信号与系统第二章
信号与系统课件:第二章 LTI系统

2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2
《信号与系统》第2章

5 P 10 P 2
特解: y p ( t ) 2 全解: y ( t ) Ae t cos( 2 t ) 2 确定 A 和 θ : y ( 0 ) A cos 2 3
y ( t ) Ae
t
t
t
y p ( t ) P1 e
( P1 t P1 P0 ) e
t
( P1 t 2 P1 P0 ) e
t
t
( P1 t 2 P1 P0 ) e
3 ( P1 t P1 P0 ) e
2 ( P1 t P0 ) e
t
t
bm f
( t ) b m 1 f
( t ) b1 f
b0 f (t )
或缩写为
i0
n
ai y
(i)
j0
m
bj f
( j)
ai 和 bj 均为常数, an = 1。
3
微分方程的全解的组成
•由齐次解和特解组成; •由自由响应和强迫响应组成; •由稳态响应和瞬态响应组成;
( Pr t Pr 1 t
r r 1
P1 t P0 ) e
t
9
微分方程经典解小结
• 关于齐次解:
– 解的一般形式为指数函数; – 若有多重特征根,则解为多项式与指数函数相乘; – 复根与实根的本质是相同的。
• 关于特解:
– 激励的形式主要有两种:指数函数与多项式; – 相应的响应也有两种形式:指数函数与多项式; – 当与特征根相重时,乘一多项式。
( n 1 )
( t ) a1 y
信号与系统第二章_线性时不变系统

x(k)h(n k) ku(k)u(n k)
k
k
n k 1 n1 u(n)
k 0
1
11
例2:
x(n)
1 0
0n4 otherwise
n
h(n) 0
1,0 n 6
otherwise
h(t) h(n)
x(t)
y(t) y(n)
结论:
一个单位冲激响应是 h(t) 的LTI系统对输入 信号 x(t) 所产生的响应,与一个单位冲激响应 是x(t)的LTI系统对输入信号 h(t) 所产生的响应
相同。
25
2. 分配律: x(n) [h1(n) h2 (n)] x(n) h1(n) x(n) h2(n) x(t) [h1(t) h2 (t)] x(t) h1(t) x(t) h2(t)
1
本章主要内容:
• 信号的时域分解——用 (n) 表示离散时间信号; 用 (t) 表示连续时间信号。
• LTI系统的时域分析——卷积积分与卷积和。
• LTI系统的微分方程及差分方程表示。 • LTI系统的框图结构表示。 • 奇异函数。
2
2.0 引言 ( Introduction )
由于LTI系统满足齐次性和可加性,并且具有 时不变性的特点,因而为建立信号与系统分析的 理论与方法奠定了基础。
缺点:①只适用于两个有限长序列的卷积和; ②一般情况下,无法写出 y(n)的封闭表达式。
15
2.2 连续时间LTI系统:卷积积分
(Continuous-Time LTI Systems:The convolution integral)
信号与系统第二章

解得
B1
21 50
, B2
3 50
u2(t)的特解为: u2 p t 21 cos 2t 3 sin 2t
50 50
全响应u2(t)为
u2 t u 2 h t u 2 p t A1e t A2 e 6t 21 3 cos 2t sin 2t 50 50
微分方程的建立
对于电系统,当结构参数已知时,可通过基尔霍夫电流 定律KCL和基尔霍夫电压定律KVL及元部件的伏安特性VAR 来建立方程。
VAR
电阻
iR (t )
R
uR (t ) RiR (t )
uR (t )
iR (t )
uR (t ) R
电感
iL (t )
L
uL (t )
diL (t ) uL (t ) L dt
对于连续时间系统,最常用的数学模型为高阶微分方程。
连续时间系统
微分方程
如果系统为单输入、单输出LTI系统,则可用下面的高阶常 n m 微分方程来描述 i j
C r t E e t
i 0 i j 0 i
式中,e(t)为输入激励量,又称强迫量;r(t)为输出响应 变量,是待求量;n是系统的阶数。这种描述系统的方法只 关心系统的输入信号和输出信号,而对系统内部的其他信号 的变化不关心,故称为输入-输出法。
特解的形式 系统微分方程的特解rp(t)就是系统的强迫响应,它只与激励 函数的形式有关。 几种典型激励函数e(t)及其所对应的特解rp(t)如表所示。选定 特解后,将其代入原微分方程,求出特解函数式中的待定系 数,就可得出特解rp(t)。 P46 表2-2
信号与系统 第二章repeat

④
0
e2t
k
2 t 4 e d t 2 dt e d t 2 k dt 0
19
课堂练习:计算下列各式
sin 2t sin 2t dt 4d t ① 2d t dt 4 d t dt 4 t 2t
t 设齐次解: ht C1e U t C2d t
代入方程: C1etU t C1d t C2d t C1etU t C2d t 2d t 比较系数: C1 C2 0, C2 2, C1 2 所以:
ht 2etU t 2d t
25
课堂练习
1. 已知激励为零时刻加入,求该系统的零输入响应。(2.13)
y(t ) 3 y(t ) 2 y(t ) f (t ),
yx (t ) (2et e2t )U (t )
y(0 ) 1, y(0 ) 0
2C1 C2 2C3 1 C1 C2 3C3 2C4 0 C3 3C4 0 C4 1, C3 3, ht 7e2tU t 3d t d t
f t d t t0 dt f t0 f t d ( n) t t0 dt (1)n f ( n) t0
(2)相乘性质:
f t d t f 0 d t f 0 d t
2. 已知 yt 3 yt 2 yt f t f t ,
3. 4.
求 ht .
y(t ) 3 y(t ) 2 y(t ) f (t ) f (t ) y(t ) 7 y(t ) 12 y(t ) f (t )
信号与系统第2章信号的复数表示

3
j
π
j
π
4
C1 + C 2 = (1 + 1) + j ( 3 + 1) = 2 + j ( 3 + 1)
2 C1 = 2 + j ( 2 3 ) = 2 2 e
j
= 4e
j
π
3
C1 C 2 = 1 + j 3 + j 3 3 = (1 3 ) + j ( 2 3 )
= 2 2e
j(
π
3
+
π
4
)
= 2 2e
j(
7π ) 12
2 复数中定义 j = 1 ,故 D = (a1a2 b1b2 ) + j(a1b2 + b1a2 )
换一种形式表示复数的乘法
D = C1 C2 = C1 e C2 e = C1 C2 e
j1 j2
= C1 C2 e j1 e j2
j (1 +2 )
复数的加法和乘法在复平面内的表示
复数加法
2、复平面形式
可以在复平面中表示复数
虚轴 b |C| a
复数C可表示成一个矢量
实轴
由图可以看出,矢量 的长度为复数的模,与 实轴的夹角为复数的辐 角
2.3 复数形式的运算
1、复数的数乘和共轭
数乘: k 为实数
虚轴 j
kC C
实轴
kC = ka + jkb
| kC | e j k ≥ 0 kC = | kC | e j ( +π ) k < 0
2、复数的加法和乘法
C1 、 C2 为复数, C1 = a1 + jb1 , C2 = a2 + jb2
信号与系统第二章

2.0 引 言
2.1 连续时间基本信号 2.2 卷积积分 2.3 系统的微分算子方程 2.4 连续系统的零输入响应 2.5 连续系统的零状态响应 2.6 系统微分方程的经典解法
2.0 引 言
信号与系统分析的基本任务:
在给定系统和输入的条件下,求解系统的
输出响应。
f2( ) c
f2(-)
1
2、反转:
-1
c
0
3、平移: 将f(-)沿时间轴平移t,t为参变量
f2(-) c
t>0时向右平移, t<0时向左平移
f2(t-) c
-1
0
f 2 (( t )) f 2 (t )
f2(t-) c
-1
0 t-1 t
t-1
t
-1
0
0
0
2 0
1
0
2 0
f1() f2(1-) 1 g(t)
f1() f2(2-)
0
2
0
0
t
以上可以归纳为下列情况:
f1( )
2
f1(t) f2(t)
g(t)
0
2
0
t
当t<0时,f1()f2(t-)=0,所以g1(t)=0
当0t2时,f1()与f2(t-) 有部分重迭, 积分限 0t,g2(t)为:
t-2
t 0
用图解法进行分段积分,求出g(t)
f1( ) 2 0 1 2 2 0
f1( ) 2 2 f2(1-) 0
f1( ) 2 2 0
f1 ( )
信号与系统-第2章

f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 引言
连续时间系统处理连续时间信号,通常用微分方程来描述这类系统,也就是系统的输入输出之间通过他们时间函数及其对时间t的各阶导数的线性组合联系起来。
输入与输出只用一个高阶的微分方程相联系,而且不研究内部其他信号的变化,这种描述系统的方法称为输入——输出法。
此处的分析方法有很多,其中时域分析法不通过任何变换,直接求微分方程,这种方法直观,物理概念清楚,是学习各类变换域分析方法的基础。
系统时域分析法包含两方面内容,一是微分方程的求解,另一是已知系统单位冲激响应,将冲激响应与输入激励信号进行卷积,求出系统的输出响应。
其中第一种方法在高等数学中有详细的解释,在这里主要是解释其物理含义,并建立零输入响应和零状态响应两个重要的基本概念。
虽然卷积只能用于系统的零状态响应,但他的物理概念明确。
主要的是卷积是时域和频域之间的纽带,通过它把变换域分析赋以清晰的物理概念。
2.2 微分方程的建立与求解
激励信号为e(t),系统响应为r(t)。
由时域经典解法,方程式的完全解由两部分组成:齐次解与特解。
齐次解解法:
代入:
化简为:
特征根为:
所以微分方程的齐次解为:
其中常数A由初始条件决定。
如果有重根,即:
a1相应于重根部分有k项:
特解解法:特解rp(t)的函数形式与激励函数有关,将激励e(t)代入方程式,求特解方程的待定系数,即可给出特解。
完全解:
一般需要给出初始条件才能求解系数
因此可以求出常数A
a值构成的矩阵称为范德蒙德矩阵.
齐次解表示系统的自由响应,特征根表示系统的“固有频率”,特解称为系统的强迫响应,强迫响应只与激励函数的形式有关。
r(t) = rh(t) + rp(t)
2.3 起始点的跳变从0-到0+
在系统分析中,把响应区间确定为激励信号e(t)加入之后系统状态变化区间,一般激励e(t)都是从t = 0时刻加入,这样系统的响应区间定为0+<=t<无穷,系统如果在激励信号加入之前瞬间有一组状态:
这组状态被称为系统的起始状态(简称0-状态),他包含了为计算未来响应的全部“过去”信息,在激励信号e(t)加入之后,由于受激励的影响,这组状态从0-到0+时刻可能发生变化。
而A的值是由响应区间内t = 0+时刻的一组状态决定的:
所以称这组状态为初始条件(简称0+状态,也称“导出的起始状态”)可见用时域经典法求解系统响应时,为确定自由响应部分的常数A,还必须根据系统的0-状态和激励信号情况求出0+状态。
求解流程图:
2.4 零输入响应和零状态响应
由时域经典法求解系统的完全响应是把响应分成自由响应和强迫响应,为确定完全响应中的常数往往利用冲激函数匹配法,把给定的0-状态转换成0+状态以便求解,系统响应分解只是一种形式,另一种广泛应用的重要分解是零输入响应和零状态响应。
注(很重要):对于外加激励信号e(t)和他对应的响应rzs(t) = H[e(t)]的关系而言,若系统的起始状态为零,{xi(0-)} = 0,则用常系数线性微分方程描述的系统是线性对的和时不变的。
如果起始状态{x1(0-)}不为0,由于响应中零输入分量的存在,导致系统响应对外加激励e(t)不满足叠加性和均匀性,也不满足时不变性,因而是非线性时变系统。
同时由于零输入分量存在,使响应的变化不可能只发生在激励变化之后,因而系统也是非因果的。
这样可以说用常系数线性微分方程描述的系统只有在起始状态为零的条件下,系统才是线性时不变的,而且是因果的。