(完整版)小学六年级奥数题集锦(7种问题全面)汇总
小学六年级奥数题集锦(全面)

小学六年级奥数题集锦搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为 60.甲每小时搬运 6,乙每小时搬运 5,丙每小时搬运4三人共同搬完,需要60 × 2÷(6+ 5+ 4)= 8(小时)甲需丙帮助搬运(60- 6× 8)÷ 4= 3(小时)乙需丙帮助搬运(60- 5× 8)÷4= 5(小时)一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案甲乙丙3人8天完成:5/6-1/3=1/2甲乙丙3人每天完成:1/2÷8=1/16,甲乙丙3人4天完成:1/16×4=1/4则甲做一天后乙做2天要做:1/3-1/4=1/12那么乙一天做:[1/12-1/72×3]/2=1/48则丙一天做:1/16-1/72-1/48=1/36则余下的由丙做要:[1-5/6]÷1/36=6天答:还需要6天某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少答案(100+40)/2.8=50本100/50=2 150/(2+0.5)=60本60*80%=48本48*2.8+2.8*50*12-150=1.2 盈利1.2元育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?答案原来达标人数占总人数的3÷(3+5)=3/8现在达标人数占总人数的9/11÷(1+9/11)=9/20育才小学共有学生60÷(9/20-3/8)=800人甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份每份需要的人数:(60+40)÷20=5人甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人丙村需要的人数:5×5=25人或20+5=25人每人应得的钱数:1350÷25=54元甲村应得的工钱:54×20=1080元乙村应得的工钱:54×5=270元某人到商店买红蓝两种钢笔,红钢笔定价5元,蓝钢笔定价9元,由于购买量较多,商店给予优惠,红钢笔八五折,蓝钢笔八折,结果此人付的钱比原来节省的18%,已知他买了蓝钢笔30枝,那么。
小学六年级奥数试题(通用7篇)

小学六年级奥数试题小学六年级奥数试题(通用7篇)六年级既是我们学习的冲刺阶段,又是我们为升学打基础的关键时期,所以同学们一定要抓住每一次练习的机会,给自己增强实力。
下面是小编为大家整理的小学六年级奥数试题三篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
小学六年级奥数试题篇11、(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。
0.8元一本的练习本有多少本?2、(年龄问题)5年前父亲的年龄是儿子的7倍。
15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?3、(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。
求有多少个学生?有多少个笔记本?4、(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。
求水果店里原来一共有多少个芒果?5、(置换问题)学校买回6张桌子和6把椅子共用去192元。
已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?6、(安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?7、(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克?8、(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?9、(鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题?10、(相遇问题)甲、乙两人同时从相距20xx米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。
这样不断来回,直到甲和乙相遇为止,狗共行了多少米?小学六年级奥数试题篇21、一个整数乘以13后,乘积的最后三位数是123,那么这样的整数中最小的是多少?2、将37拆成若干个不同的质数之和,使得这些质数的乘积尽可能大,那么,这个乘积等于多少?3、一个五位数,五个数字各不同,且是13的倍数,则符合以上条件的最小的数是多少?4、一把钥匙只能开一把锁,现在有4把锁,但不知道哪把钥匙开哪把锁,最多要试几次能配好全部的钥匙和锁?5、用长和宽是4公分和3公分的长方形小木块,拼成一个正方形,最少要用这样的木块多少块?6、100个自然数,他们的总和是10000,在这些数里,奇数的个数比偶数是个数多,那么这些数里至多有多少个偶数?7、975×935×972×(),要使这个连乘积的最后四个数字都是零,在括号内最小应填多少?8、有三个连续自然数,他们依次是12、13、14的倍数,这三个连续自然数中(除13外)是13倍数的那个数最小是多少?9、将进货的单价为40块的商品按50块售出时,每个的利润是10块,但只能卖出500个,已知这种商品每个涨价1块,其销售量就减少10个,为了赚得最多的利润,售价应定为多少?10、一个三角形的三条边长是三个两位的连续偶数,他们的末位数字和能被7整除,这个三角形的周长等于多少?小学六年级奥数试题篇31、(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
小学六年级下册 经典奥数题及答案 最全

小学六年级下册的奥数题及答案一.工程问题:1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?三.数字数位问题1.A和B是小于100的两个非零的不同自然数。
(完整)小学六年级奥数题100道带答案有解题过程

(完整)小学六年级奥数题100道带答案有解题过程姓名:__________班级:__________学号:__________1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的工程由乙单独完成,还需要几天?解:设工程总量为单位“1”,甲的工作效率是1/10,乙的工作效率是1/15,两人合作4天完成的工作量是(1/10+1/15)×4=2/3,剩下的工作量是1-2/3=1/3,那么乙单独完成需要的时间是1/3÷1/15=5天。
思路:先求出合作完成的工作量,再求剩余工作量以及乙完成剩余工作所需时间。
2.一个数的20%比它的3/5少30,这个数是多少?解:设这个数为x,则3/5x-20%x=30,即0.6x-0.2x=30,0.4x=30,解得x=75。
思路:根据数量关系列方程求解。
3.甲乙两车分别从A、B两地同时出发,相向而行,甲车每小时行60千米,乙车每小时行80千米,3小时后两车相距40千米,A、B两地相距多少千米?解:两车3小时行驶的路程之和再加上相距的40千米就是A、B两地的距离,(60+80)×3+40=460千米。
思路:先求两车行驶的路程和,再加上相距距离。
4.一个圆柱的底面半径是2厘米,高是5厘米,求它的侧面积和体积。
解:侧面积=2πrh=2×3.14×2×5=62.8平方厘米,体积=πr²h=3.14×2²×5=62.8立方厘米。
思路:根据圆柱侧面积和体积公式计算。
5.有浓度为20%的盐水80克,要把它变成浓度为40%的盐水,需要加盐多少克?解:设需要加盐x克,根据盐的质量关系可列方程,(80×20%+x)÷(80+x)=40%,即(16+x)÷(80+x)=0.4,16+x=0.4×(80+x),16+x=32+0.4x,0.6x=16,解得x=80/3。
小学六年级奥数题及答案(全面)

小学六年级奥数题及答案(全面)【注意】本文仅供参考学习使用,严禁用于商业目的。
小学六年级奥数题及答案(全面)第一题:计算题1. 求100以内所有偶数的和。
解答:要求100以内所有偶数的和,我们可以从2开始,每次递增2,直到100。
然后将这些偶数相加即可。
2 + 4 + 6 + 8 + ... + 98 + 100 = 2550因此,100以内所有偶数的和为2550。
第二题:几何题2. 在平面直角坐标系内,A(2, 3)和B(-1, -5)为两个点,求线段AB 的长度。
解答:根据两点间距离公式,可以计算出线段AB的长度。
线段AB的长度= √((x2 - x1)² + (y2 - y1)²)代入点的坐标:线段AB的长度= √((-1 - 2)² + (-5 - 3)²)= √((-3)² + (-8)²)= √(9 + 64)= √73因此,线段AB的长度为√73。
第三题:代数题3. 若x² + 5x + 6 的值为15,求x。
解答:根据题意,我们可以列出方程:x² + 5x + 6 = 15将方程转化为标准形式:x² + 5x + 6 - 15 = 0x² + 5x - 9 = 0然后,我们可以使用因式分解或配方法求解此方程。
通过因式分解,可以得到:(x + 3)(x - 2) = 0根据零乘法,我们可以得到两个解:x + 3 = 0 或 x - 2 = 0解方程得到:x = -3 或 x = 2因此,方程的解为x = -3 或 x = 2。
第四题:逻辑题4. 小明、小李、小张三人坐在一个长凳上,从左到右依次是:小明、小李、小张。
已知:- 小明比旁边坐的人大一岁;- 小李比小张大两岁;- 小明的年龄是10岁。
问:小张的年龄是多少岁?解答:根据题意,我们可以列出以下等式:小明的年龄 = 小明旁边坐的人的年龄 + 1小李的年龄 = 小张的年龄 + 2小明的年龄 = 10带入已知条件,我们可以得到以下等式:10 = 小明旁边坐的人的年龄 + 1小李的年龄 = 小张的年龄 + 2根据第一个等式,可以得到:小明旁边坐的人的年龄 = 10 - 1= 9根据第二个等式,可以得到:小张的年龄 = 小李的年龄 - 2此时,我们需要知道小李的年龄。
(完整版)小学六年级奥数题集锦(7种问题全面)汇总

小学六年级奥数题集锦1.工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
小学六年级奥数难题100道及答案(完整版)

小学六年级奥数难题100道及答案(完整版)1. 一个数的2/3加上4等于这个数的1/2,求这个数。
解:设这个数为x,根据题意可得方程:(2/3)x + 4 = (1/2)x。
解得x = -24。
2. 一个水池,第一天放水1/3,第二天放水1/4,第三天放水1/5,第四天放水1/6,最后剩下15立方米的水,求水池原来有多少立方米的水。
解:设水池原来有x立方米的水,根据题意可得方程:x * (1 - 1/3 - 1/4 - 1/5 - 1/6) = 15。
解得x = 60。
3. 一个长方形的长比宽多4厘米,周长是32厘米,求长方形的长和宽。
解:设长方形的长为x厘米,宽为y厘米。
根据题意可得方程组:x - y = 4;2x + 2y = 32。
解得x = 10,y = 6。
所以长方形的长为10厘米,宽为6厘米。
4. 一个数的3倍减去5等于这个数的2倍加上7,求这个数。
解:设这个数为x,根据题意可得方程:3x - 5 = 2x + 7。
解得x = 12。
5. 一个三角形的三边长分别为a、b、c,已知a + b > c,a + c > b,b + c > a,求三角形的面积。
解:根据海伦公式,三角形的面积S = sqrt[p * (p - a) * (p - b) * (p - c)],其中p = (a + b + c) / 2。
将已知的三边长代入公式即可求得三角形的面积。
6. 一个数的5倍减去8等于这个数的3倍加上12,求这个数。
解:设这个数为x,根据题意可得方程:5x - 8 = 3x + 12。
解得x = 10。
7. 一个正方形的边长增加2厘米,面积增加20平方厘米,求原来正方形的边长。
解:设原来正方形的边长为x厘米,根据题意可得方程:(x + 2)^2 - x^2 = 20。
解得x = 4。
所以原来正方形的边长为4厘米。
8. 一个数的4倍加上6等于这个数的3倍加上18,求这个数。
(完整)小学六年级数学奥数题

六年级数学奥赛题(一)一、计算。
1、1.25×17.6+36.1÷0.8+2.63×12.52、7.5×2.3+1.9×2. 53、1999+999×9994、8+98+998+9998+99998=5、(78.6—0.786×25十75%×21.4)÷15×1997二、填空题1、六(1)班男、女生人数的比是8:7。
(1)女生人数是男生人数的()(2)男生人数占全班人数的()(3)女生人数占全班人数的()(4)全班有45人,男生有()人。
2、甲数和乙数的比是2:5,乙数和丙数的比是4:7,已知甲数是16,求甲、乙、丙三个数的和是()。
3、甲数和乙数的比7:3,乙数和丙数的比是6:5,丙数是甲数的(),甲数和丙数的比是():()。
4、0.08的倒数是(),2.25的倒数是()。
5、一根铁丝长3米,剪去1/3 后还剩()米;一根铁丝长3米,剪去 1/3米后还剩()米。
6、甲、乙合做一件工作,甲做的部分占乙的 2/5,乙做的占全部工作的()。
7、周长相等的正方形和圆形,()的面积大。
8、()÷40=15:()= =0.625=()%9、把0.38、、37%、0.373按从大到小的顺序排列是()。
10、4米是5米的()%,5米比4米多()%,4米比5米少()%11、用一张长5厘米,宽4厘米的长方形纸剪一个最大的圆,这个圆的面积占这张纸面积的()%。
12. 甲、乙、丙三种糖果每千克的价格分别是9元,7.5元,7元.现把甲种糖果5千克,乙种糖果4千克,丙种糖果3千克混合在一起,那么用10元可买____ _千克这种混合糖果。
13、一个月最多有5个星期日,在一年的12个月中,有5个星期日的月份最多有_____个月。
14、奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是星期( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级奥数题集锦1.工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?解:由题意可知1/甲+1/乙+1/甲+1/乙+……+1/甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2又因为1/乙=1/17所以1/甲=2/17,甲等于17÷2=8.5天5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?答案为300个120÷(4/5÷2)=300个可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?答案是15棵算式:1÷(1/6-1/10)=15棵7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?答案45分钟。
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。
1/2÷18=1/36 表示甲每分钟进水最后就是1÷(1/20-1/36)=45分钟。
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?答案为6天解:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1解得x=69.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?答案为40分钟。
解:设停电了x分钟根据题意列方程1-1/120*x=(1-1/60*x)*2解得x=402.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?解:4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只100-62=38表示兔的只数3.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数的个位上的数字之和可以被9整除10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除同样的道理,100~900 百位上的数字之和为4500 同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005从1000~1999千位上一共999个“1”的和是999,也能整除;200020012002200320042005的各位数字之和是27,也刚好整除。
最后答案为余数为0。
2.A和B是小于100的两个非零的不同自然数。
求A+B分之A-B的最小值...解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)前面的 1 不会变了,只需求后面的最小值,此时(A-B)/(A+B) 最大。
对于 B / (A+B) 取最小时,(A+B)/B 取最大,问题转化为求(A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是A/B = 99/1(A+B)/B = 100(A-B)/(A+B) 的最大值是:98 / 1003.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少? 答案为6.375或6.4375因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。
当是102时,102/16=6.375当是103时,103/16=6.43754.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数. 答案为476解:设原数个位为a,则十位为a+1,百位为16-2a根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198解得a=6,则a+1=7 16-2a=4答:原数为476。
5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数. 答案为24解:设该两位数为a,则该三位数为300+a7a+24=300+aa=24答:该两位数为24。
6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?答案为121解:设原两位数为10a+b,则新两位数为10b+a它们的和就是10a+b+10b+a=11(a+b)因为这个和是一个平方数,可以确定a+b=11因此这个和就是11×11=121答:它们的和为121。
7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x根据题意得,(200000+x)×3=10x+2解得x=85714所以原数就是857142答:原数为8571428.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察abcd2376cdab根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。