《信号与系统》学习笔记

合集下载

信号与系统知识点整理

信号与系统知识点整理

第一章1.什么是信号?是信息的载体,即信息的表现形式。

通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。

2.什么是系统?系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

3.信号作用于系统产生什么反应?系统依赖于信号来表现,而系统对信号有选择做出的反应。

4.通常把信号分为五种:✓连续信号与离散信号✓偶信号和奇信号✓周期信号与非周期信号✓确定信号与随机信号✓能量信号与功率信号5.连续信号:在所有的时刻或位置都有定义的信号。

6.离散信号:只在某些离散的时刻或位置才有定义的信号。

通常考虑自变量取等间隔的离散值的情况。

7.确定信号:任何时候都有确定值的信号。

8.随机信号:出现之前具有不确定性的信号。

可以看作若干信号的集合,信号集中每一个信号出现的可能性(概率)是相对确定的,但何时出现及出现的状态是不确定的。

9.能量信号的平均功率为零,功率信号的能量为无穷大。

因此信号只能在能量信号与功率信号间取其一。

10.自变量线性变换的顺序:先时间平移,后时间变换做缩放.注意:对离散信号做自变量线性变换会产生信息的丢失!11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能力。

(开关效应)12.单位冲激信号的物理图景:持续时间极短、幅度极大的实际信号的数学近似。

对于储能状态为零的系统,系统在单位冲激信号作用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。

13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号,一个位于t=0-处,强度正无穷大;另一个位于t=0+处,强度负无穷大。

要求:冲激偶作为对时间积分的被积函数中一个因子,其他因子在冲激偶出现处存在时间的连续导数.14.斜升信号:单位阶跃信号对时间的积分即为单位斜率的斜升信号。

15.系统具有六个方面的特性:1、稳定性2、记忆性3、因果性4、可逆性5、时变性与非时变性6、线性性16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。

奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(上册)-第3章 周期信号的傅里叶级

奥本海姆《信号与系统》(第2版)笔记和课后习题(含考研真题)详解(上册)-第3章 周期信号的傅里叶级
6.共轭及共轭对称 将一个周期信号 x(t)叏它的复数共轭,在它的傅里叶级数系数上就会有复数共轭幵迚行 时间反转的结果。即若

(1)弼 x(t)为实函数时,由亍 x(t)=x*(t),傅里叶级数系数一定是共轭对称的,即
(2)若 x(t)为实偶函数,那么它的傅里叶级数系数也为实偶函数。 (3)若 x(t)为实奇函数,那么它的傅里叶级数系数为纯虚奇函数。 7.连续时间周期信号的帕斯瓦尔定理 (1)连续时间周期信号的帕斯瓦尔定理:
8.连续时间傅里叶级数性质列表 表 3-1 连续时间傅里叶级数性质
/ 106
圣才电子书 十万种考研考证电子书、题库规频学习平台

1.成谐波关系的复指数信号的线性组合 一般的周期序列的线性组合就有如下:
序列φk[n]只在 k 的 N 个相继值的匙间上是丌同的,因此上式的求和仅仅需要包括 N 项。 因此将求和限表示成 k=(N),即离散时间傅里叶级数为
三、傅里叶级数的收敛 连续时间信号的傅里叶级数收敛的条件——狄里赫利条件: 1.条件 1 在仸何周期内,x(t)必须绝对可积,即
这一条件保证了每一系数 ak 都是有限值。 2.条件 2 在仸意有限匙间内,x(t)具有有限个起伏发化;也就是说,在仸何单个周期内,x(t)的
最大值和最小值的数目有限。 3.条件 3 在 x(t)的仸何有限匙间内,只有有限个丌连续点,而丏在这些丌连续点上,函数是有限

(1)施加亍连续时间信号上的时间反转会导致其对应的傅里叶级数系数序列的时间反 转。
(2)若 x(t)为偶函数,则其傅里叶级数系数也为偶,若 x(t)为奇函数,则其傅里叶级 数系数也为奇。
4.时域尺度发换 时间尺度运算是直接加在 x(t)的每一次谐波分量上的,傅里叶系数仍是相同的。 x(αt)的傅里叶级数表示:

(完整版)信号与系统知识要点

(完整版)信号与系统知识要点

信号与系统知识要点第一章 信号与系统单位阶跃信号 1,0()()0,0t t u t t ε≥⎧==⎨<⎩ 单位冲激信号 ,0()0,0()1t t t t δδ∞-∞⎧∞=⎧=⎨⎪⎪≠⎩⎨⎪=⎪⎩⎰ ()()d t t dtεδ=()()t d t δττε-∞=⎰()t δ的性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=-()()(0)f t t dt f δ∞-∞=⎰00()()()f t t t dt f t δ∞-∞-=⎰()()t t δδ=-00()[()]t t t t δδ-=-- 1()()at t aδδ=001()()t at t t a aδδ-=- 单位冲激偶信号 ()t δ'()()d t t dtδδ'=()()t t δδ''=--00()[()]t t t t δδ''-=---()0t dt δ∞-∞'=⎰ ()()td t δττδ-∞'=⎰()()(0)()(0)()f t t f t f t δδδ'''=-00000()()()()()()f t t t f t t t f t t t δδδ'''-=---()()(0)f t t dt f δ∞-∞''=-⎰00()()()f t t t dt f t δ∞-∞''-=-⎰符号函数 sgn()t1,0sgn()0,01,0t t t t >⎧⎪==⎨⎪-<⎩或 sgn()()()2()1t u t u t u t =--=-单位斜坡信号 ()r t0,0()(),0t r t tu t t t <⎧==⎨≥⎩ ()()t r t u d ττ-∞=⎰ ()()dr t u t dt =门函数 ()g t τ1,()20,t g t ττ⎧<⎪=⎨⎪⎩其他取样函数sin ()tSa t t=0sin lim ()(0)lim1t t tSa t Sa t→→=== 当 (1,2,)()0t k k Sa t π==±±=时,sin ()t Sa t dt dt tπ∞∞-∞-∞==⎰⎰sin lim 0t tt →±∞=第二章 连续时间信号与系统的时域分析1、基本信号的时域描述(1)普通信号普通信号可以用一个复指数信号统一概括,即st Ke t f =)(,+∞<<∞-t 式中ωσj s +=,K 一般为实数,也可以为复数。

信号与系统知识点整理

信号与系统知识点整理

信号与系统知识点整理信号与系统是电子、通信、自动化等领域中的基础课程之一,主要研究信号的产生、传输、处理和分析等内容。

下面是信号与系统的知识点整理。

1.信号的分类:-连续信号:在时间和幅度上都是连续的信号,如声音、电压波形等。

-离散信号:在时间上是离散的信号,如数字音频、数字图像等。

-周期信号:在一定时间周期内重复出现的信号,如正弦信号、方波等。

-非周期信号:在一定时间段内不重复出现的信号,如脉冲信号、矩形波等。

2.基本信号:-阶跃信号:在其中一时刻突然跃变的信号。

-冲击信号:在其中一时刻瞬间出现并消失的信号。

-正弦信号:以正弦函数表示的周期信号。

-方波信号:由高电平和低电平构成的周期信号。

3.系统的分类:-时不变系统:输出不随时间变化而变化的系统。

-线性系统:满足叠加性质的系统。

-因果系统:输出仅依赖于当前和过去的输入的系统。

-稳定系统:有界的输入产生有界的输出的系统。

4.线性时不变系统的特性:-线性性质:满足叠加性质。

-时不变性:系统的输出只取决于输入信号的当前和过去的值。

-冲激响应:线性时不变系统对单位冲激信号的响应。

5.离散时间系统的表示:-差分方程:用差分方程表示离散时间系统。

-传输函数:用传输函数表示系统的输入和输出之间的关系。

6.离散时间信号的分析:-Z变换:将离散时间信号从时域变换到Z域的方法。

-序列的频率表示:幅度谱、相位谱和角频率。

7.连续时间系统的表示:-微分方程:用微分方程表示连续时间系统。

-传递函数:用传递函数表示系统的输入和输出之间的关系。

8.连续时间信号的分析:-傅里叶级数:将连续时间周期信号分解成一系列正弦和余弦函数的和。

-傅里叶变换:将连续时间非周期信号从时域变换到频域。

9.信号处理的应用:-通信系统:对信号进行调制、解调、编码、解码等处理。

-图像处理:对图像进行滤波、增强、压缩等处理。

-音频处理:对音频信号进行降噪、消除回声、变声等处理。

-生物医学信号处理:对生理信号如心电图、脑电图等进行分析和识别。

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才

郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第2章 连续时间系统的时域分析【圣才

Ri(t) v1(t) e(t)
Ri(t)
1 C
t
i(
)d
v1 (t )
e(t)
vo (t) v1(t)
消元可得微分方程:
6 / 59
圣才电子书
十万种考研考证电子书、题库视频学习平

1

C
d
dt
vo (t)
1 R
vo (t)
R
e(t)
2-2 图 2-2-2 所示为理想火箭推动器模型。火箭质量为 m1,荷载舱质量为 m2,两 者中间用刚度系数为 k 的弹簧相连接。火箭和荷载舱各自受到摩擦力的作用,摩擦系数分 别为 f1 和 f2。求火箭推进力 e(t)与荷载舱运动速度 v2(t)之间的微分方程表示。
M
di1 (t ) dt
Ri2 (t)
0
化简方程组可得微分方程:
(L2
M
2
)
d4 dt 4
vo
(t)
2RL
d3 dt 3
vo
(t)
2L C
R2
d2 dt 2
vo
(t)
2R C
d dt
vo
(t)
1 C2
vo
(t)
MR
d2 dt 2
e(t)
(3)由图 2-2-1(c)所示列写电路方程,得:
C
dv1 (t ) dt
b.自由响应由两部分组成,其中,一部分由起始状态决定,另一部分由激励信号决 定,二者都与系统的自身参数有关;当系统 0-状态为零,则零输入响应为零,但自由响应 可以不为零。
c.零输入响应在 0-时刻到 0+时刻不跳变,此时刻若发生跳变,可能为零状态响应分 量。

信号与系统笔记pdf

信号与系统笔记pdf

信号与系统笔记一、基本概念信号:信号是运载信息的物理量,是消息的表现形式与传送载体。

它可以随时间或空间而变化。

常见的信号有:模拟信号和数字信号。

系统:系统是由一个或若干个相互关联的单元组成的具有特定功能的整体。

系统处理的内容可以是信号,也可以是信号的处理与变换。

二、信号的分类常见分类方式:按时间是否连续,信号可分为连续时间信号和离散时间信号;按幅度是否变化,信号可分为确知信号和随机信号。

信号的能量与功率:能量是指信号的幅度平方的积分,表示信号的总能量;功率是指单位时间内信号的能量,表示信号的平均功率。

三、基本信号变化线性变化:如果一个信号经过系统后,其输出仍然是输入的线性组合,则称该系统为线性系统。

线性系统具有叠加性和均匀性。

奇偶变化:如果一个信号在时间上关于原点对称,则称为奇对称信号;如果一个信号在时间上关于其最大或最小值点对称,则称为偶对称信号。

信号的运算:信号的加、减、乘运算对应于时间域的相加、相减、相乘运算。

此外,还包括信号的平移、反转、尺度变换等运算。

四、指数信号与正弦信号周期复指数信号:形如ejwt的信号,其中w为角频率,t为时间。

它是复数指数函数在时间域的表示。

一般的复指数信号:形如a*ejwt的信号,其中a为幅度,w为角频率,t为时间。

它是复数指数函数在时间域的表示。

五、系统分析方法时不变性:系统的行为不随时间而变,即系统的冲激响应不变。

线性时不变系统:满足叠加性和均匀性的系统。

其冲激响应h(t)和输入信号x(t)的卷积就是输出信号y(t)。

线性时不变系统的输出由输入和系统的冲激响应共同决定。

信号与系统知识点详细总结

信号与系统知识点详细总结

信号与系统知识点详细总结1. 信号与系统概念信号是指一种可以传递信息的载体,它可以是电气信号、光信号、声音等形式,常见的信号有连续信号和离散信号两种。

连续信号是定义在连续的时间域上的信号,例如声音信号;离散信号是定义在离散的时间域上的信号,例如数字信号。

系统是对输入信号进行加工处理的装置,它可以是线性系统或非线性系统、时变系统或时不变系统。

线性系统具有叠加性质,即输入信号的线性组合对应于输出信号的线性组合;非线性系统不满足叠加性质。

时变系统的特性随着时间的变化而改变,时不变系统的特性与时间无关。

2. 信号的分类信号可以按多种属性进行分类,例如按时间属性分类可分为连续信号和离散信号;按能量和功率分类可分为能量信号和功率信号,能量信号在有限时间内的总能量是有限值,功率信号在无穷时间内的平均功率是有限值;按周期性分类可分为周期信号和非周期信号,周期信号在一定时间间隔内具有重复的规律性。

3. 时域分析时域分析是指对信号在时间域上的特性进行分析,主要包括信号的幅度、相位、频率等方面。

信号的幅度是指信号的大小,可以用振幅来表示;相位是指信号在时间轴上的偏移量;频率是指信号的周期性特征。

时域分析的工具主要包括冲激响应、单位阶跃响应、单位斜坡响应等。

冲激响应是指系统对单位冲激信号的响应,它可以用来描述系统的线性性、时不变性等性质;单位阶跃响应是指系统对单位阶跃信号的响应,可以用来求系统的单位脉冲响应;单位斜坡响应是指系统对单位斜坡信号的响应,可以用来在频域中求系统的频率响应。

4. 频域分析频域分析是指对信号在频域上的特性进行分析,主要包括信号的频谱分布、频率成分等方面。

频域分析的工具主要包括傅里叶变换、傅里叶级数、拉普拉斯变换等。

傅里叶变换是将信号在时间域和频域之间进行转换的一种数学工具,可以将时域信号转换成频域信号,也可以将频域信号转换成时域信号。

傅里叶级数是对周期信号进行频域分析的工具,可以将周期信号展开成一组正弦和余弦函数的线性组合;拉普拉斯变换是对信号在复频域上的分析工具,用于分析线性时不变系统的频域特性。

信号与系统知识要点

信号与系统知识要点

《信号与系统》知识要点第一章 信号与系统1、 周期信号的判断 (1)连续信号思路:两个周期信号()x t 和()y t 的周期分别为1T 和2T ,如果1122T N T N =为有理数(不可约),则所其和信号()()x t y t +为周期信号,且周期为1T 和2T 的最小公倍数,即2112T N T N T ==。

(2)离散信号思路:离散余弦信号0cos n ω(或0sin n ω)不一定是周期的,当 ①2πω为整数时,周期02N πω=;②122N N πω=为有理数(不可约)时,周期1N N =; ③2πω为无理数时,为非周期序列注意:和信号周期的判断同连续信号的情况。

2、能量信号与功率信号的判断 (1)定义连续信号 离散信号信号能量:2|()|k E f k ∞=-∞=∑信号功率: def2221lim ()d T T T P f t t T →∞-=⎰ /22/21lim|()|N N k N P f k N →∞=-=∑⎰∞∞-=t t f E d )(2def(2)判断方法能量信号: P=0E <∞, 功率信号: P E=<∞∞, (3)一般规律①一般周期信号为功率信号;②时限信号(仅在有限时间区间不为零的非周期信号)为能量信号;③还有一些非周期信号,也是非能量信号。

例如:ε(t )是功率信号; t ε(t )3、典型信号① 指数信号: ()at f t Ke =,a ∈R② 正弦信号: ()sin()f t K t ωθ=+tt4、信号的基本运算 1) 两信号的相加和相乘 2) 信号的时间变化 a) 反转: ()()f t f t →- b) 平移: 0()()f t f t t →± c)尺度变换: ()()f t f at →3) 信号的微分和积分注意:带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。

正跳变对应着正冲激;负跳变对应着负冲激。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习笔记(信号与系统)
第一章信号和系统
信号的概念、描述和分类
信号的基本运算
典型信号
系统的概念和分类
1、常常把来自外界的各种报道统称为消息;
信息是消息中有意义的内容;
信号是反映信息的各种物理量,是系统直接进行加工、变换以实现通信的对象。
信号是信息的表现形式,信息是信号的具体内容;信号是信息的载体,通过信号传递信息。
τ是指数信号的时间常数,τ越大,指数信号增长或衰减的速率越慢。
2)正弦信号:
对时间的微、积分仍是同频率正弦。
3)复指数信号: ( )
实际不存在,但可以用于描述各种信号。
σ>0时,增幅振荡正、余弦信号;σ<0时,衰减振荡正、余弦信号;σ=0时等振幅振荡正、余弦信号;ω=0时,实指数信号;σ=0且ω=0时,直流信号。
偶分量与奇分量: ,其中fe= 为偶分量,fo= 为奇分量。
脉冲分量
一种分解为矩形窄脉冲分量: ,
另一分解为阶跃信号分量之叠加。
实部分量与虚部分量:
对于瞬时值为复数的信号f(t)可分解为实、虚部两个部分之和。
正交函数分量: ,用正交函数集来表示一个信号,组成信号的各分量就是相互正交的。
8、系统:若干相互作用、相互联系的事物按一定规律组成具有特定功能的整体称为系统。
4)抽样信号:
Sa(t)具有以下性质: , ;Sa(0)=1,Sa(t)=0(t=±π,±2π,…)。
5)钟形信号:
6、单位阶跃函数和单位冲激函数
1)单位阶跃函数:
可以方便地表示某些信号,用阶跃函数表示信号的作用区间,积分计算;
单位冲激函数为偶函数: ;
加权特性:
抽样特性: , ;
尺度变换: , , , ;
4)能量信号与功率信号
能量信号——信号总能量为有限值而信号平均功率为零;功率信号——平均功率为有限值而信号总能量为无限大。
5)一维信号与多维信号
信号可以表示为一个或多个变量的函数,称为一维或多维函数。
6)因果信号
若当t<0时f(t)=0,当t>0时f(t)≠0的信号,称为因果信号;非因果信号指的是在时间零点之前有非零值。
导数(冲激偶): ,
冲激偶的抽样特性: , ,
冲激偶的加权特性: , 。
2)单位冲激函数:
单位冲激函数是个奇异函数,它是对强度极大,作用时间极短一种物理量的理想化模型。
3)冲激函数与阶跃函数关系:
阶跃函数序列与冲激函数序列。
7、信号的分解
直流分量fD与交流分量fA(t): ,其中fD为直流分量即信号的平均值。
积分:信号f(t)的积分运算指f(t)在(-∞,t)区间内的定积分,表达式为:
信号经过积分运算后,使得信号突出变化部分变得平滑了,起到了模糊的作用,利用积分可以削弱信号中噪声的影响。
5、典型的连续时间信号
1)实指数信号: (对时间的微、积分仍是指数。)
a>0时,信号将随时间而增长;a<0时,信号将随时间而衰减;a=0时,信号不随时间而变化,为直流信号。
4、信号的基本运算:
信号的+、-、×运算:两信号f1(·)和f2(·)的相+、-、×指同一时刻两信号之值对应相加减乘。
平移:将f(t)→f(t + t0)称为对信号f(·)的平移或移位,若t0< 0,则将f(·)右移,否则左移。
反转:将f(t)→f(–t)或f(k)→f(–k)称为对信号f(·)的反转或反折,从图形上看是将f (·)以纵坐标为轴反转180°。
2)连续信号和离散信号
连续时间信号——在连续的时间范围内(-∞<t<∞)有定义的信号称为连续时间信号,简称连续信号,实际中也常称为模拟信号;离散时间信号——仅在一些离散的瞬间才有定义的信号称为离散时间信号,简称离散信号,实际中也常称为数字信号。
3)周期信号和非周期信号
周期信号——是指一个每隔一定时间T,按相同规律重复变化的信号;非周期信号——不具有周期性的信号称为非周期信号。
尺度变换(横坐标展缩):将f(t)→f(at),称为对信号f(t)的尺度变换。若a>1,则f(at)将f(t)的波形沿时间轴压缩至原来的1/a;若0<a<1,则f(at)将f(t)的波形沿时间轴扩展为原来的a倍。
微分:信号f(t)的微分运算指f(t)对t取导数,即:
信号经过微分运算后突出显示了它的变化部分,起到了锐化的作用。
2、系统(system):是指若干相互关联的事物组合而成具有特定功能的整体。
3、信号的描述——数学描述,波形描述。
信号的分类:
1)确定信号(规则信号)和随机信号
确定信号或规则信号——可以用确定时间函数表示的信号;随机信号——若信号不能用确切的函数描述,它在任意时刻的取值都具有不确定性,只可能知道它的统计特性。
9、系统输出均为连续时间信号的系统称为连续时间系统;输入和输出均为离散时间信号的系统称为离散时间系统。
连续时间系统的数学模型是用微分方程来描述,而离散时间系统的数学模型是用差分方程来描述。
动态系统与即时系统:若系统在任一时刻的响应不仅与该时刻的激励有关,而且与它过去的历史状况有关,则称为动态系统或记忆系统;含有记忆元件(电容、电感等)的系统是动态系统,否则称即时系统或无记忆系统。
线性系统与非线性系统:能同时满足齐次性与叠加性的系统称为线性系统。满足叠加性是线性系统的必要条件;不能同时满足齐次性与叠加性的系统称为非线性系统。
时不变系统与时变系统:满足时不变性质的系统称为时不变系统。
时不变性质:若系统满足输入延迟多少时间,其激励引起的响应也延迟多少时间。
因果系统与非因果系统:激励引起的响应不会出现在激励之前的系统,称为因果系统;也就是说,如果响应r(t)并不依赖于将来的激励[如e(t+1)],那么系统就是因果的。
稳定系统与不稳定系统:一个系统,若对有界的激励f(.)所产生的响应y=f(.)也是有界时,则称该系统为有界输入有界输出稳定,简称稳定;即若│f(.)│<∞,其│yf(.)│<∞,则称系统是稳定的。
线性时不变系统:LTI连续系统的微分特性和积分特性
线性性质包括两方面:齐次性和可加性,若系统既是齐次的又是可加的,则称该系统是线性的,即T[a f1(·) + bf2(·)] = a T[ f1(·)] + bT[ f2(·)]。
当动态系统满足下列三个条件时该系统为线性系统:可分解性+零状态线性+零输入线性。
相关文档
最新文档