质数合数分解质因数

合集下载

质数 合数 分解质因数

质数 合数 分解质因数

质数合数分解质因数在自然数中,一个数除1和它本身,不再有别的约数,这个数叫做质数,也叫做素数.例如2,3,5,7,11,……都是质数.一个数除了1和它本身,还有别的约数,这个数叫做合数.例如4,6,8,9,12,……都是合数.1既不是质数,也不是合数.这样,自然数在按约数个数分类,可以分成:质数、合数和1.偶数中只有2是质数,而且是全部质数中最小的一个.除2以外全部的偶数都是合数,除2以外全部的质数都是奇数.每个合数都可以写成几个质数相乘的形式,这几个质数就叫做这个合数的质因数.例如,因为70=2&215;5&215;7,所以2,5,7是70的质因数.把一个合数用质数相乘的形式表示出来,叫做分解质因数.例如,60=2&215;2&215;3&215;5=22&215;3&215;5,把60这个合数用2&215;2&215;3&215;5或22&215;3&215;5的形式来表示,就是把60分解质因数.例1 两个质数的积是46,求这两个质数的和.分析:两个质数的积是46,46是偶数,只能是一个奇质数与一个偶质数的积,而偶质数只有2,因此很简单得出其它的质数,从而问题得以解决.解:因为46是偶数,因此它必是一个奇质数与一个偶质数的积,而偶质数只有2,另一质数46&247;2=23,所以2与23的和为25.例2 用2,3,4,5中的三个数能组成哪些三位质数?分析:首先考虑个位数字是几,如果个位数字是2或4,这样的三位数必能被2整除,因此这样的三位数不会是质数,如果个位数字是5,这样的三位数必能被5整除,这样的三位数也不会是质数,所以个位数字只能是3,再由剩下的三个数字组成百位、十位,得出个位数字是3的三位数为:243,423,253,523,453,543,最后依据质数的推断方法,得到所求的质数.解:如果组成的三位数的个位数字是2、4、5时,这个数必能被2或5整除,因此个位数字只能是3,而个位数字是3的三位数有243,423,253,523,453,543,其中243,423,453,543均能被3整除,253能被11整除,所以只有523是质数.质数的推断方法是,当一个数比拟小时,用定义直接推断,但这个数比拟大时,通常采纳查质数表,最好记住100以内的全部质数.在没有质数表的情况下,可以用质数从小到大的顺序逐个地去试除.如果能被其中某一个质数整除,就说明这个数是合数,如果除到商已比试除的质数小,还不能被这些质数中的任何一个整除,那么这个数肯定是质数.例如,推断100以内的数是否是质数,只需用2、3、5、7这四个质数去试除,如果没有一个能整除它,这个数肯定是质数,否则不是质数.推断97是不是质数,因为97不能被2,3,5,7中的任何一个整除,因此97是质数.为什么不必去试除比97小的全部的质数呢?因为97不能被2,3,5,7中的任何一个整除,它就肯定不能被4,6,8,9,10等数〔分别为2,3,5的倍数〕整除,又因为,如果用11或大于11的质数去试除, 97&247;11=8…9,97&247;13=7…6,其商为8、7,比除数还小,都已试除过,因此推断100以内的数是否是质数只需用2,3,5,7去试除.推断200以内的数是否是质数,只需用2,3,5,7,11,13,17这七个质数去试除;推断300以内的质数,只需用2到17这七个质数去试除;推断400以内的质数,只需用20以内的八个质数与去试除;推断500以内的质数,只需2到23的质数去试除.其余可用类似的方法推出,你可以思考一下1000以内的质数如何推断?例3 将40,44,45,63,65,78,99,105这八个数平分成两组,使每组四个数的乘积相等.分析:如果采纳观察、计算调整的方法是比拟麻烦的.要使两组数的乘积相等,只有两组数中的质因数相同,而且质因数的个数也相同,就可以了,所以从这八个数分解质因数入手,依据各质因数的个数,进行适当的搭配,便能找出问题的答案.解:将八个数分解成质因数:40=23&215;5 44=22&215;1145=32&215;5 63=32&215;765=5&215;13 78=2&215;3&215;1399=32&215;11 105=3&215;5&215;7这八个数分解质因数后一共有6个2,8个3,4个5,2个7,2个11,2个13.因此,这八个数被分成两组后,每一组应含有3个2,4个3,2个5,1个7,1个11,1个13,这样可以得到两组分别为:40,63,65,99和44,45,78,105.例4 360有多少个约数?分析:如果先求360的全部约数,再数出它们的个数,显然比拟麻烦.为此,先将360分解质因数:360=23&215;32&215;5,360的任意一个约数均由假设干个2或3或5组成,我们将360的全部约数列成下面的数阵:1 2 22 233 2&215;3 22&215;3 23&215;332 2&215;32 22&215;32 23&215;325 2&215;5 22&215;5 23&215;53&215;5 2&215;3&215;5 22&215;3&215;5 23&215;3&215;532&215;52&215;32&215;522&215;32&215;5 23&215;32&215;5这个数阵共6行,每行4个约数,所以360共有4&215;6=24个,而24=〔3+1〕&215;〔2+1〕&215;〔1+1〕,这里3,2,1恰好是360分解质数式子中2,3,5的个数,从而得到下面关于约数个数的一个重要结论:一个大于1的整数的约数个数,等于它的质因数分解式中每个质因数的个数加1的连乘积.用数字式子表示为:如果A分解质因数为:则A的全体约数的个数为:〔r1+1〕&215;〔r2+1〕&215;…&215;〔rn+1〕例5 有30个约数的最小自然数是多少?分析:设所求的数为A,则A有30个约数,因为30= 30&215;1=2&215;15=6&215;5=10&215;3=2&215;3&215;5,要使A最小,一般使A的质因数的幂指数尽可能小,质因数的个数尽可能少,所以A必为以下形式:其中a1,a2,a3为互不相同的质数.要使A最小,a1,a2,a3尽可能小,显然a3=2,a2=3,a1=5,这样A=24&215;32&215;5=720解:因为30=30&215;1=2&215;15=6&215;5=10&215;3=2&215;3&215;5,而且题中要求a2、a3为互不相等的质数,为了使A最小,a3=2,a2=3,a1=5,所以A=24&215;32&215;5=720.例6 九个连续自然数中至多有四个质数,例如1至9中有2、3、5、7四个质数.请在200以内再找出五组这样的质数.分析:9个连续自然数中至多有5个奇数.在两位数中,个位是5的数必能被5整除,而且三个连续的奇数必有一个能被3整除,所以只有当个位数字为5的两位数又能被3整除时,其余的四个奇数才有可能是质数.当找到一组这样的两位以上的质数时,另一组与这组对应的数的差必定是30的倍数.按照上述方法找出后,再依据质数的推断方法去筛选就可得出结果.首先简单得出3,5,7,11;5,7,11,13;在两位数中,按照上面的方法可得出以下各组数:11,13,15,17,19;41,43,45,47,49;71,73,75,77,79;101,103,105,107,109;131,133,135,137,139;161,163,165,167,169;191,193,195,197,199;依据质数的推断方法可以得出两位数中还有11,13,17,19;101,103,107,109;191,193,197,199这三组符合条件.解:200以内其它五组这样的质数为:3,5,7,11;5,7,11,13;11,13,17,19;101,103,107,109;191,193,197,199.。

质数、合数和分解质因数

质数、合数和分解质因数

第一讲质数和合数例1 两个质数的和是39,这两个质数的积是多少?例2 数d是质数,且a+10、a+14的和也都是质数,数a是多少?例3 三个质数的和是80,这三个质数的积最大是多少?练习:1.在20个连续自然数中最多有多少个质数?最少有几个质数?2.两个质数的和是1995,这两个质数的乘积是多少?3.两个连续自然数的积加上11,其和是一个合数,这两个自然数的和最小是多少?4.两个质数的和是40,求这两个质数的乘积最大是多少?5.两个质数的和是99,这两个质数的积是多少?第二讲分解质因数例1 三个连续自然数的乘积是120,求这三个数。

例2 小明是个中学生,他说:“这次考试,我的名次乘以我的年龄再乘以我的考试分数,结果是2910。

”你能算出小明的名次、年龄与他这次考试的分数吗?例3 学校举行跳绳比赛,取得前4名的同学恰好一个比一个大一岁,四人年龄的乘积是11880,这四个同学的年龄各是多少?例4 下面算式中,不同的字母代表不同的数字。

求这个算式。

例5 1512乘以自然数a得到一个平方数,求a的最小值。

例6 有三个自然数,它们的和是338,积是1986,求这三个数。

例7 有24盆花,分成几堆(至少分2堆),使每堆的盆数都相等,可以怎样分?例8 自然数151200的约数中有许多两位数,其中最大的是几?例9 有三个自然数,最大的比最小的大6,另一个是它们的平均数,且三个数的乘积是42560,求这三个自然数。

例10 有3个自然数a、b、c,已知a×b=6,b×c=15,a×c=10,贝a×b×c=?例11 用216元去买一种钢笔,正好将钱用完。

如果每支钢笔便宜1元,则可以多买3支钢笔,钱也正好用完。

共买了多少支钢笔?例12 将下面八个数平均分成两组,使这两组数各自的乘积相等。

例13 自然数1111155555是两个连续奇数的乘积,则这两个连续奇数的和是多少?例14 在射箭运动中,每射一箭的环数是O(脱靶)或者是不超过10的自然数,甲、乙两名运动员各射了5箭,每人5箭的环数的积都是1764,但甲的总环数比乙的总环数多4环,求甲、乙两人的总环数各是多少?练习:1.相邻两个自然数的乘积是756,这两个自然数分别是多少?2.下面算式中,不同的字母代表不同的数字,求这个算式中四个字母的和,3.三个自然数的和是160,三个自然数的积是32118,这三个数是哪几个数?4.自然数a乘以2376,正好是一个平方数,求a的最小值。

3.3:质数、合数、分解质因数教学案及巩固练习

3.3:质数、合数、分解质因数教学案及巩固练习

3.3:质数、合数及分解质因数【学习目标】:1、理解质因数和分解质因数的意义。

2、会把一个合数分解质因数。

3、在探索发现的过程中体验成功的乐趣,增强自己学好数学的信心学习重点:理解质因数和分解质因数的意义。

【学习重难】:会用短除法分解质因数。

【学习方法】:学习方法:独立思考与小组交流相结合【知识点1】质数和合数一个数,如果只有1和它本身两个因数,这样的数叫做质数,也叫质数.一个数,如果除了1和它本身以外还有别的因数,这样的数叫合数.质因数是指:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,也叫做这个合数的质因数。

分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数【考点分析】对于质数与合数的考查主要放在概念的理解上,主要以填空、选择的形式出现,一种是文字描述的形式出现,另一种是给定某数让你判别它是质数还是合数;而对于质因数考查的一般是判别给定的数是否为某数的质因数(或者说求某数的质因数),还有一种考法是对给定的数进行质因数的分解。

【典型例题】1、填空:在正整数中,既不是质数也不是合数的数是_____,既是质数又是偶数的数是______,最小的合数是分析:这类题目的解答中要记住特殊情况,针对上面的题目,我们得记住1既不是质数,也不是合数。

而2是唯一一个属于质数的偶数,且2是最小的质数。

4是最小的合数(背会)2、39、47、57、83中为质数的有()(A) 39,47 (B) 47,57 (C)57,83 (D)47,83分析:对于这类题目我们可以根据数的特征来进行判断。

3、下列说法中正确的是()(A)自然数包括质数和合数两类 (B)不存在最小的质数(C)1既不是质数,也不是合数(D)2是最小的合数分析:记住1这个特殊情况。

4、两个质数相乘的积一定是()(A)奇数(B)偶数(C)质数(D)合数分析:用排除法,其中对于D选项,如果有两个质数相乘所得来的数,除了含有这两个质数作它的因数外,至少还有1。

质数和合数分解质因数

质数和合数分解质因数
质数和合数 分解质因数
范围和要求
1.知识点范围 A 质数、合数的概念 B 判断一个数是质数还是合数的方 法 C 掌握分解质因数的方法
范围和要求
2.要求 A 理解质数、合数的意义 B 熟练地掌握判断一些常见数是质数, 还是合数的方 法 C 熟悉20以内的质数,会查质数表 D 初步掌握用短除法分解质因数的方法 E 知道因数、质因数与分解质因数间的联系与区别
例题:把下面各数分解质因数,并分别写 出它们所有的约数。
分解质因数 15 18 20 约 数
15=3 5
1、3、5、15
18=2 3 3 1、2、3、6、9、18 20=2 2 5 1、2、4、5、10、20
小结
质数、因数、质因数、分解质因数
一个数除了1和它本身,不再有别的约数,这个数 叫做质数。它是1个独立存在的数。比如17是质数,因 为它只有1和17两个约数。
知识点精讲
一、质数和合数
1 的约数: 1
5 的约数: 1、5 12 的约数: 1、2、3、4、6、12 16 的约数: 1、2、4、8、16 17 的约数: 1、17 21 的约数: 1、3、7、21 25 的约数: 1、5、25 29 的约数: 1、29 32 的约数: 1、2、4、8、16、32 36 的约数: 1、2、3、4、6、9、12、18、36 37 的约数: 1、37
× (×


所有的合数都是偶数吗?
所有的偶数都是合数吗?
×
×


知识点精讲
二、分解质因数
6 2 3 28 4 7 2 2 6= 2 3 7
28= 2 2 7
每个合数都可以写成几个质数相乘的形式。 其中每个质数都是这个合数的因数,叫做质因 数。 把一个合数用质因数相乘的形式表示出来, 叫做分解质因数。

五年级培优奥数——质数、合数与分解质因数

五年级培优奥数——质数、合数与分解质因数

质数、合数与分解质因数知识讲解:例题讲解:【例1】试写出1 —-100中的所有质数,并将111111分解质因数.【例2] 2004个连续自然数的和是“a×b×c×d,若出a、b、c、d都是不同的质数,则a+b+c+d 最小值应是____(全国第二届“创新杯”数学邀请赛试题)【例3】两个质数的和是39.这两个质数的积是多少?【例4】在三张纸片上分别写上三个最小的奇质数,如果随意从其中至少取出一张组成一个数,其中有几个是质数,将它们写出来。

【例5] 2002=2×7×11×13,其特点是4个不相等的质数之积.20世纪(1901—2000年)具有相同特点(即可以分解成4个小同质数的积)的所有年份为_______________。

【例6】将2l、30、65、126、143、169、275分成两组,使两纽数的积相等。

【例7】边长是自然数,面积是165的形状不同的长方形共有多少种?【例8】用216元去买一种钢笔,正好将钱用完,如果每支钢笔便宜1元.则可以多买3支钢笔,钱也正好用完.问共买了多少支钢笔?【例9】小兰家的电话号码是个七位数,它恰好是几个连续质数的乘积,这个积的末4位数是前3位数的1 0倍,小兰家的电话号码是多少?【例10】一个自然数可以分解为3个质因数的积,如果这3个质因数的平方和为3 9 6 30,求这个自然数.【例1l】求3 6 0有多少个因数?其因数和是多少?【例12】问:100以内有6个因数的数有哪些?基础训练:1。

165有多少个因数?这些因数的和是多少?2.已知自然数a有两个因数,那么3a有几个因数?3.两个质数的和是1995,这两个质数的乘积是多少?4.两个连续自然数的积加上11,其和是一个合数,这两个自然数的和最小是多少? 5.两个相邻的自然数积是1980,求这两个相邻的自然数.6.某四年级学生参加数学竞赛,他获得的名次,他的年龄,他得的分数的乘积是2910。

第3讲:质数、合数及分解质因数讲解及习题

第3讲:质数、合数及分解质因数讲解及习题

第3讲:质数、合数及分解质因数(数学:老师)【知识点1】质数和合数一个数,如果只有1和它本身两个因数,这样的数叫做质数,也叫质数.一个数,如果除了1和它本身以外还有别的因数,这样的数叫合数.质因数是指:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。

分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数【考点分析】对于质数与合数的考查主要放在概念的理解上,主要以填空、选择的形式出现,一种是文字描述的形式出现,另一种是给定某数让你判别它是质数还是合数;而对于质因数考查的一般是判别给定的数是否为某数的质因数(或者说求某数的质因数),还有一种考法是对给定的数进行质因数的分解。

【典型例题】1、填空:在正整数中,既不是质数也不是合数的数是_____,既是质数又是偶数的数是______分析:这类题目的解答中要记住特殊情况,针对上面的题目,我们得记住1既不是质数,也不是合数。

而2是唯一一个属于质数的偶数,且2是最小的质数。

2、39、47、57、83中为质数的有()(A) 39,47 (B) 47,57 (C)57,83 (D)47,83分析:对于这类题目我们可以根据数的特征来进行判断。

3、下列说法中正确的是()(A)自然数包括质数和合数两类 (B)不存在最小的质数(C)1既不是质数,也不是合数(D)2是最小的合数分析:记住1这个特殊情况。

4、两个质数相乘的积一定是()(A)奇数(B)偶数(C)质数(D)合数分析:用排除法,其中对于D选项,如果有两个质数相乘所得来的数,除了含有这两个质数作它的因数外,至少还有1。

所以得数肯定不能为质数。

5、根据要求填空:在1,2,9,21,43,51,59,64这八个数中,(1)是奇数又是质数的数是();(2)是奇数不是质数的数是();(3)是质数而不是奇数的数是();(4)是合数而不是偶数的数是();(5)是合数而不是奇数的数是().6 、在14=2×7中,2和7都是14的( )。

分解质因数顺口溜

分解质因数顺口溜

分解质因数顺口溜分解质因数是小学数学中的重要知识点之一,通过对数字的质因数分解可以计算它的最大公约数、最小公倍数等问题。

为了帮助同学们更好地掌握分解质因数,以下是一篇关于分解质因数顺口溜的文章。

一、什么是质数和合数?在分解质因数之前,我们需要先知道什么是质数和合数。

1. 质数:只能被1和它本身整除的数,例如2、3、5、7、11、13等。

2. 合数:除了1和它本身外,还有其他因数的数,例如4、6、8、9、10、12等。

二、分解质因数的基本步骤分解质因数的基本步骤是:先将数字分解成质数的乘积,再将这些质数按从小到大的顺序排列。

以12为例,它可以分解为2*2*3。

这里我们先找到它的质因数2,由于12可以被2整除,因此我们将12除以2得到6。

接着,我们再将6继续除以2,得到3。

此时,3是一个质数,同时也是12的因数。

因此,12可以表示为2*2*3。

三、分解质因数的顺口溜接下来,我们来说说分解质因数的顺口溜:质数是生成数,合数可分解。

先看能否被2,再看能否被3,再看5或7,或11或13,到最后若不能分,则那就是个质啦!意思是说,分解质因数时,先判断所分解的数字是否是质数或合数。

如果是质数,则它就是一个质因数。

如果是合数,则尝试把它分解成两个因数,再对这两个因数分别进行质因数分解。

首先,我们尝试用2除以这个数,看是否能够整除。

如果可以,就把这个数除以2,保留商作为新的数,并继续尝试用2除以这个数。

如果这个数不能被2整除,就尝试用3除以这个数,以此类推。

当最后得到的数已经是一个质数时,就把这个质数加入到分解结果中即可。

四、总结分解质因数是小学数学的重要知识点之一,通过掌握这一技巧,我们可以更好地解决一些数论问题。

希望本篇文章中提供的顺口溜可以帮助同学们更好地记忆分解质因数的方法,从而更好地掌握这一知识点。

小学数学高频考点讲义45专题四十五质数、合数和分解质因数

小学数学高频考点讲义45专题四十五质数、合数和分解质因数

⼩学数学⾼频考点讲义45专题四⼗五质数、合数和分解质因数专题四⼗五质数、合数和分解质因数1.质数与合数⼀个数除了1和它本⾝,不再有别的因数,这个数叫做质数(也叫做素数)⼀个数除了1和它本⾝,还与别的因数,这个数叫做合数要特别记住:1不是质数,也不是合数2.质因数与分解质因数如果⼀个质数是某个数的因数,那么就说这个质数是这个数的质因数把⼀个合数⽤质因数相乘的形式表⽰出来,叫做分解质因数例:把30分解质因数解:30=2×3×5其中2、3、5叫做30的质因数⼜如12=2×2×3=22×3,2、3都叫做12的质因数例题:【例1】三个连续⾃然数的乘积是210,求这三个数【分析与解】∵210=2×3×5×7∴可知这三个数是5、6和7【例2】两个质数的和是40,求这两个质数的乘积的最⼤值是多少?【分析与解】把40表⽰为两个质数的和,共有三种形式40=17+23=11+29=3+37∵17×23=391>11×29=319>3×37=111∴所求的最⼤值是391答:这两个质数的最⼤乘积是391【例3】⾃然数123456789是质数,还是合数?为什么?【分析与解】123456789是合数因为它除了有因数1和它本⾝外,⾄少还有因数3,所以它是⼀个合数【例4】有三个⾃然数,最⼤的⽐最⼩的⼤6,另⼀个是它们的平均数,且三数的乘积是42560,求这三个⾃然数【分析与解】先⼤概估计⼀下,30×30×30=27000,远⼩于42560,40×40×40=64000,远⼤于42560。

因此,要求的三个⾃然数在30-40之间42560=625719=52(57)(192)=323538(合题意)∴要求的三个⾃然数分别是32、35和38【例5】求240的因数的个数【分析与解】∵411=??240235∴240的因数的个数是(41)(11)(11)20+?+?+=∴240有20个因数习题:1. 在1~100⾥最⼩的质数与最⼤的质数的和是_____.2. ⼩明写了四个⼩于10的⾃然数,它们的积是360.已知这四个数中只有⼀个是合数.这四个数是____、____、____和____.3. 把232323的全部质因数的和表⽰为AB,那么A?B?AB=_____.4. 有三个学⽣,他们的年龄⼀个⽐⼀个⼤3岁,他们三个⼈年龄数的乘积是1620,这三个学⽣年龄的和是_____.5. 两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6. 如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7. 某⼀个数,与它⾃⼰相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8. 有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第⼀组数____________;第⼆组数是____________.9. 有_____个两位数,在它的⼗位数字与个位数字之间写⼀个零,得到的三位数能被原两位数整除.10. 主⼈对客⼈说:“院⼦⾥有三个⼩孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩⼦的年龄吗?”客⼈想了⼀下说:“我还不能确定答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(七)质数合数分解质因数
闵识要点]
若a能被b養除,b就是a的约数。

1. 质数与合数
自然数按其约数的个数可以分成三类:
⑴单位1:只含有1这一个约数的自然数。

⑵质数(也称为素数):只含有1与它本身这两个约数的自然数。

(质数有无穷多个,不存在最大的质数,但有最小的质数2,而且2履质数中唯一的偶数。

100之内有25个质数。

)
(3)合数:含有三个或三个以上约数的自然数。

2. 分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

如:12 = 2X2X3;70 = 2X5X7; 126 = 2X3X3X7; ............................
若校大的自然数要进行分解质因数往往用短除法。

练习:把21六、107八、504()写成质因数连乘的形式:
例 1 :a、b、c 是质数,c 是一名数,且aXb+c=1993o 那么a+b+c=(
)。

例2:用一.二、3、4、五、六、7、八、9这九个数字组成质数, 若是每一个数字都要用到,而且只能用一次,那么这九个数字最多能1
组成多少个质数?
例3: 1500的约数有()个。

这些约数的和是()。

例4:有8个不同约数的自然数中,最小的一个是()。

例5: 504乘以一个自然数a,取得一个平方数,求a的最小值和这个平方数。

练习:
1.36()的约数有 __ 个,这些约数的和是________ 。

2.找出1992所有不同的的质因数,它们的和是 ______ o
3.若a、b、c、d是四个互不相等的自然数,且aXbXcXd= 1988,
那么a+b+c+d的最大值是 ______ 。

2
4.3780乘以一个自然数的积是一个完全平方数,这个自然数最小
是______ o
5.在有12个约数的自然数中,最小的一个是______ o
6.四个小于1()的自然数,它们的积是360。

已知这四个数中只有一个是合数,那么这四个数别离是_______ O
7.在下面的算式里,四个小纸片各盖住一个数字,被盖住的四个数字之和是____ O
□ 口
X □□
19 9 2
8.31-( )=( )余7,要在算式的括号内填入适当的数使等式成立,共有______ 种不同的填法。

9. A = 25X33X5X72X13,那么A的最小三位数的约数是。

10.一个小朋文用元去买图片,若是每张图片的价钱减少4分,那3
么可多买1()张。

这个小朋友原来买了____ 张图片。

11.用1155个大小相同的正方形拼成一个长方形,有_____ 种不同的拼法。

12.(1X2X3X4X5X……X 50) 4-1331,商的千位上的数字是。

13.把33拆成若干个不同质数之和,,若是要使这些质数的积最
大,
这几个质数别离是________ o
14.已知pXq—l=x,其中p、q为质数且均小于10()(), x是奇数,
那么x的最大值是 ______ 。

15.有一种最简真分数,它们的分于与分母的乘积是42(),若是把
所有这样的分数从小到大排列,那么第三个分数是______ O
16.设n是知足下列条件的自然数,它们是75的倍数且恰有75个


然数因于(包括1和本身),那么至少等于_______ 。

5。

相关文档
最新文档