六年级奥数题及答案-20道题

合集下载

(完整版)小学六年级奥数题附答案

(完整版)小学六年级奥数题附答案

小学六年级奥数题1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。

”小明原有玻璃球多少个?6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A 仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7.一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。

第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。

小学六年级奥数题集锦及答案

小学六年级奥数题集锦及答案

小学六年级奥数题集锦及答案工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成;如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九;现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成;现在先请甲、丙合做2小时后,余下的乙还需做6小时完成;乙单独做完这件工作要多少小时4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天;已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成5.师徒俩人加工同样多的零件;当师傅完成了1/2时,徒弟完成了120个;当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵;单份给男生栽,平均每人栽几棵7.一个池上装有3根水管;甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完;现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只三.数字数位问题2.A和B是小于100的两个非零的不同自然数;求A+B分之A-B的最小值...4.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.;6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.10.如果现在是上午的10点21分,那么在经过28799...99一共有20个9分钟之后的时间将是几点几分四.排列组合问题1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有A 768种B 32种C 24种D 2的10次方中2 若把英语单词hello的字母写错了,则可能出现的错误共有A 119种B 36种C 59种D 48种五.容斥原理问题1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是A 43,25B 32,25 C32,15 D 43,112.在多元智能大赛的决赛中只有三道题.已知:1某校25名学生参加竞赛,每个学生至少解出一道题;2在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:3只解出第一题的学生比余下的学生中解出第一题的人数多1人;4只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是A,5 B,6 C,7 D,83.一次考试共有5道试题;做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%;如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少六.抽屉原理、奇偶性问题1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样答案为213.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同如果能请说明具体操作,不能则要说明理由七.路程问题1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它;问:狗再跑多远,马可以追上它2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒米,两人起跑后的第一次相遇在起跑线前几米6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,轨道是直的,声音每秒传340米,求火车的速度得出保留整数7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子; 8.AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟9.甲乙两车同时从AB两地相对开出;第一次相遇后两车继续行驶,各自到达对方出发点后立即返回;第二次相遇时离B地的距离是AB全程的1/5;已知甲车在第一次相遇时行了120千米;AB两地相距多少千米从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米;如果二人分别至B地,A地后都立即折回;第二次相遇点第一次相遇点之间有千米10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时;如果水流速度是每小时2千米,求两地间的距离11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程;12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米八.比例问题1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分快快快2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几3.甲乙两车分别从两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么两地相距多少千米4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少答案为64:275.某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨;橘子正好占总数的13分之2;一共运来水果多少吨。

六年级奥数试题及答案

六年级奥数试题及答案

六年级奥数试题及答案一、选择题(每题5分,共20分)1. 一个数的3倍加上5等于23,这个数是多少?A. 5B. 6C. 7D. 8答案:B2. 一个正方形的周长是24厘米,它的面积是多少平方厘米?A. 36B. 48C. 64D. 96答案:B3. 一个数的一半加上6等于11,这个数是多少?A. 10B. 8C. 9D. 12答案:A4. 一个数的3倍是48,这个数是多少?A. 16B. 12C. 15D. 18答案:A二、填空题(每题5分,共20分)1. 一个数的4倍是32,这个数是______。

答案:82. 一个数的5倍减去8等于37,这个数是______。

答案:93. 一个数的6倍加上10等于46,这个数是______。

答案:64. 一个数的7倍是49,这个数是______。

答案:7三、解答题(每题15分,共30分)1. 一个数的2倍加上3倍等于45,求这个数。

解:设这个数为x,根据题意得方程:2x + 3x = 45 合并同类项得:5x = 45解方程得:x = 9答:这个数是9。

2. 一个数的4倍减去10等于20,求这个数。

解:设这个数为y,根据题意得方程:4y - 10 = 20 移项得:4y = 30解方程得:y = 7.5答:这个数是7.5。

四、应用题(每题15分,共20分)1. 小明有一本书,他第一天看了全书的1/4,第二天看了全书的1/3,第三天看了全书的1/2,请问小明三天一共看了全书的几分之几?解:1/4 + 1/3 + 1/2 = 3/12 + 4/12 + 6/12 = 13/12答:小明三天一共看了全书的13/12。

2. 一个班级有40名学生,其中男生人数是女生人数的1.5倍,请问这个班级有多少名男生?解:设女生人数为x,则男生人数为1.5x,根据题意得方程:x + 1.5x = 40合并同类项得:2.5x = 40解方程得:x = 16答:这个班级有24名男生。

六年级能学的奥数题及答案

六年级能学的奥数题及答案

六年级能学的奥数题及答案奥数,即奥林匹克数学竞赛,是一种旨在培养学生数学思维和解决问题能力的竞赛形式。

六年级学生学习奥数,不仅可以锻炼他们的数学能力,还能提高逻辑推理和创新思维。

以下是一些适合六年级学生的奥数题目及答案:题目1:小明有3个红球和2个蓝球,他随机从袋子里拿出一个球,然后放回袋子里再拿一次。

请问小明两次都拿到红球的概率是多少?答案:第一次拿到红球的概率是3/5,因为总共有5个球,其中3个是红球。

由于每次拿球后都放回,第二次拿到红球的概率也是3/5。

两次都拿到红球的概率是两个独立事件同时发生的概率,所以是(3/5) * (3/5) = 9/25。

题目2:一个数字钟的时针和分针在12点整重合。

请问在接下来的12小时内,时针和分针会再次重合多少次?答案:在12小时内,时针和分针会重合11次。

因为时针每小时走30度(360度/12小时),而分针每分钟走6度(360度/60分钟)。

每小时分针都会超过时针,除了12点整之外,它们会在每个小时的某个时刻再次重合。

题目3:一个长方形的长是宽的两倍,如果长和宽都增加10厘米,新的长方形的面积比原来的长方形面积大300平方厘米,求原来的长方形的长和宽。

答案:设原来的长方形宽为x厘米,那么长就是2x厘米。

原来的面积是x * 2x = 2x^2平方厘米。

增加后的长为2x + 10厘米,宽为x +10厘米,面积为(2x + 10) * (x + 10)平方厘米。

根据题意,我们有方程:(2x + 10) * (x + 10) - 2x^2 = 300。

解这个方程,我们可以得到x = 5厘米,所以原来的长方形的长是10厘米,宽是5厘米。

题目4:一个数字序列如下:2, 4, 7, 11, ...。

这个序列的第20项是多少?答案:这个序列是一个等差数列,第一项a1=2,公差d=2。

根据等差数列的通项公式an = a1 + (n - 1) * d,我们可以计算出第20项的值:a20 = 2 + (20 - 1) * 2 = 2 + 19 * 2 = 2 + 38 = 40。

小学六年级奥数题50道及答案

小学六年级奥数题50道及答案

小学六年级奥数题50道及答案1. 三个袋子里放着相同数量的红球,黄球和蓝球,共有 10 粒球。

每袋子里各有几粒?答案:每袋子 3 粒2. 某人有 8 支铅笔,4 支钢笔,用它们排成一排,问最多可以排成几排?答案:两排3. 小明有 12 元钱,用它买了 6 个橘子,每个 1 元,还剩几块钱?答案:还剩 6 元4. 大卫有 3 个朋友,他们共分了 20 个苹果,大卫得到几个?答案:大卫得到 6 个苹果5. 一个游乐场有 5 个火车,每辆火车上有 8 个座位,共有多少个座位?答案:共有 40 个座位6. 一个餐厅共有 6 个桌子,每个桌子可以坐 4 人,共可以容纳多少人?答案:共可以容纳 24 人7. 一共有 10 块砖,每堆 3 块,共有几堆?答案:共有 4 堆8. 一共有 8 支铅笔,4 支钢笔,每支铅笔的价格是钢笔的 2 倍,大卫花了 48 元,买了几支钢笔?答案:买了 4 支钢笔9. 请问把12 个正方形拼成一个大正方形,大正方形有几条边?答案:大正方形有 4 条边10. 一共有 12 个苹果,每袋只能装 4 个,共需要几袋?答案:共需要 3 袋11. 一共有 18 个橘子,每篮可以装 6 个,需要几篮?答案:需要 3 篮12. 一共有 10 块砖头,每袋装 2 块,需要几袋?答案:需要 5 袋13. 一共有 9 张书,每盒可以装 3 张,需要几盒?答案:需要 3 盒14. 一共有 5 个小朋友,一共分了 15 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖15. 一共有 10 支铅笔,每盒装 3 支,需要几盒?答案:需要 4 盒16. 一共有 10 个小球,每篮可以装 4 个,需要几篮?答案:需要 3 篮17. 大卫有 6 元钱,用它买了 4 个橘子,每个 1.5 元,还剩几块钱?答案:还剩 0 元18. 一共有 12 支钢笔,每盒可以装 4 支,需要几盒?答案:需要 3 盒19. 一共有 24 个正方形,每排 6 个,一共有几排?答案:一共有 4 排20. 一共有 12 张牌,每人可以得到 3 张,共有几个人?答案:共有 4 个人21. 一共有 9 块蛋糕,每人可以分得 3 块,共有几个人?答案:共有 3 个人22. 一共有 10 瓶饮料,每袋可以装 5 瓶,需要几袋?答案:需要 2 袋23. 一共有 18 个书,每箱可以装 6 个,需要几箱?答案:需要 3 箱答案:一共有 12 粒食物,每袋装 4 粒,需要几袋?答案:需要 3 袋25. 一共有 5 个孩子,一共分了 15 个糖果,每个孩子可以得到几个糖果?答案:每个孩子可以得到 3 个糖果26. 一共有 8 块砖头,每袋装 2 块,需要几袋?答案:需要 4 袋27. 一共有 6 条链子,每盒可以装 3 条,需要几盒?答案:需要 2 盒28. 一共有 10 把伞,每把伞包一个盒子,一共需要几个盒子?答案:一共需要 10 个盒子29. 一共有 7 个苹果,每篮可以装 3 个,需要几篮?答案:需要 3 篮30. 一共有 14 支钢笔,每筒装 4 支,需要几筒?答案:需要 4 筒31. 一共有 12 块橡皮,每盒装 4 块,需要几盒?答案:需要 3 盒32. 一共有 10 个棋子,每盒可以装 2 个,需要几盒?答案:需要 5 盒33. 一共有 9 块布,每袋装 3 块,需要几袋?答案:需要 3 袋34. 一共有 16 小球,每份可以分 4 个,共有几份?答案:共有 4 份35. 一共有 11 个小朋友,一共分了 33 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖36. 一共有 8 支铅笔,每盒装 2 支,需要几盒?答案:需要 4 盒37. 一共有 12 条鱼,每箱可以装 4 条,需要几箱?答案:需要 3 箱38. 一共有 6 块橡皮,每袋装 2 块,需要几袋?答案:需要 3 袋39. 一共有 9 个正方形,每排 3 个,一共有几排?答案:一共有 3 排40. 一共有 12 张牌,每人可以得到 4 张,共有几个人?答案:共有 3 个人41. 一共有 10 瓶苹果汁,每箱可以装 5 瓶,需要几箱?答案:需要 2 箱42. 一共有 11 条狗,每把笼子可以关住 3 条,需要几个笼子?答案:需要 4 个笼子43. 一共有 6 只鸟,每把笼子可以装 2 只,需要几把笼子?答案:需要 3 把笼子44. 一共有 14 颗橘子,每篮可以装 4 颗,需要几篮?答案:需要 4 篮45. 一共有 8 支毛笔,每筒装 4 支,需要几筒?答案:需要 2 筒46. 一共有 9 条鱼,每盒可以装 3 条,需要几盒?答案:需要 3 盒47. 一共有 10 个姑娘,一共分了 20 个糖果,每个姑娘可以得到几个糖果?答案:每个姑娘可以得到 2 个糖果48. 一共有 12 个龙虾,每袋装 4 个,需要几袋?答案:需要 3 袋49. 一共有 7 个箱子,每排可以放下 3 个,一共有几排?答案:一共有 3 排50. 一共有 5 个孩子,一共分了 15 块巧克力,每个孩子可以得到几块巧克力?答案:每个孩子可以得到 3 块巧克力。

小学六年级奥数题50道题及解答(可直接打印)

小学六年级奥数题50道题及解答(可直接打印)

小学六年级奥数题50道题及解答(可直接打印)精品文档练习(一)姓名得分1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?做最好的自己5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自动身的车站,到站时已经是下战书2 点。

甲车每小时行40千米,乙车每小时行45 千米,两地相距几何千米?(交换乘客的时间略去不计)6.学校构造两个课外乐趣小组去郊野活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存食粮32.5吨。

甲仓的存粮吨数比乙仓的4倍少5 吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队配合修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?做最好的本人佳构文档9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,恰好是一把椅子代价的(10-1)倍,由此可求得一把椅子的价钱。

小学六年级奥数题大全

小学六年级奥数题大全

工程问题1.甲乙两个水管单独开,注满一池水,分别需要 20 小时,16 小时. 丙水管单独开,排一池水要 10 小时,若水池没水,同时打开甲乙两水管, 5 小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80 表示甲乙的工作效率9/80×5=45/80 表示 5 小时后进水量1 -45/80=35/80 表示还要的进水量35/80÷ ( 9/80 -1/10) =35 表示还要 35 小时注满答:5 小时后还要 35 小时就能将水池注满。

2.修一条水渠,单独修,甲队需要 20 天完成,乙队需要 30 天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划 16 天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为 1/20,乙的工效为 1/30,甲乙的合作工效为 1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效> 乙的工效。

又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16 天内实在来不及的才应该让甲乙合作完成。

只有这样才能“两队合作的天数尽可能少”。

设合作时间为x 天,则甲独做时间为 ( 16 -x) 天1/20* ( 16 -x) +7/100*x=1x=10答:甲乙最短合作 10 天3.一件工作,甲、乙合做需 4 小时完成,乙、丙合做需 5 小时完成。

现在先请甲、丙合做 2 小时后,余下的乙还需做 6 小时完成。

乙单独做完这件工作要多少小时?解:由题意知,1/4 表示甲乙合作 1 小时的工作量,1/5 表示乙丙合作 1 小时的工作量( 1/4+1/5) ×2=9/10 表示甲做了 2 小时、乙做了 4 小时、丙做了2 小时的工作量。

根据“甲、丙合做 2 小时后,余下的乙还需做 6 小时完成”可知甲做 2 小时、乙做 6 小时、丙做 2 小时一共的工作量为 1。

六年级奥数题及答案-20道题

六年级奥数题及答案-20道题

六年级奥数题及答案-20道题【题-001】抽屉原理有5个小朋友;每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明;这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

【题-002】牛吃草:(中等难度)一只船发现漏水时;已经进了一些水;水匀速进入船内.如果10人淘水;3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完;要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子;全部口朝上;每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”;都不能使9只杯子全部口朝下。

【题-004】整除问题:(中等难度)用一个自然数去除另一个整数;商40;余数是16.被除数、除数、商数与余数的和是933;求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字;使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时;恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时;灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时;比第一周多用了15分钟.第四周他三个管同时打开;灌满一池水用了2小时20分;第五周他只打开甲管;那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克;现在又分别倒入100克和400克的A、B两种酒精溶液;瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍;那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水;另一个钢桶里盛着牛奶;由于牛奶乳脂含量过高;必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶;使其中液体的体积翻了一番;然后我又把B桶里的液体倒进A桶;使A桶内的液体体积翻番.最后;我又将A桶中的液体倒进B桶中;使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体;而在B桶中;水比牛奶多出1升.现在要问你们;开始时有多少水和牛奶;而在结束时;每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时;某年级的学生站成一个实心方阵时(正方形队列)时;还多10人;如果站成一个每边多1人的实心方阵;则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数;如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数;那么这个自然数是11的倍数;例如1001;因为1+0=0+1;所以它是11的倍数;又如1234;因为4+2-(3+1)=2不是11的倍数;所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数;其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分;得分最低的是30分;得同样分的学生不超过3人;每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除;求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班;以均匀速度行驶.他观察来往的公共汽车;发现每隔12分钟有一辆汽车从后面超过他;每隔4分钟迎面开来一辆;如果所有汽车都以相同的匀速行驶;发车间隔时间也相同;那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步;马跑4步的距离狗跑7步;现在狗已跑出30米;马开始追它。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初六年级奥数题及答案20道题(中等难度)【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

【题-002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?【题-013】四位数:(中等难度)某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

问:狗再跑多远,马可以追上它?【题-016】排队:(中等难度)有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有()【题-017】分数方程:(中等难度)若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去。

再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?【题-018】自然数和:(中等难度)在整数中,有用2个以上的连续自然数的和来表达一个整数的方法.例如9:9=4+5,9=2+3+4,9有两个用2个以上连续自然数的和来表达它的方法.【题-019】准确值:(中等难度)【题-020】巧求整数部分题目:(中等难度)(第六届小数报决赛)A 8.8 8.98 8.998 8.9998 8.99998,A的整数部分是_________.【题目答案】【题-001解答】抽屉原理首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的【题-002解答】牛吃草这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。

如果设每个人每小时的淘水量为"1个单位".则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30.船内原有水量与8小时漏水量之和为1×5×8=40。

每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。

船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。

如果这些水(24个单位)要2小时淘完,则需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需12+2=14(人)。

从以上这两个例题看出,不管从哪一个角度来分析问题,都必须求出原有的量及单位时间内增加的量,这两个量是不变的量.有了这两个量,问题就容易解决了。

【题-003解答】奇偶性应用要使一只杯子口朝下,必须经过奇数次"翻转".要使9只杯子口全朝下,必须经过9个奇数之和次"翻转".即"翻转"的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次"翻转",翻转的总次数只能是偶数次.因此无论经过多少次"翻转",都不能使9只杯子全部口朝下。

∴被除数=21×40+16=856。

答:被除数是856,除数是21。

【题-004解答】整除问题∵被除数=除数×商+余数,即被除数=除数×40+16。

由题意可知:被除数+除数=933-40-16=877,∴(除数×40+16)+除数=877,∴除数×41=877-16,除数=861÷41,除数=21,∴被除数=21×40+16=856。

答:被除数是856,除数是21【题-005解答】填数字:解此类数独题的关键在于观察那些位置较特殊的方格(对角线上的或者所在行、列空格比较少的),选作突破口.本题可以选择两条对角线上的方格为突破口,因为它们同时涉及三条线,所受的限制最严,所能填的数的空间也就最小.副对角线上面已经填了2,3,8,6四个数,剩下1,4,5和7,这是突破口.观察这四个格,发现左下角的格所在的行已经有5,所在的列已经有1和 4,所以只能填7.然后,第六行第三列的格所在的行已经有5,所在的列已经有4,所以只能填1.第四行第五列的格所在的行和列都已经有5,所以只能填4,剩下右上角填5.再看主对角线,已经填了1和2,依次观察剩余的6个方格,发现第四行第四列的方格只能填7,因为第四行和第四列已经有了5,4,6,8,3.再看第五行第五列,已经有了4,8,3,5,所以只能填6.此时似乎无法继续填主对角线的格子,但是,可观察空格较少的行列,例如第四列已经填了5个数,只剩下1,2,5,则很明显第六格填2,第八格填1,第三格填5.此时可以填主对角线的格子了,第三行第三列填8,第二行第二列填3,第六行第六列填4,第七行第七列填5.继续依次分析空格较少的行和列(例如依次第五列、第三行、第八行、第二列……),可得出结果如下图.【题-006解答】灌水问题:如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开丙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开甲管1小时后灌满一池水.不合题意.如第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开1小时,恰好在打开乙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,应在打开丙管45分钟后灌满一池水;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,应在打开甲管后15分钟灌满一池水.比较第二周和第三周,发现开乙管1小时和丙管45分钟的进水量与开丙管、乙管各1小时加开甲管15分钟的进水量相同,矛盾.所以第一周是在开甲管1小时后灌满水池的.比较三周发现,甲管1小时的进水量与乙管45分钟的进水量相同,乙管30分钟的进水量与丙管1小时的进水量相同.三管单位时间内的进水量之比为3:4:2.【题-007解答】浓度问题【题-008解答】水和牛奶【题-009解答】巧算:本题的重点在于计算括号内的算式:.这个算式不同于我们常见的分数裂项的地方在于每一项的分子依次成等差数列,而非常见的分子相同、或分子是分母的差或和的情况.所以应当对分子进行适当的变形,使之转化成我们熟悉的形式.法一:观察可知5=2+3,7=3+4,……即每一项的分子都等于分母中前两个乘数的和,所以【题-010解答】队形当扩大方阵时,需补充10+15人,这25人应站在扩充的方阵的两条邻边处,形成一层人构成的直角拐角.补充人后,扩大的方阵每边上有(10+15+1)÷2=13人.因此扩大方阵共有13×13=169人,去掉15人,就是原来的人数169-15=154人【题-011解答】计算答案:用1.2.3.4.5组成不含重复数字的六位数,,它能被11整除,并设a1+a3+a5≥a2+a4+a6,则对某一整数k≥0,有:a1+a3+a5-a2-a4-a6=11k (*)也就是:a1+a2+a3+a4+a5+a6=11k+2(a2+a4+a6)15=0+1+2+3+4+5=11k+2(a2+a4+a6)(**)由此看出k只能是奇数由(*)式看出,0≤k<2 ,又因为k为奇数,所以只可能k=1,但是当k=1时,由(**)式看出a2+a4+a6=2.但是在0、1、2、3、4、5中任何三个数之和也不等于2,可见k≠1.因此(*)不成立. 对于a2+a4+a6>a1+a3+a5的情形,也可类似地证明(a2+a4+a6)-(a1+a3+a5)不是11的倍数.根据上述分析知:用0、1、2、3、4、5不能组成不包含重复数字的能被11整除的六位数.【题-012解答】分数:(中等难度)除得分88、85、80的人之外,其他人的得分都在30至79分之间,其他人共得分:8250-(88+85+80)=7997(分).为使不低于60分的人数尽量少,就要使低于60分的人数尽量多,即得分在30~59分中的人数尽量多,在这些分数上最多有3×(30+31+…+59)= 4005分(总分),因此,得60~79分的人至多总共得7997-4005=3992分.如果得60分至79分的有60人,共占分数3×(60+61+ …+ 79)= 4170,比这些人至多得分7997-4005= 3992分还多178分,所以要从不低于60分的人中去掉尽量多的人.但显然最多只能去掉两个不低于60分的(另加一个低于60分的,例如,178=60+60+58).因此,加上前三名,不低于60分的人数至少为61人.【题-013解答】四位数:(中等难度)四位数答案:因为该数加1之后是15的倍数,也是5的倍数,所以d= 4或d=9.因为该数减去3是38的倍数,可见原数是奇数,因此d≠4,只能是d=9.这表明m=27、37、47;32、42、52.(因为38m的尾数为6)又因为38m+3=15k-1(m、k是正整数)所以38m+4=15k.由于38m的个位数是6,所以5|(38m+4),因此38m+4=15k等价于3|(38m+4),即3除m余1,因此可知m=37,m=52.所求的四位数是1409,1979.【题-014解答】行程答案:汽车间隔距离是相等的,列出等式为:(汽车速度-自行车速度)×12=(汽车速度+自行车速度)×4得出:汽车速度=自行车速度的2倍. 汽车间隔发车的时间=汽车间隔距离÷汽车速度=(2倍自行车速度-自行车速度)×12÷2倍自行车速度=6(分钟).【题-015解答】跑步:(中等难度)根据"马跑4步的距离狗跑7步",可以设马每步长为7x米,则狗每步长为4x米。

相关文档
最新文档