信号与系统期末复习材料

合集下载

深圳大学信号与系统期末复习

深圳大学信号与系统期末复习

例 已知激励f(t)=u(t),h(t)=(-6e-3t+8e-4t)u(t) 用时域法求yzs(t)。
解:
y zs (t ) f (t )h( )d
0
t
u (t )(6e 3 8e 4 )u ( )d
0
t
(6e 3 8e 4 )u ( )u (t )d
d 3 f (t ) 3) y(t ) dt 3 6 f (t )
(2) (1-15(2)) 1) y(t ) ay2 (0 ) 3t 2 f (t ) t 0 非线性、时变 2) y(t ) (5 y(0 ) 7 y(0 ))2 3t 2 f (t ) t 0 5 y ( t ) ( 7 t 3t ) f (t ) 3) 线性、时变
• 指数形式与三角形式系数之间的关系为
F0 a0 c0
1 j n j n Fn Fn e cn e 2 1 j n F n cn e 2 1 Fn cn F n 2
例已知周期信号f(t)如下, 画出其频谱图。
5 1 f (t ) 1 2 cos 0t cos( 20t ) 2 sin 0t sin 30t 4 2

t0 T
t0
f (t ) dt
f(t)可以展开为三角形式的傅里叶级数
f (t ) a0 (an cosn0t bn sin n0t )
n 1
式中, ω0=2π/T是基波角频率, 简称基波频率。
利用三角函数的边角关系, 将一般三角形式化为标 准的三角形式
f (t ) a0 (an cos n0t bn sin n0t )

《信号与线性系统》总复习(2024级)

《信号与线性系统》总复习(2024级)

信号与线性系统总复习信号分析一、 信号的时域分析1、 常见信号①单位冲激函数:)(t δ定义:抽样性:②单位阶跃函数:)(t ε定义:阶跃与冲激的关系:③斜变函数:)()(t t t R ε=斜变与阶跃的关系:④指数函数:)(t e t εα-⑤门函数:)(t G τ⑥余弦函数:t 0cos ω ⑦正弦函数:t 0sin ω⑧冲激序列:∑∞-∞=-=n T nT t t )()(δδ)(t f )(k f ⎩⎨⎧=01)(t ε00<>t t ⎪⎩⎪⎨⎧==⎰∞∞-0)(1)(t dt t δδ0≠t ⎪⎩⎪⎨⎧==⎰∞-t d t dt t d t ττδεεδ)()()()()()0()()(t f t t f δδ⋅=⋅)0()()0()0()()()(f dt t f dt f t dt t f t ==⋅=⋅⎰⎰⎰∞∞-∞∞-∞∞-δδδ⎪⎩⎪⎨⎧==⎰∞-t d t R dt t dR t ττεε)()()()(2、 信号的运算:3、 信号的变换: 移位:反折:展缩:倍乘:4、 卷积:性质:延时特性:)()()(212211t t t f t t f t t f --=-*-微积分特性:二、 信号的频域分析(傅立叶变换分析法)1、 定义:2、 性质:设)()(11ωj F t f ↔;)()(22ωj F t f ↔;)()(ωj F t f ↔①线性:)()()()(22112211ωωj F a j F a t f a t f a +↔+ ②对称性:)(2)(ωπf jt F ↔ ③延时:0)()(0t j e j F t t f ωω±↔± ④移频:)()(00ωωωj j F e t f t j ↔±⑤尺度变换:)(1)(a j F a at f ω↔;)(1)(aj F e a b at f a bj ωω-↔-⑥奇偶特性:若)(t f 为实偶函数,则)(ωj F 也为实偶函数; 若)(t f 为实偶函数,则)(ωj F 也为实偶函数;⑦时域微分:)()()(ωωj F j dtt df ↔;)()()(ωωj F j dt t f d n nn ↔ )(0t t f ±)(t f -)(at f )(t af ∑∞-∞=-=*i i k fi f k f k f )()()()(2121⎰∞∞--=*τττd t f f t f t f )()()()(2121⎰∞∞--=dt e t f j F tj ωω)()(⎰∞∞-=ωωπωd e j F t f t j )(21)()()(21t f t f ±)()(21t f t f •⎰∞-*=td f dtt df ττ)()(21)(])([21t f d f t *=⎰∞-ττ)()(21t f t f *⑧时域积分:)(1)()0()(ωωωδπττj F j F d f t+↔⎰∞- ⑨频域微分:ωωd j dF t f jt )()()(↔-;n n nd j F d t f jt ωω)()()(↔-⑩频域积分:⎰∞-↔-ωΩΩδπd F t f jtt f )()(1)()0(⑾卷积定理:)()()()(2121ωωj F j F t f t f ↔*)()(21)()(2121ωωπj F j F t f t f *↔⋅3、 常见信号的傅立叶变换 1)(↔t δωωπδεj t 1)()(+↔ )]()([cos 000ωωδωωδπω++-↔t )]()([sin 000ωωδωωδπω--+↔j tωαεαj t e t +↔-1)(22sin )2()(τωτωττωττ=↔Sa t Gωj t 2)sgn(↔2222sin )2(01)(⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡↔⎪⎩⎪⎨⎧><-=τωτωττωττττSa t t t t f Tn nT t t n n T πΩΩωδΩωδΩδδΩ2)()()()(=-=↔-=∑∑∞-∞=∞-∞= 4、 周期信号的频谱①性质:离散性,谐波性,收敛性②级数绽开:③频谱:n A •与)(Ωωn =之间的关系图称频谱图; n A 与)(Ωωn =之间的关系图称为振幅频谱图; n ϕ与)(Ωωn =之间的关系图称为相位频谱图;时域 频域周期 离散 离散 周期 时域有限 频域无限 时域无限 频域有限5、 帕色伐尔定理[]⎰⎰∞∞-∞∞-=ωωπd j F dt t f 22)(21)(6、 抽样定理①频带有限信号②满意关系:m s f f 2≥∑∞=++=1)sin cos (2n n n t n b t n a a ΩΩ)(t f ∑∞=-+=10)cos(2n n n t n A a ΦΩ∑∞-∞=•=n tjn n e A Ω21∑∞-∞==n tjn nec Ω⎰+=Tt t n tdt n t f T b 11sin )(2Ωtdt n t f Ta Tt t n Ωcos )(211⎰+=⎰+-•=Tt t tjn n dtet f TA 11)(2Ω⎰+-=Tt t t jn n dte tf Tc 11)(1Ωnj n n e A A φ-•=nn A c •=2122nn n b a A +=nn n a b arctg=φ三、 信号的复频域分析(拉普拉斯变换分析法)1、 定义:2、 性质:①线性: )()()()(22112211s F a s F a t f a t f a +↔+ ②时移:0)()()(00st e s F t t t t f -↔--ε ③频移:)()(00s s F e t f t s -↔ ④尺度变换:)(1)(as F a at f ↔⑤时域微分:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d ⑥时域积分:)(1)(s F sd f t↔⎰∞-ττ ⑦复频域微积分: ds s dF t tf )()(-↔;⎰∞↔s ds s F t f t )()(1⑧初、终值定理:)(lim )0(s sF f s ∞→+=;()(s F 为真分式))(lim )(0s sF f s →=∞⑨卷积定理:)()()()(2121s F s F t f t f ↔* )()(21)()(2121s F s F jt f t f *↔⋅π 3、 常见信号的拉氏变换、收敛区 1)(↔t δ,st 1)(↔ε ,as t e t -↔1)(εα, 1!+↔n n s n t , 22sin ωωω+↔s t ,⎰∞-=0)()(dte tf s F st ⎰∞+∞-=j j stds e s F jt f σσπ)(21)(22cos ωω+↔s st4、 反变换a.部分分式绽开法nn s s k s s ks s k s F -++-+-=2211)( )()()(2121t e k e k e k t f t s n t s t s n ε+++=b.留数法∑==ni i s t f 1Re )(①单根i s 处的留数 Re [()()]i st i i s s s F s e s s ==-②p 重根i s 处的留数 111Re [()()](1)!i p st p i i s s p d s F s e s s p s-=-=-- 四、(离散)信号的Z 域分析1、 定义:∑∞-∞=-=K kzK F Z F )()(2、性质:① 线性线性:)()()()(22112211z F a z F a k f a k f a +↔+ ② 移序:单边z 变换∑-=--↔+1)()()(n k knnzk f zz F z n k f)()()(z F z n k n k f n -↔--ε双边z 变换)()(z F z n k f n ↔+ )()(z F z n k f n -↔-③ 尺度变换:)()(a zF k f a k ↔④ z 域微分特性:)()(z F dzdzk kf -↔⑤ 卷积定理:)()()()(2121z F z F k f k f ↔*)()(21)()(2121s F s F jt f t f *↔⋅π ⑥ 初、终值定理:)(lim )0(z F f z ∞→=)()1(lim )(1z F z f z -=∞→3、 常见序列的Z 变换 1)(↔k δ, 1)(-↔z zk ε , γγ-↔z zk , 2)1(-↔z zk4、 反Z 变换a. 长除法b. 部分分式法nn z B z B z B z B z z F γγγ-++-+-+= 22110)( nn z z B z zB z z B B z F γγγ-++-+-+= 22110)( )()()()(22110k B B B k B k f kn n k k εγγγδ++++=c. 留数法1()Re ni i f k s ==∑①单根i z 处的留数 1Re [()()]i k i i z z s F z z z z -==-②p 重根i z 处的留数 1111Re [()()](1)!i p k p i i z z p d s F z z z z p z--=-=--系统分析卷积+三大变换(时域、频域、复频域、Z 域)一、 系统的时域分析1、 描述:a. 连续系统--微分方程b. 离散系统—差分方程)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------ )t )k e )()1()()()1()1()(01011k e b k e b m k e b k y a k y a n k y a n k y m n +++++=++++-+++-3、全响应的求解连续:离散:a. 零输入响应 )(t r zi 、)(k y zi 特征方程:特征根:零输入响应:代定常数C 由初始条件确定:)()()(t r t r t r zs zi +=)()()(k y k y k y zs zi +=00111=++++--a a c n n n λλλ 00111=++++--a a c n n n γγγ 0)())((21=---n λλλλλλ 0)())((21=---n γγγγγγ knn k k zi c c c k y γγγ+++= 221)(tn ttzi n ec ec ec t r λλλ+++= 2121)()1()1(),0(-n y y y )0()0(),0()1(-'n zi zi zi r r r nγγγ,,,21 n λλλ,,,21 ⎪⎪⎩⎪⎪⎨⎧+++=+++='+++=----1122111)1(221121)0()0()0(n n n n n n n n nc c c rc c c r c c c r λλλλλλ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'----n n n n n n n c c c rr r211121121)1(111)0()0()0(λλλλλλ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----)0()0()0(111)1(1112112121n n n n n n n rr r c c cλλλλλλnn ij A AA )(11=-b. 零状态响应 )(t r zs 、)(k y zs4、解的分解零输入响应+零状态响应 自然响应+受迫响应 暂态响应+稳态响应二、系统的频域分析 1、频域系统函数2、系统特性幅频特性:相频特性:3、信号通过线性系统不产生失真的条件时域:频域:三、系统的复频域分析法1、微分方程的拉氏变换分析法 利用拉氏变换的微分特性:)0()0()0()()()1(21--------'--↔n n n n nn f f s f s s F s dtt f d 把微分方程:011101)(a p a p a p b p b p b p H n n nm m +++++++=-- )(t h 011101)(a S a S a S b S b S b S H n n nm m +++++++=-- )(k h )()()(k e k h k y zs *=)()()(t e t h t r zs *=)()()(ωϕωωj e j H j H =)()()(ωωωj E j R j H zs =)(ωj H )(ωφ)()(0t t Ke t r -=0)(t j Ke j H ωω-=)()()()()()()()(0111101111t e b dt t de b dtt e d b dt t e d b t r a dt t dr a dt t r d a dt t r d m m m m m m n n n n n +++=++++------变为代数方程,其过程为: ①)()()0()0()0()()()1(21s P s R s r r s r s s R s dtt r d k k k k k k k k -=--'--↔------ )0()0()0()()1(21------++'+=k k k k r r s r s s P 是与初始条件有关的关于s 的k 次多项式②)()()0()0()0()()()1(21s Q s E s e e s e s s E s dtt e d l l l l l l l l -=--'--↔------ 0)0()0()0()()1(21=++'+=------l l l l e e s e s s Q因为)(t e 是有始信号:0)0()0()0()1(==='=----l e e e 所以:)()(s E s dtt e d l l l ↔ ③把以上结果代入微分方程得:)()()()()()()(01111111s R a s P a s sR a s P a s R s a s P s R s n n n n n n +-++-+-----)()()(01s E b s sE b s E s b m m +++=)()()()()(010111s E b s b s b s M s R a s a s a s m m n n n +++=-++++--)()()()()(s E s N s M s R s D =-其中:0111)(a s a s a s s D n n n ++++=--01)(b s b s b s N m m +++=)()()()(1111s P a s P a s P s M n n n +++=--)()()()()()()()(s R s R s D s M s E s D s N s R zi zs +=+= 可求得全响应:)()()(t r t r t r zs zi +=2、电路S 域模型等效法……3、系统函数与系统的稳定性011101)(a s a s a s b s b s b s H n n n m m +++++++=-- )())((2101n m m s s s b s b s b λλλ---+++= 若极点n λλλ 21,均在s 平面的左半平面,则系统稳定。

信号与系统复习题

信号与系统复习题

信号与系统期末复习题一、填空题1.描述线性非时变连续系统的数学模型是_微分方程______________________________。

2.离散系统的激励与响应都是___离散时间信号_____。

4.请写出“LTI ”的英文全称___线性时不变____。

5.若信号f(t)的FT 存在,则它满足条件是_____________________。

8、周期信号的频谱是离散的,频谱中各谱线的高度,随着谐波次数的增高而逐渐减小,当谐波次数无限增多时,谐波分量的振幅趋向于无穷小,该性质称为__收敛性____ 9、若某信号)(t f 的最高频率为3kHz ,则)3(t f 的奈奎斯特取样频率为 18 kHz 。

10、某系统的频率特性为23)(3)(2+++=ωωωωj j j j H ,则其冲激响应为h(t)= )()3(2t e e tt ε--- 。

11、=*)(3)(2n n n n εε )()23(11n n n ε++- 。

12、已知1)(2-=z z z F ,则f(n)= )(])1(1[21n nε-- 。

13、某LTI 连续系统的输入信号为)()(2t e t f t ε-=,其冲激响应)()(t t h ε=,则该系统的零状态响应为)(n y zs 为)(]1[212t e t ε-- 。

14.(4分)()()u t u t *= t u (t )[][]u n u n *= (n +1)u [n +1]=(n +1) u [n ]15.(4分)已知信号f (t )= Sa (100t )* Sa (200t ),其最高频率分量为f m = 50/π Hz ,奈奎斯特取样率f s = 100/π Hz 16.(4分)已知F )()]([ωj F t f =,则F 3[()]j tf t e = [(3)]F j ω-F()(2)n f t t n δ∞=-∞⎡⎤-⎢⎥⎣⎦∑= 1[()]2n F j n ωπ∞=-∞-∑17.(2分)设某因果离散系统的系统函数为az zz H +=)(,要使系统稳定,则a 应满足 | a | < 118.(2分)已知某系统的频率响应为3()4j H j e ωω-=,则该系统的单位阶跃响应为 4 u (t -3)19.(3分)已知某系统的系统函数为2()1H s s =+,激励信号为()3cos 2x t t =,则该系统的稳态响应为()2(arctan 2)y t t =- 20.(3分)已知)2)(21()(--=z z z z X ,收敛域为221<<z ,其逆变换为 21()[]2[1]32n n u n u n ⎡⎤-+--⎢⎥⎣⎦二、选择题1.连续信号)(t f 与)(0t t -δ的卷积,即=-*)()(0t t t f δ(a) )(t f (b) )(0t t f - (c) )(t δ (d) )(0t t -δ 2.连续信号)(t f 与)(0t t -δ的乘积,即=-)()(0t t t f δ(a) )()(0t t f δ (b) )(0t t f - (c) )(t δ (d) )()(00t t t f -δ 3.线性时不变系统的数学模型是(a) 线性微分方程 (b) 微分方程 (c) 线性常系数微分方程 (d) 常系数微分方程4.若收敛坐标落于原点,S 平面有半平面为收敛区,则(a) 该信号是有始有终信号 (b) 该信号是按指数规律增长的信号 (c) 该信号是按指数规律衰减的信号(d) 该信号的幅度既不增长也不衰减而等于稳定值,或随时间n t t ,成比例增长的信号 5.若对连续时间信号进行频域分析,则需对该信号进行 (a) LT (b) FT (c) Z 变换 (d) 希尔伯特变换 6.无失真传输的条件是(a) 幅频特性等于常数 (b) 相位特性是一通过原点的直线 (c) 幅频特性等于常数,相位特性是一通过原点的直线(d) 幅频特性是一通过原点的直线,相位特性等于常数 7.描述离散时间系统的数学模型是(a) 差分方程 (b) 代数方程 (c) 微分方程 (d) 状态方程 8.若Z 变换的收敛域是 1||x R z > 则该序列是(a) 左边序列 (b)右边序列 (c)双边序列 (d) 有限长序列 9.若以信号流图建立连续时间系统的状态方程,则应选(a) 微分器的输出作为状态变量 (b) 延时单元的输出作为状态变量 (c) 输出节点作为状态变量 (d)积分器的输出作为状态变量 10.若离散时间系统是稳定因果的,则它的系统函数的极点 (a) 全部落于单位圆外 (b) 全部落于单位圆上 (c) 全部落于单位圆内 (d) 上述三种情况都不对11、某LTI 系统的微分方程为)()(2)(t f t y t y =+',在f(t)作用下其零状态响应为t e -+1,则当输入为)()(2t f t f '+时,其零状态响应为: (a) t e -+2 (b) t e --2 (c) t e -+32 (d)1 12、某3阶系统的系统函数为ks s s ks s H ++++=32)(23,则k 取何值时系统稳定。

信号与系统复习

信号与系统复习

(四)利用卷积和求系统的零状态响应
激励
响应
单位样值响应
y(n)的元素个数及起止范围
h(n)与系统稳定性
对于因果系统的稳定条件:
第六章 z变换、离散时间系统的z域分析
Z变换 定义(双边、单边)、典型序列z变换(δ(n), u(n), n u(n ), an u(n), sin(ω0n) u(n )) 收敛域(左边,右边,双边,有限长) 性质(线性,位移,序列线性加权, 序列指数加权,初值,终值,卷积和) 逆z变换方法 长除法、部分分式展开法 差分方程的z变换求解方法(注意:单边z变换右移性质) 系统函数的定义H(z) 利用H(z)判定系统稳定性
周期信号的傅立叶级数
称为f (t)的傅立叶级数(三角形式)
第四章 傅立叶变换
余弦分量 系数
直流系数
注意!
正弦分量 系数
傅立叶级数与傅立叶系数的联系与区别
三角形式傅立叶级数的傅里叶系数:
Fn : 指数形式傅立叶级数的傅立叶系数
称为指数形式 的傅立叶级数
已知某函数时域图形,会求其傅立叶级数
指数形式傅立叶级数的傅里叶系数
第四章
卷积定理揭示了时间域与频率域的运算关系,在通信
系统和信号处理研究领域中得到大量应用。
时域卷积定理
时域卷积对应频域频谱密度函数乘积。
频域卷积定理
一般周期信号傅立叶变换的几点认识
表明在无限小的频带范围内,取得了无限大∞的频谱值。
周期单位冲激序列的傅里叶变换
周期矩形脉冲序列的傅氏变换
典型周期信号傅立叶变换
信号的拉氏变换
系统部分(连续系统)
微分方程 系统方框图 微分方程的建立与求解 时域法 拉氏变换法(s域元件模型) h(t), H(s)系统函数的概念与求解 用卷积法求系统零状态响应 时域法 s 域法 连续系统稳定性,因果性的判定

信号与系统试题及答案(大学期末考试题)

信号与系统试题及答案(大学期末考试题)

信号与系统试题及答案(大学期末考试题)一、选择题(每题2分,共40分)1. 下列哪个信号是周期信号?A. 方波B. 单位冲激信号C. 随机信号D. 正弦信号答案:A2. 信号x(t)的拉普拉斯变换为X(s)。

若x(t)的区间平均功率为P,则X(s)的区间平均功率是多少?A. PB. 2πPC. P/2D. πP答案:D3. 系统的冲激响应为h(t)=e^(-2t)sin(3t)u(t)。

则该系统为什么类型的系统?A. 线性非时变系统B. 线性时不变系统C. 非线性非时变系统D. 非线性时不变系统答案:B4. 信号x(t)通过系统h(t)并得到输出信号y(t)。

若x(t)为周期为T的信号,则y(t)也是周期为T的信号。

A. 正确B. 错误答案:A5. 下列哪个信号不是能量有限信号?A. 常值信号B. 正弦信号C. 方波D. 三角波答案:B...二、填空题(每题4分,共40分)1. 离散傅里叶变换的计算复杂度为$O(NlogN)$。

答案:NlogN2. 系统函数$H(z) = \frac{1}{1-0.5z^{-1}}$的极点为0.5。

答案:0.5...三、简答题(每题10分,共20分)1. 请简要说明信号与系统的基本概念和关系。

答案:信号是波动的物理量的数学描述,而系统是对信号进行处理的方式。

信号与系统的关系在于信号作为系统的输入,经过系统处理后得到输出信号。

信号与系统的研究可以帮助我们理解和分析各种现实世界中的波动现象。

2. 请简要说明周期信号和非周期信号的区别。

答案:周期信号是在一定时间间隔内重复出现的信号,具有周期性。

非周期信号则不能被表示为简单的周期函数,不存在固定的重复模式。

...以上是关于信号与系统试题及答案的文档。

希望能对您的大学期末考试复习有所帮助。

祝您考试顺利!。

西电期末考试信号与系统大总结材料(所有)

西电期末考试信号与系统大总结材料(所有)

第一章 引论连续时间信号离散时间信号时间区间 (,)T T -(,)-∞∞(,)N N -(,)-∞∞瞬时功率 2()f t能 量 2()TTE f t dt -=⎰22lim ()()TT TE f t dt f t dt →∞-∞-∞==⎰⎰2()Nn NE x n =-=∑2()n E x n ∞=-∞=∑平均功率212()TTTP f t dt -=⎰212lim()TT TTP f t dt →∞-=⎰21()21Nn N P x n N =-=+∑ 21()21lim Nn NN P x n N =-→∞=+∑ 周期信号()()f t f t mT =+ 0,1,2,m =±±⋅⋅⋅⋅⋅⋅ ()()x n x n mn =+ 0,1,2,m =±±⋅⋅⋅⋅⋅⋅000()j T j t T e e ωω+= 002T πω=线 性11221212()()()()()()()()()()()()f t y t af t ay t f t y t f t y t f t f t y t y t ⎧→⎪→⎪⎨→→⎪⎪+→+⎩若齐次性则若,可加性则 ⎧⎪⎨⎪⎩分解性线性系统零状态线性零输入线性0()()()()()()x f n y t y t y t y n y n y n =+=+判断方法:先线性运算,后经系统的结果=先经系统,后线性运算的结果 若()()f f t y t →,则00()()f f t t y t t -→- 若()()x n y n =,则00()()x n n y n n -=-第二、三章.连续时间信号、离散时间信号与系统时域分析一.普通信号普通信号 ()st f t Ke = (,)-∞+∞ , s j σω=+直流信号 0,0σω== ()f t K = t -∞<<+∞ 实指数信号 0,0σω≠=()t f t Ke σ= t -∞<<+∞时间常数:1τσ=虚指数信号 00,0σωω==≠ 000cos sin ()j t K t jK t f t Ke ωωω=+=正弦信号 ()j f t Ke θ=0Im []Im[]sin()j t j j t t Ke Ke e K ωθωθω⋅+===复指数信号00,0σωω≠=≠00cos sin ()t t Ke t jKe t f t σσωω=+ t -∞<<+∞二、冲激信号冲激信号()A t δ()00()0()A t t A t t A t dt A δδδ+∞-∞⎧=≠⎪⎪→∞=⎨⎪=⎪⎩⎰一般定义 泛函定义:()()(0)A t t dt A δφφ+∞-∞=⎰()A t δ是偶函数筛选特性 000()()()()f t t t f t t t δδ-=- 特别:0()()()()f t t f t t δδ= 取样特性 00()()()f t t t dt f t δ+∞-∞-=⎰特别:()()(0)f t t dt f δ+∞-∞=⎰ 展缩特性 1()()b aaat b t δδ+=+证明:1.0a > 2.0a < 3.1()()()()a abg t at b dt g t t dt δδ+∞+∞-∞-∞+=+⎰⎰阶跃信号()Au t 000()A t t Au t >⎧⎨<⎩=定义:0t =处可以定义为,110,2(个别点数值差别不会导致能量的改变)性 质 1.()()tA d Au t δττ-∞=⎰ 2.[()]()Au t dA dtδτ=斜坡信号()Ar t 0()00At t Ar t t >⎧=⎨<⎩性 质1.()()tAu t dt A r t -∞=⎰ 2.[]()()A dAu t r t dt=高阶冲激信号()()n t δ ()()()(1)[()]:nn nn t d f t t dt f t dt δ+∞-∞==-⎰泛函定义冲激偶信号 '()t δ''()()[()](0):t d f t t dt f t f dt δ+∞-∞==-=-⎰泛函定义说明:1. '()t δ量纲是2s - 2.强度A 的单位是2Vs 3.'()t δ是奇函数筛选特性'''00000()()()()()()t t t t t t f t f t f t δδδ-=---0t =时 '''()0()()()()(0)t t t f t f f δδδ=-证明:对000()()()()t t t t f t f t δδ-=-两端微分 取样特性 ''00()()()f t t t dt f t δ+∞-∞-=-⎰证明:关键利用筛选特性展开 展缩特性''2''21()()01()()0bat b t a a abat b t a a aδδδδ+=+>+=-+<特别:''1,0()()a b t t δδ=-=-=-时 '()t δ是奇函数备注:1.尺度变换:()()an n δδ=三.卷积连续时间信号离散时间信号卷积定义 1212()()()()f f t d f t f t τττ+∞-∞-*=⎰1212()()()()k x n x n x k x n k ∞=-∞*=-∑交 换 率 1221()()()()f t f t f t f t *=*1221()()()()x n x n x n x n *=*分 配 率 1231213()[()()]()()()()f t f t f t f t f t f t f t *+=*+* 1231213()[()()]()()()()x n x n x n x n x n x n x n **=*+* 结 合 率 123123[()()]()()[()()]f t f t f t f t f t f t **=**123123[()()]()()[()()]x n x n x n x n x n x n **=**奇异信号卷积特性 单位样值信号卷积特性单位元特性 ()()()f t t f t δ*=()()()x n n x n δ*=延时特性 00()()()f t t t f t t δ*-=- 1212()()()()()t f t t g t t f t g t t t δ--*-=**-()(1)(1)x n n x n δ*-=- ()()()x n n k x n k δ*-=-积分特性 ()()()tf d u t f t ττ-∞*=⎰1()()()(1)!()()n t t n t f t dt dt f t n u t f t ---∞-∞⋅⋅⋅⋅⋅⋅=-*=⎰⎰ ()()()k x k x n u n ∞=-∞=*∑ 冲激偶卷积''()()()t f t f t δ*=()()()()()n n t f t f t δ*=四.电路元件的运算模型元件名称 电路符号时 域电路符号频 域电路符号复 域 u i 关系运算模型运算模型运算模型电阻()()u t Ri t =()()u t R i t =()()R R U t R I t =()()R R U s I s R = 电容1()()tu t i t dt C-∞=⎰ ()1()u t i t pC=()1()C C U t I t j Cω=11(0)()()C C C u Cs sU s I s -=+ (0)()()C C C u I s CsU s C -=-电感()()du t L i t dt=()()u t pL i t =()()C C U t I t j L ω=(0)()()L L L i U s LsI s L -=-11(0)()()L L L i Ls sI s U s -=+五.连续时间系统时域分析系统→建立微分方程→建立算子方程:()()()()D p y t N p f t =→ 系统的特征方程:0()()p D D p λλ→==()()0()()()0()()()()()()()()()x f f x f f f D p y t y t f t h t t N p y t y t y t N p y t t D p D p δ→=⎧⎫⎪⎪=*≥⎧⎪⎪→⎨⎬⎪=+→⎨⎪⎪=⋅⎪⎪⎪⎭⎩⎩求特征根 零输入响应方程求全响应求冲激响应零状态响应 ⎧⎪⎨⎪⎩微分方程法传输算子法冲激响应法系统的描述方法六.系统的特征方程七.系统的冲激响应和单位样值响应八.基本离散信号九.离散信号的性质十.信号的分解○1直流分量与交流分量 ○2奇分量与偶分量 ()()D A f t f f t =+常数平均是为零()()()e o f t f t f t =+1()[()()]21()[()()]2e o f t f t f t f t f t f t ⎧=+-⎪⎪⎨⎪=--⎪⎩备注:无第四章.连续时间信号与系统频域分析一.周期信号的频谱分析1. 简谐振荡信号是线性时不变系统的本征信号:()()()()()j tj t j tj y t eh t eh d ee h d ωωτωωτττττ∞∞---∞-∞=*==⋅⎰⎰简谐振荡信号傅里叶变换:()()j H j e h d ωτωττ∞--∞=⎰点 测 法: ()()j t y t e H j ωω=⋅ 2.傅里叶级数和傅里叶变换3.荻里赫勒(Dirichlet )条件(只要满足这个条件信号就可以用傅里叶级数展开)○1()f t 绝对可积,即00()t T t f t dt +<∞⎰○2()f t 的极大值和极小值的数目应有限 ○3()f t 如有间断点,间断点的数目应有限4.周期信号的傅里叶级数5.波形对称性与谐波特性的关系6.周期矩形脉冲信号7.线性时不变系统对周期信号的响应一般周期信号:()jn t n n F e f t ∞Ω=-∞=∑系统的输出 :()()jn tnn F H jn t ey t ∞Ω=-∞Ω=∑二.非周期信号的傅里叶变换(备注)二.非周期信号的傅里叶变换1.连续傅里叶变换性质2.常用傅里叶变换对四.无失真传输1.输入信号()f t 与输出信号()f y t 的关系 时域: ()()f d y t kf t t =-频域:()()dj t f Y ke F ωωω-=2.无失真传输系统函数()H ω ()()()d f j t Y H ke F ωωωω-==无失真传输满足的两个条件:○1幅频特性:()H k ω= (k 为非零常数) 在整个频率围为非零常数○2相频特性:ϕ()d t ωω=- ( 0d t > )在整个频率围是过坐标原点的一条斜率为负的直线3. 信号的滤波:通过系统后 ○1产生“预定”失真○2改变一个信号所含频率分量大小 ○3全部滤除某些频率分量 4.理想低通滤波器不存在理由:单位冲击响应信号()t δ是在0t =时刻加入滤波器 的,而输出在0t <时刻就有了,违反了因果律5.连续时间系统实现的准则时 域 特 性 : ()()()h t h t u t =(因果条件) 频 域 特 性 :2()H d ωω∞-∞<∞⎰佩利-维纳准则(必要条件):22()1H d ωωω∞-∞<∞+⎰五.滤波三.抽样与抽样恢复第五章.离散时间信号与时域分析 一.离散傅里叶级数(DFT)1.信号 e j0n 基本特征信号 e j0n 周 期 性: e j0 (nN ) e j0n 0 m 时有理数时具有周期性 2 N 基波频率: 2 0 Nm 基波周期: N m( 2 ) 02.信号 e j0t 与 e j0n 之间的差别 e j0t0 不同,信号不同 对于任何0 值,都是周期的基波频率:0基波周期: 00 0 o无定义 2 0e j0n频率相差 2 ,信号相同仅当 2 m 时,才有周期性( (N 0),m,均为整数)) N基波信号 0 m基波信号: 00 o0无定义 2m( ) 03.DFS 系数与 IDFS 变换对x(n)DFS DFS系数X(k) IDFS系数 X (k)N 1 jk ( 2 )nx(n)e NN 1x(n)WNknn0n0 x(n)1 NN 1jk ( 2 )nX (k)e Nn01 NN 1X (k )WNknn04.离散傅里叶级数的性质线性 若 x3(n) x1(n) x2 (n) ,则 X 3(k) X 1(k) X 2 (k)移 时间移位 若 x(n) DFS X (k) ,则 x(n m) DFS WNkn X (k )位 频域移位周 期 时域移位卷积 频域移位若 x(n) DFS X (k) ,则WNqn x(n) DFS X (k q)N 1 若 x3(n) x1(m)x2 (n m) ,则 X 3(k) X 1(k) X 2 (k) m0 若 x3(n) x1(n)x2 (n) ,则 X3(k) 1 NN 1X 1(l) X 2 (k l)l 0二.离散时间傅里叶变换 DTFT1. 离散时间傅里叶变换 DTFTDFS[x(n lN )] X (k)○1 非周期信号:x(n) x(n) 0n N1 n N1 离散时间傅里叶变换 x(n) X () 1 2 1X ()e jnd2x(n)e jnN n 应用条件: x(n) n○2 周期信号: X ()2 akn(2 Nk) 1 N1 jk ( 2 )nakNx(n)en N1N2.离散时间傅里叶变换性质周 期 性 总是周期的,周期是 2 。

信号与系统期末复习试题附答案

信号与系统期末复习试题附答案

一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /s15、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( )16、已知信号)(1t f 如下图所示,其表达式是( )A 、ε(t )+2ε(t -2)-ε(t -3)B 、ε(t -1)+ε(t -2)-2ε(t -3)C 、ε(t)+ε(t -2)-ε(t -3)D 、ε(t -1)+ε(t -2)-ε(t -3)17、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差2A 、1-eB 、3eC 、3-eD 、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为tt Be Ae 2--+,则其2个特征根为() A 。

昆明理工《信号与系统》复习资料

昆明理工《信号与系统》复习资料

第四章 Z变换 • 一、知识点
4.1 Z变换及其收敛域:Z变换的定义;收敛域及其 与序列的关系;典型序列的Z变换; 4.2 Z反变换:三种方法:幂级数展开法;部分分式 展开法(单极点、重极点);围线积分法; 4.3 Z变换的性质:九个主要的 4.4 Z变换与拉普拉斯变换的关系 4.5 Z信号线性变换小结
昆明理工《信号与系统》 期末复习
x(t)、x(n)
函 数
X()、X(s)、X(z)
常用信号 CH1
基本变换
卷积运算


频 域 信 号
CH2 傅立叶变换 CH7 系统的频域分析
微分方程 CH6

域CH3 拉普拉斯变换S域连
CH8 系统的复频域分析 续
常用信号 CH1
离 散
复频域


Z 域
CH4 Z变换
第六章 连续系统的时域分析
• 一、知识点
6.1 系统概述:系统的概念;分类;基本性质及判 断;系统的分析方法 6.2 微分方程的经典解法:齐次解;特解;完全解
6.3 零输入响应:系统的初始条件;函数平衡法计
算跃变值;零输入响应的求解 6.4 冲激响应与阶跃响应:含义;冲激响应的形式; 冲激响应的求解;二者之间的关系 6.5 零状态响应:零状态响应的求解;响应的几种 分类方式
第八章 连续系统的复频域分析 • 一、知识点
8.1 拉普拉斯变换分析法:零状态响应的求解;零输 入响应的求解;等效电源法;微积分方程的拉普拉斯 变换解法;冲激响应和系统函数的关系 8.2 系统函数的表示方法:系统函数的计算;分类; 作用; 8.3 极点零点分布与时域响应特性:极点位置对冲激 响应的影响;零点位置对冲激响应的影响 8.4 极点零点分布与系统频率特性:系统的频响特性; 根据零极点位置绘制频率特性曲线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. 精选范本 信号与系统期末复习 一、基础知识点: 1.信号的频带宽度(带宽)与信号的脉冲宽度成反比,信号的脉冲宽度越宽,频带越窄;反之,信号脉冲宽度越窄,其频带越宽。

2. 系统对信号进行无失真传输时应满足的条件: ①系统的幅频特性在整个频率范围()内应为常量。

②系统的相频特性在整个频率范围内应与成正比,比例系数为-0t

3.矩形脉冲信号的周期与频谱线的间隔存在着倒数的关系。

4.零输入响应(ZIR) 从观察的初始时刻(例如t=0)起不再施加输入信号(即零输入),仅由该时刻系统本身具有的初始状态引起的响应称为零输入响应,或称为储能响应。

5.零状态响应(ZSR) 在初始状态为零的条件下,系统由外加输入(激励)信号引起的响应称为零状态响应,或称为受迫响应。

6.系统的完全响应也可分为: 完全响应=零输入响应+零状态响应

7.阶跃序列可以用不同位移的单位阶跃序列之和来表示。 8.离散信号)(nf指的是:信号的取值仅在一些离散的时间点上才有定义。 9.信号的三大分析方法: ①时域分析法 ②频域分析法 ③复频域分析法

10.信号三大解题方法 ⑴傅里叶:①研究的领域:频域 ②分析的方法:频域分析法 ⑵拉普拉斯:①研究的领域:复频域 ②分析的方法:复频域分析法 ⑶Z变换:主要针对离散系统,可以将差分方程变为代数方程,使得离散系统的分析简化。

11.采样定理(又称为奈奎斯特采样频率) 如果)(tf为带宽有限的连续信号,其频谱)(F的最高频率为mf

,则以采样间隔

msfT2

1

对信号)(tf进行等间隔采样所得的采样信号)(tfs将包含原信号)(tf的全部信息,因而可

()()()zizsytytyt. 精选范本 利用)(tfs完全恢复出原信号。

12.设脉冲宽度为1ms,频带宽度为KHzms11

1

,如果时间压缩一半,频带扩大2倍。

13.在Z变换中,收敛域的概念: 对于给定的任意有界序列)(nf,使上式收敛的所有z值的集合称为z变化的收敛域。根据

级数理论,上式收敛的充分必要条件 F(z)绝对可和,即0|)(|nnznf。

14.信号的频谱包括: ①幅度谱 ②相位谱 15.三角形式的傅里叶级数表示为:1110)]sin()cos([)(nnntnbtnaatf

当为奇函数时,其傅里叶级数展开式中只有sinΩnt分量,而无直流分量和cos分量。

16.离散线性时不变系统的单位序列响应是)(n。 17.看到这张图,直流分量就是4!

18.周期信号的频谱具有的特点: ①频谱图由频率离散的谱线组成,每根谱线代表一个谐波分量。这样的频谱称为不连续频谱或离散频谱。

②频谱图中的谱线只能在基波频率1

的整数倍频率上出现。

③频谱图中各谱线的高度,一般而言随谐波次数的增高而逐渐减小。当谐波次数无限增高时,谐波分量的振幅趋于无穷小。

19.信号频谱的知识点: ①非周期信号的频谱为连续谱。 ②若信号在时域持续时间有限,则其频域在频域延续到无限。

20.根据波形,写出函数表达式)(tf(用)(t表示):

f(t) t 1

1

f(t) t -4 6 1 -6 -4 -1 .

精选范本 21. )(t为冲激函数 ①定义:

)0(0)0()(tt

t

②特性:1)(

dtt

③与阶跃函数的关系:dt

tdt)()(

④采样(筛选)性。 若函数)(tf在t=0连续,由于)(t只在t=0存在,故有:)()0()()(tfttf

若)(tf在0tt连续,则有)()()()(000tttftttf



上述说明,)(t函数可以把信号)(tf在某时刻的值采样(筛选)出来。 ⑤重要积分公式: )0()()(fdtttf

)()()(00tfdttttf

例题:计算下列各式: ①)1(tt ②dttt

)1(

③dttt

0)()3cos( ④dttet003)(

二、卷积 1.定义:dtffty)()()(

21

2.代数性质:

①交换律:)()()(*)(1221tftftftf

②结合律:)(*)]()([)](*)([*)(321321tftftftftftf

③分配律:)(*)()(*)()(*)]()([3231321tftftftftftftf

2.微分和积分特性 ①微分特性:)(*)()(*)(2121tftftftf

②积分特性:)(*)()(*)(1212)1(1tftftftf)(

③微积分特性:)(*)()(*)()(*)(2)1(1)1(2121tftftftftftf

 . 精选范本 *任意信号与)(t卷积又是)(tf即)()(*)(tfttf 由微分特性则:)()(*)(tfttf 3.延时特性:)()()()(*)()(2121222111ttttttyttttfttttf

4.重要卷积公式: ①)()(*)(tfttf

②)()(*)(tttt ③)(2

1

)(*)(2ttttt

④)()1(1)(*)(teatteatat

⑤)()()(1)(*)(21122121aateeaatetetatatata

例题:求下列卷积 ①)5(*)3(tt ②2*)(t ③)(*)(tttet

三、傅里叶变换 1.周期信号的三角级数表示

110)cos()(nnntnAatf 【22nnnbaA )arctan(nnnab】

其中: TdttfTa00)(

1 ; TndttntfTa01)cos()(

2 ;

TndttntfTb01)sin()(

2

2.周期信号的指数级数表示 TtjnndtetfT01)(1F

3.非周期信号的傅里叶变换 dtetftj)()F(

反变换:deFttj)(21)f( . 精选范本 4.常用非周期信号的频谱 ①门函数

)2()2|(|0)2|(|1)(SatttG ②冲激信号)(t 1)(t ③直流信号 )(2),(1)(tf ④指数信号)0,0()(taetfat

jateat1)(

⑤单位阶跃信号

)0(0)0(1)(tt

t

jt1)()(

5.傅里叶变换的性质与应用 ①线性性质

②信号的延时与相位移动 ③脉冲展缩与频带的变化 )(||1)(aFaatf 表明:信号时域波形的压缩,对应其频谱图形的扩展;时域波形的扩展对应其频域图形的压缩,且两域内展缩的倍数是一致的。

④信号的调制与频谱搬移

)(21)(21)cos()(000FFttf ⑤周期信号的频谱函数 )]()([)cos(000t

)]()([)sin(000jt

)()()()(22112211FaFatfatfa0e)()(0tjFttf

)(e)(00Ftftj

相关文档
最新文档