。
小明离小强最近。
我和小兰相邻。
(2)小强:我和小兰相邻。
我也和小华相邻。
有两个人在我和小华之间。
(3)小兰:我离小强最近。
我和小华相邻。
有一个人在我和小明之间。
如果每个人的三句话中只有两句是真话,问:坐在正中位置的是谁?
11、A、B、C、D、E、F六个选手进行乒乓球单打的单循环比赛(每人都与其他选手比赛一场),每天同时在三张球台各进行一场比赛。
已知第一天B对D,第二天C对E,第三天D对F,第四天B对C。
问:第五天A与谁对阵?另外两张球台上是谁与谁对阵?。