信号与系统第2章1
信号与系统课件:第二章 LTI系统

2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2
信号与系统课后题解第二章

⑺
对⑺式求一阶导,有:
de(t ) d 2 i 2 (t ) di (t ) du (t ) =2 +2 2 + c 2 dt dt dt dt de(t ) d 2 i2 (t ) di (t ) =2 + 2 2 + 2i1 (t ) + 2i 2 (t ) 2 dt dt dt
⑻
将⑸式代入⑻式中,有:
λ 2 + 2λ + 1 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1
y h (t ) = C1e −t + C2 te− t
由初始状态为 y (0 ) = 1, y ' (0 ) = 0 ,则有:
C1 = 1 − C 1 + C 2 = 0
由联立方程可得 故系统的零输入响应为:
由联立方程可得 故系统的零输入响应为:
A1 = 2, A2 = −1
y zi (t ) = 2e − t − e −2 t
(2)由原微分方程可得其特征方程为
λ 2 + 2λ + 2 = 0
可解得特征根为 微分方程齐次解为
λ1, 2 = −1 ± i
y h (t ) = e −t (C1 cos t + C2 sin t )
(− 3C1 + 3C2 )δ (t ) + (C1 + C2 )δ ' (t ) − (− 2C1 + C 2 )δ (t ) = δ (t )
(
(
( + C e )δ (t ) + (C e
2 1
)
−2 t
+ C2 e t δ ' (t )
信号与系统第二章第一讲

则相应于1的k阶重根,有k项:
( A1t k 1 A2t k 2 Ak 1t Ak )e1t ( Ai t k i )e1t
i 1
k
例2-3
信 号 与 系 统
求如下所示的微分方程的齐次解。
Hale Waihona Puke d3 d2 d r (t ) 7 2 r (t ) 16 r (t ) 12r (t ) e(t ) 3 dt dt dt
等式两端各对应幂次的系数应相等,于是有:
信 号 与 系 统
特解为: 联立解得:
3B1 1 4 B1 3B2 2 2 B 2 B 3 B 0 2 3 1
统
线性时不变系统
线性的常系数微分方程
按照元件的约束特性及 系统结构的约束特性
也即:
具体系统物理模型
常系数微分方程建立
(1)元件端口的电压与电流约束关系
iR (t ) R
信 号 与 系 统
vR (t )
C
vR (t ) iR (t ) R
dvC (t ) iC (t ) C dt
vR (t ) Ri R (t )
与
时域经典法就是直接求解系统微分方程的方法。这种方 系 法的优点是直观,物理概念清楚,缺点是求解过程冗繁,应 用上也有局限性。所以在20世纪50年代以前,人们普遍喜欢 统 采用变换域分析方法(例如拉普拉斯变换法),而较少采用时 域经典法。20世纪50年代以后,由于δ(t)函数及计算机的普 遍应用,时域卷积法得到了迅速发展,且不断成熟和完善, 已成为系统分析的重要方法之一。时域分析法是各种变换域 分析法的基础。
信 号 与 系 统
is (t )
信号与系统教案第2章

bm f
( m)
(t ) bm1 f
( m1)
ai 、 bj为常数。
2.1 LTI连续系统的响应
经典时域分析方法 y(t ) yh (t ) yp (t ) 卷积法
y(t) = yzi (t) + yzs (t)
一、经典时域分析方法(微分方程经典解)
微分方程的全解即系统的完全响应, 由齐次解 yh(t)和特解yp(t)组成
信号与系统 电子教案
2.2 冲激响应和阶跃响应
2.2
冲激响应和阶跃响应
一、冲激响应
由单位冲激函数δ(t)所引起的零状态响应称为 单位冲激响应,简称冲激响应,记为h(t)。 h(t)=T[{0},δ(t)]
t
h t T 0 , t
def
h t
t
信号与系统 电子教案
第二章 连续系统的时域分析
《信号与系统》
授课教师:吕晓丽
第2-1页
■
长春工程学院电子信息教研室
信号与系统 电子教案
第二节总结
总
结
1、LTI系统的判定方法 线性性质 时不变性质 2、 LTI系统的分类 因果系统 稳定系统 3、系统的描述 系统框图与系统方程
第2-2页
■
长春工程学院电子信息教研室
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) f (t ), t 0
初始条件y(0)=1, y '(0)=2, 输入信号f (t)=et ε(t),求 系统的完全响应y(t)。
解:
(3) 求方程的全解
y (t ) yh (t ) yp (t ) C1e
《信号与系统》第2章1

信号与系统讲稿
二. 系统模型的建立是有一定条件的:
1. 对于同一物理系统在不同条件之下,可以得到不 同形式的数学模型。(参考书中P29) 2. 对于不同的物理系统,经过抽象和近似有可能得到 形式上完全相同的数学模型。(参考书中P29)
建立数学模型
解数学模型
对解加于物理解释
三. 时域分析方法
时域分析:在分析过程中,所涉及到的函数都是时间的 函数。 (1) 经典方法:求解微分方程 (2) 卷积积分。(重点内容)
在 t = 0 时刻换开关,由于电感的电流不能跳变,所以: i( 0+ ) = i( 0 ) = 0 A
di(t ) 而i (0 ) dt
L 1 1 u ( t ) u L (t ) u L (0 ) L t 0 t 0 t 0 L
且u L (0 ) 20 u C (0 )
信号与系统讲稿
对于电阻,有信号就有可能发生跳变。 第一种情况:在没有冲激电流(或阶跃电压)强迫 作用于电容的情况下,电容两端电压uC( t )不发生跳变; 在没有冲激电压(或阶跃电流)强迫作用于电感的情 况下,流过电感的电流iL( t )不发生跳变。 即: uC( 0+ ) = uC( 0 )、iL( 0+ ) = iL( 0 ) 第二种情况:在有冲激电流(或阶跃电压)强迫作 用于电容以及有冲激电压(或阶跃电流)强迫作用于 电感时, uC(0)和iL( 0 )发生跳变,这种情况只能借助 于对微分方程在[ 0,0+ ]内取积分或用奇异函数平衡 法来决定。 (2) 利用方程和起始条件uC( 0 )、iL( 0 ),通过奇异 函数平衡法决定初始条件。
1 i R (t ) u R (t ) 或 u R (t ) R i R (t ) R
信号与线性系统分析第2章

e t
cos t sin t
Pe t (不等于特征根) t (P t P )e (等于特征单根) 1 0
(Pr t r Pr 1t r 1 P0 )e t (等于r重特征根)
例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1) f1(t)* f2(t) = 2 ε (t)* ε (t+1) –2 ε (t)* ε (t –1) –2ε (t –1)* ε (t+1) +2ε (t –1)* ε (t –1) 由于ε (t)* ε (t) = tε (t) 据时移特性,有 f1(t)* f2(t) = 2 (t+1) ε (t+1) - 2 (t –1) ε (t –1) –2 tε (t) +2 (t –2) ε (t –2)
f (t ) f1 ( ) f 2 (t )d
为f1(t)与f2(t)的卷积积分,简称卷积;记为 f(t)= f1(t)*f2(t) 注意:积分是在虚设的变量τ下进行的,τ为积分变量, t为参变量。结果仍为t 的函数。
y zs (t )
f ( )h(t ) d f (t ) * ) d
▲ ■ 第 13 页
2 .任意信号作用下的零状态响应
f ( t) 根据h(t)的定义: δ(t)
LTI系统 零状态
yzs(t) h(t) h(t -τ) f (τ) h(t -τ)
由时不变性:
第2章 离散时间信号与系统-1-2节
5 m , m 0 z (m) 将m替换成m-n 0, m 0
5 ( mn ) , m n 0 z[(m n)] 0, m n 0
x ( n ) * z ( n)
n
5n m , n m z ( n m) 0, n m
m
m
[ x(m) z(n m)] [3
m0
( 5n m )]
n n 3 m n 1 (3 / 5) n 1 ,n 0 5 ( ) , n 0 5 1 3 / 5 m0 5 0, n 0 0, n 0 3n 1 5n 1 ,n 0 2 2 0, n 0
n=1
n=2
n=3
n=4
【例2-5】(P15)已知 ,
x(n) {
n ,1n3 2 0,其他
h(n) {
求:
1,0n2 0,其他
y (n) x(n) h(n)
m
x ( m )h ( n m )
【例2-5】(P15)
0.5, 1 , 1.5 1, 1, 1 ×—————————————————— 0.5, 1 , 1.5 0.5, 1 , 1.5 0.5, 1 , 1.5 + ————————————————————— 0.5, 1.5, 3, 2.5 , 1.5
1
2
3
4
y(n)
0 -2 -4 1
-3
-2
-1
0 (b)
1
2
3
4
z(n)
0
-1 -4
-3
-2
-1
0 (c)
1
2
3
信号与系统-第2章
f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.
信号与系统第2章信号描述及其分析1
图2.2.3 谐波逐次叠加后的图形 (a)1次 (b)1,3次 (c)1,3,5次
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
(2) 从以上两例可看出,三角波信号的频谱比方波信号的频谱 衰减得快,这说明三角波的频率结构主要由低频成分组成,而 方波中所含高频成分比较多。这一特点反映到时域波形上,表 现为含高频成分多的时域波形(方波)的变化比含高频成分少的时 域波形(三角波)的变化要剧烈得多。因此,可根据时域波形变化 剧烈程度,大概判断它的频谱成分。
本节小结 本节主要介绍了信号的分类。由于不同类型的信号其处 理方法不同,所以必须善于区分不同类型的信号。
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
§2 周期信号与离散频谱
信号的时域描述与时域分析 本课程所研究的信号 一般是随时间变化的物理量,抽象为以时间为自变量表达 的函数,称为信号的时域描述。求取信号幅值的特征参数 以及信号波形在不同时刻的相似性和关联性,称为信号的 时域分析。时域描述是信号最直接的描述方法,它只能反 映信号的幅值随时间变化的特征,而不能明显表示出信号 的频率构成。因此必须研究信号中蕴涵的频率结构和各频 率成分的幅值、相位关系。
本章重点及难点 本章重点为信号的分析,其中信号频
谱的求取为主要内容。难点为傅里叶变换。
机电工程学院
黄石理工学院机电工程学院
Sun Chuan 68215
第2章 信号描述及其分析
首先应清楚如下三个方面:
信号与信息 信号与信息并非同一概念。 信号分析和信号处理 信号分析和信号处理并没有明确的界 限,通常把研究信号的构成和特征称为信号分析,把信号经过 必要的变换以获得所需信息的过程称为信号处理。 对信号进行分析与处理的原因 在一般情况下,仅通过对信 号波形的直接观察,很难获取所需要的信息,需要对信号进行 必要的分析和处理。
《信号与系统分析基础》第二章部分习题参考答案
第二章部分习题参考答案2-6 试求下列各函数1()f t 与2()f t 之卷积。
121212(-)01(1) ()() ()() (0) ()()()(-) ()(-)11(1) 0(2) ()t tt t tt t f t u t f t e u t f t f t f f t d u eu t d e e d e e e t f t ααταατααταατττττττααδ-+∞-∞+∞---∞--==>*===⋅=⋅=-≥=⎰⎰⎰,解:,2121212() ()cos(45)()()()cos[()45] cos(45)(3) ()(1)[()(1)] ()(1)(2) ()()t f t t f t f t t d t f t t u t u t f t u t u t f t f t ωδτωττω+∞-∞=+*=-+=+=+--=---*⎰,解:,解:ττ222221211211()(-1)(-1)-2(-2)(-2)(-1)(-1)-(-2)(-2)2211-(-2)(-2)(-3)(-3)-(-2)(-2)(-3)(-3)22()*()()1,()0123, (1-)(1)21(1)--(12ttf t t u t t u t t u t t u t t u t t u t t u t t u t f t f t f t t f t t t dt t ft t t t τττ=+++=<=<<+=+-=++⎰222-112222212111)-222123, (1-)(1)-221()2(1)-2(1-)(-1)211121---152223, ()*()0.t t t t t t d t f t t t t t t t t t t t f t f t ττττ-+=<<+=+=+++=+++=++>=⎰121221--(4) cos , (1)-(-1)()*()()(-) [(1)-(-1)][cos(-)] cos[(1)]-cos[(-1)]f t t f t t t f t f t f f t d t t t d t t ωδδτττδδωττωω+∞∞+∞∞==+==+⋅=+⎰⎰ -212-212--2-220(5) ()(), ()sin ()()()*()()sin(-)(-) sin(-)sin t t ttt tf t e u t f t t u t f t f t f t e u t u t d e t d ee d τττττττττ+∞∞==⋅==⋅⋅⋅=⋅=⋅⎰⎰⎰-12-(-)--0022-(-)-33-2-3(6) ()2[()-(-3)], ()4()-(-2)0, ()0.02,()2488-825, 88()8(-)5, ()0.t tt t t tt t t t t f t e u t u t f t u t u t t f t t f t e d e e e t ft ed ef t e e e t f t ττττττ-==<=<<==⋅=<<===>=⎰⎰2-8 求阶跃响应为32()(21)()t t s t e e u t --=-+的LTI (线性时不变)系统对输入()()t x t e u t =的响应。