信号与系统第二章
合集下载
信号与系统课件:第二章 LTI系统

第2章 线性时不变系统
2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2
2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2
《信号与系统》第2章

确定 P:将 yp(t) = P 代入微分方程
5 P 10 P 2
特解: y p ( t ) 2 全解: y ( t ) Ae t cos( 2 t ) 2 确定 A 和 θ : y ( 0 ) A cos 2 3
y ( t ) Ae
t
t
t
y p ( t ) P1 e
( P1 t P1 P0 ) e
t
( P1 t 2 P1 P0 ) e
t
t
( P1 t 2 P1 P0 ) e
3 ( P1 t P1 P0 ) e
2 ( P1 t P0 ) e
t
t
bm f
( t ) b m 1 f
( t ) b1 f
b0 f (t )
或缩写为
i0
n
ai y
(i)
j0
m
bj f
( j)
ai 和 bj 均为常数, an = 1。
3
微分方程的全解的组成
•由齐次解和特解组成; •由自由响应和强迫响应组成; •由稳态响应和瞬态响应组成;
( Pr t Pr 1 t
r r 1
P1 t P0 ) e
t
9
微分方程经典解小结
• 关于齐次解:
– 解的一般形式为指数函数; – 若有多重特征根,则解为多项式与指数函数相乘; – 复根与实根的本质是相同的。
• 关于特解:
– 激励的形式主要有两种:指数函数与多项式; – 相应的响应也有两种形式:指数函数与多项式; – 当与特征根相重时,乘一多项式。
( n 1 )
( t ) a1 y
5 P 10 P 2
特解: y p ( t ) 2 全解: y ( t ) Ae t cos( 2 t ) 2 确定 A 和 θ : y ( 0 ) A cos 2 3
y ( t ) Ae
t
t
t
y p ( t ) P1 e
( P1 t P1 P0 ) e
t
( P1 t 2 P1 P0 ) e
t
t
( P1 t 2 P1 P0 ) e
3 ( P1 t P1 P0 ) e
2 ( P1 t P0 ) e
t
t
bm f
( t ) b m 1 f
( t ) b1 f
b0 f (t )
或缩写为
i0
n
ai y
(i)
j0
m
bj f
( j)
ai 和 bj 均为常数, an = 1。
3
微分方程的全解的组成
•由齐次解和特解组成; •由自由响应和强迫响应组成; •由稳态响应和瞬态响应组成;
( Pr t Pr 1 t
r r 1
P1 t P0 ) e
t
9
微分方程经典解小结
• 关于齐次解:
– 解的一般形式为指数函数; – 若有多重特征根,则解为多项式与指数函数相乘; – 复根与实根的本质是相同的。
• 关于特解:
– 激励的形式主要有两种:指数函数与多项式; – 相应的响应也有两种形式:指数函数与多项式; – 当与特征根相重时,乘一多项式。
( n 1 )
( t ) a1 y
信号与系统第二章_线性时不变系统

x(k)h(n k) ku(k)u(n k)
k
k
n k 1 n1 u(n)
k 0
1
11
例2:
x(n)
1 0
0n4 otherwise
n
h(n) 0
1,0 n 6
otherwise
h(t) h(n)
x(t)
y(t) y(n)
结论:
一个单位冲激响应是 h(t) 的LTI系统对输入 信号 x(t) 所产生的响应,与一个单位冲激响应 是x(t)的LTI系统对输入信号 h(t) 所产生的响应
相同。
25
2. 分配律: x(n) [h1(n) h2 (n)] x(n) h1(n) x(n) h2(n) x(t) [h1(t) h2 (t)] x(t) h1(t) x(t) h2(t)
1
本章主要内容:
• 信号的时域分解——用 (n) 表示离散时间信号; 用 (t) 表示连续时间信号。
• LTI系统的时域分析——卷积积分与卷积和。
• LTI系统的微分方程及差分方程表示。 • LTI系统的框图结构表示。 • 奇异函数。
2
2.0 引言 ( Introduction )
由于LTI系统满足齐次性和可加性,并且具有 时不变性的特点,因而为建立信号与系统分析的 理论与方法奠定了基础。
缺点:①只适用于两个有限长序列的卷积和; ②一般情况下,无法写出 y(n)的封闭表达式。
15
2.2 连续时间LTI系统:卷积积分
(Continuous-Time LTI Systems:The convolution integral)
信号与系统第二章

2 B2 14 B1 6
解得
B1
21 50
, B2
3 50
u2(t)的特解为: u2 p t 21 cos 2t 3 sin 2t
50 50
全响应u2(t)为
u2 t u 2 h t u 2 p t A1e t A2 e 6t 21 3 cos 2t sin 2t 50 50
微分方程的建立
对于电系统,当结构参数已知时,可通过基尔霍夫电流 定律KCL和基尔霍夫电压定律KVL及元部件的伏安特性VAR 来建立方程。
VAR
电阻
iR (t )
R
uR (t ) RiR (t )
uR (t )
iR (t )
uR (t ) R
电感
iL (t )
L
uL (t )
diL (t ) uL (t ) L dt
对于连续时间系统,最常用的数学模型为高阶微分方程。
连续时间系统
微分方程
如果系统为单输入、单输出LTI系统,则可用下面的高阶常 n m 微分方程来描述 i j
C r t E e t
i 0 i j 0 i
式中,e(t)为输入激励量,又称强迫量;r(t)为输出响应 变量,是待求量;n是系统的阶数。这种描述系统的方法只 关心系统的输入信号和输出信号,而对系统内部的其他信号 的变化不关心,故称为输入-输出法。
特解的形式 系统微分方程的特解rp(t)就是系统的强迫响应,它只与激励 函数的形式有关。 几种典型激励函数e(t)及其所对应的特解rp(t)如表所示。选定 特解后,将其代入原微分方程,求出特解函数式中的待定系 数,就可得出特解rp(t)。 P46 表2-2
解得
B1
21 50
, B2
3 50
u2(t)的特解为: u2 p t 21 cos 2t 3 sin 2t
50 50
全响应u2(t)为
u2 t u 2 h t u 2 p t A1e t A2 e 6t 21 3 cos 2t sin 2t 50 50
微分方程的建立
对于电系统,当结构参数已知时,可通过基尔霍夫电流 定律KCL和基尔霍夫电压定律KVL及元部件的伏安特性VAR 来建立方程。
VAR
电阻
iR (t )
R
uR (t ) RiR (t )
uR (t )
iR (t )
uR (t ) R
电感
iL (t )
L
uL (t )
diL (t ) uL (t ) L dt
对于连续时间系统,最常用的数学模型为高阶微分方程。
连续时间系统
微分方程
如果系统为单输入、单输出LTI系统,则可用下面的高阶常 n m 微分方程来描述 i j
C r t E e t
i 0 i j 0 i
式中,e(t)为输入激励量,又称强迫量;r(t)为输出响应 变量,是待求量;n是系统的阶数。这种描述系统的方法只 关心系统的输入信号和输出信号,而对系统内部的其他信号 的变化不关心,故称为输入-输出法。
特解的形式 系统微分方程的特解rp(t)就是系统的强迫响应,它只与激励 函数的形式有关。 几种典型激励函数e(t)及其所对应的特解rp(t)如表所示。选定 特解后,将其代入原微分方程,求出特解函数式中的待定系 数,就可得出特解rp(t)。 P46 表2-2
信号与系统 第二章repeat

④
0
e2t
k
2 t 4 e d t 2 dt e d t 2 k dt 0
19
课堂练习:计算下列各式
sin 2t sin 2t dt 4d t ① 2d t dt 4 d t dt 4 t 2t
t 设齐次解: ht C1e U t C2d t
代入方程: C1etU t C1d t C2d t C1etU t C2d t 2d t 比较系数: C1 C2 0, C2 2, C1 2 所以:
ht 2etU t 2d t
25
课堂练习
1. 已知激励为零时刻加入,求该系统的零输入响应。(2.13)
y(t ) 3 y(t ) 2 y(t ) f (t ),
yx (t ) (2et e2t )U (t )
y(0 ) 1, y(0 ) 0
2C1 C2 2C3 1 C1 C2 3C3 2C4 0 C3 3C4 0 C4 1, C3 3, ht 7e2tU t 3d t d t
f t d t t0 dt f t0 f t d ( n) t t0 dt (1)n f ( n) t0
(2)相乘性质:
f t d t f 0 d t f 0 d t
2. 已知 yt 3 yt 2 yt f t f t ,
3. 4.
求 ht .
y(t ) 3 y(t ) 2 y(t ) f (t ) f (t ) y(t ) 7 y(t ) 12 y(t ) f (t )
信号与系统第2章信号的复数表示

π
3
j
π
j
π
4
C1 + C 2 = (1 + 1) + j ( 3 + 1) = 2 + j ( 3 + 1)
2 C1 = 2 + j ( 2 3 ) = 2 2 e
j
= 4e
j
π
3
C1 C 2 = 1 + j 3 + j 3 3 = (1 3 ) + j ( 2 3 )
= 2 2e
j(
π
3
+
π
4
)
= 2 2e
j(
7π ) 12
2 复数中定义 j = 1 ,故 D = (a1a2 b1b2 ) + j(a1b2 + b1a2 )
换一种形式表示复数的乘法
D = C1 C2 = C1 e C2 e = C1 C2 e
j1 j2
= C1 C2 e j1 e j2
j (1 +2 )
复数的加法和乘法在复平面内的表示
复数加法
2、复平面形式
可以在复平面中表示复数
虚轴 b |C| a
复数C可表示成一个矢量
实轴
由图可以看出,矢量 的长度为复数的模,与 实轴的夹角为复数的辐 角
2.3 复数形式的运算
1、复数的数乘和共轭
数乘: k 为实数
虚轴 j
kC C
实轴
kC = ka + jkb
| kC | e j k ≥ 0 kC = | kC | e j ( +π ) k < 0
2、复数的加法和乘法
C1 、 C2 为复数, C1 = a1 + jb1 , C2 = a2 + jb2
3
j
π
j
π
4
C1 + C 2 = (1 + 1) + j ( 3 + 1) = 2 + j ( 3 + 1)
2 C1 = 2 + j ( 2 3 ) = 2 2 e
j
= 4e
j
π
3
C1 C 2 = 1 + j 3 + j 3 3 = (1 3 ) + j ( 2 3 )
= 2 2e
j(
π
3
+
π
4
)
= 2 2e
j(
7π ) 12
2 复数中定义 j = 1 ,故 D = (a1a2 b1b2 ) + j(a1b2 + b1a2 )
换一种形式表示复数的乘法
D = C1 C2 = C1 e C2 e = C1 C2 e
j1 j2
= C1 C2 e j1 e j2
j (1 +2 )
复数的加法和乘法在复平面内的表示
复数加法
2、复平面形式
可以在复平面中表示复数
虚轴 b |C| a
复数C可表示成一个矢量
实轴
由图可以看出,矢量 的长度为复数的模,与 实轴的夹角为复数的辐 角
2.3 复数形式的运算
1、复数的数乘和共轭
数乘: k 为实数
虚轴 j
kC C
实轴
kC = ka + jkb
| kC | e j k ≥ 0 kC = | kC | e j ( +π ) k < 0
2、复数的加法和乘法
C1 、 C2 为复数, C1 = a1 + jb1 , C2 = a2 + jb2
信号与系统第二章

第 2 章 连续信号与系统的时域分析
2.0 引 言
2.1 连续时间基本信号 2.2 卷积积分 2.3 系统的微分算子方程 2.4 连续系统的零输入响应 2.5 连续系统的零状态响应 2.6 系统微分方程的经典解法
2.0 引 言
信号与系统分析的基本任务:
在给定系统和输入的条件下,求解系统的
输出响应。
f2( ) c
f2(-)
1
2、反转:
-1
c
0
3、平移: 将f(-)沿时间轴平移t,t为参变量
f2(-) c
t>0时向右平移, t<0时向左平移
f2(t-) c
-1
0
f 2 (( t )) f 2 (t )
f2(t-) c
-1
0 t-1 t
t-1
t
-1
0
0
0
2 0
1
0
2 0
f1() f2(1-) 1 g(t)
f1() f2(2-)
0
2
0
0
t
以上可以归纳为下列情况:
f1( )
2
f1(t) f2(t)
g(t)
0
2
0
t
当t<0时,f1()f2(t-)=0,所以g1(t)=0
当0t2时,f1()与f2(t-) 有部分重迭, 积分限 0t,g2(t)为:
t-2
t 0
用图解法进行分段积分,求出g(t)
f1( ) 2 0 1 2 2 0
f1( ) 2 2 f2(1-) 0
f1( ) 2 2 0
f1 ( )
2.0 引 言
2.1 连续时间基本信号 2.2 卷积积分 2.3 系统的微分算子方程 2.4 连续系统的零输入响应 2.5 连续系统的零状态响应 2.6 系统微分方程的经典解法
2.0 引 言
信号与系统分析的基本任务:
在给定系统和输入的条件下,求解系统的
输出响应。
f2( ) c
f2(-)
1
2、反转:
-1
c
0
3、平移: 将f(-)沿时间轴平移t,t为参变量
f2(-) c
t>0时向右平移, t<0时向左平移
f2(t-) c
-1
0
f 2 (( t )) f 2 (t )
f2(t-) c
-1
0 t-1 t
t-1
t
-1
0
0
0
2 0
1
0
2 0
f1() f2(1-) 1 g(t)
f1() f2(2-)
0
2
0
0
t
以上可以归纳为下列情况:
f1( )
2
f1(t) f2(t)
g(t)
0
2
0
t
当t<0时,f1()f2(t-)=0,所以g1(t)=0
当0t2时,f1()与f2(t-) 有部分重迭, 积分限 0t,g2(t)为:
t-2
t 0
用图解法进行分段积分,求出g(t)
f1( ) 2 0 1 2 2 0
f1( ) 2 2 f2(1-) 0
f1( ) 2 2 0
f1 ( )
信号与系统-第2章

f (t)
K
两式相加:
cosωt =
1 2
(e
jωt
+
e
jωt )
(2-4)
0 K
t
两式相减:
sinωt =
1 2j
(e
jωt
-e
jωt )
(2-5)
(3) 复指数信号: f(t) = Ke st = Ke (σ+ jω)t
= Keσt (cosωt + j sinωt)
当 σ > 0 时为增幅振荡 ω = 0 时为实指数信号 σ < 0 时为衰减振荡
2
01
t
f(
1 2
t)
=
1 2
t
0
0<t <4 其它
f(12 t)
2 0
4t
注意: 平移、反折和展缩都是用新的时间变量去代换原来的
时间变量, 而信号幅度不变.
t +2 -2<t<0 例2-5:已知 f(t) = -2t + 2 0<t<1
f (t)
2
0
其它
-2 0 1
t
求 f(2t-1),
f(
1 2
(1) 相加和相乘
信号相加: f t f1t f2 t fn t 信号相乘: f t f1t f2 t fn t
0 t<0 例2-1:已知 f1(t) = sint t ≥ 0 , f2(t) =-sint, 求和积.
解: f1(t) + f2(t) =
-sint 0
t<0 t≥0
0
t<0
f1(t) f2(t) = -sin2t t ≥ 0 也可通过波形相加和相乘.
∞ t=0 作用: 方便信号运算.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
第2章 连续信号与系统的时域分析
题解图 2.2
7
第2章 连续信号与系统的时域分析
2.3 各信号波形如题图2.1所示,计算下列卷积,并画出其 波形。
(1) f1(t)*f2(t); (2) f1(t)*f3(t); (3) f4(t)*f3(t); (4) f4(t)*f5(t)。
8
第2章 连续信号与系统的时域分析
(c)所示的f1(t)和f2(t)。 解
27
第2章 连续信号与系统的时域分析
题图 2.2
28
第2章 连续信号与系统的时域分析
2.6 f1(t)和f2(t)如题图2.3(a)和(b)所示,试用图解法求卷积 积分f1(t)*f2(t),并画出其波形。
题图 2.3
29
第2章 连续信号与系统的时域分析
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
18
第2章 连续信号与系统的时域分析
2.4 计算卷积积分f1(t)*f2(t):
19
第2章 连续信号与系统的时域分析
解 应用卷积性质和公式计算卷积积分。
20
第2章 连续信号与系统的时域分析 21
第2章 连续信号与系统的时域分析
结合题解图2.4,求得来自所以22第2章 连续信号与系统的时域分析
题解图 2.4
(3)
波形如题解图2.3-3所示。
14
第2章 连续信号与系统的时域分析
题解图 2.3-3
15
第2章 连续信号与系统的时域分析
(4) 用图解法求卷积积分。求解过程及f4(t)*f5(t)波形如题解 图2.3-4所示。
题解图 2.3-4
16
因为
第2章 连续信号与系统的时域分析
17
所以
第2章 连续信号与系统的时域分析
题图 2.1
9
第2章 连续信号与系统的时域分析
解
波形如题解图2.3-1所示。
10
第2章 连续信号与系统的时域分析
题解图 2.3-1
11
第2章 连续信号与系统的时域分析
(2)
波形如题解图2.3-2所示。
12
第2章 连续信号与系统的时域分析
题解图 2.3-2
13
第2章 连续信号与系统的时域分析
23
第2章 连续信号与系统的时域分析
(9) 将f1(t)、f2(t)改写为
24
先计算
第2章 连续信号与系统的时域分析
再应用卷积时移性质,求得
25
(10) 因为
第2章 连续信号与系统的时域分析
所以
26
第2章 连续信号与系统的时域分析
2.5 已知f(t)如题图2.2(a)所示。试用f(t),δT(t)= 进行两种运算(相乘和卷积),构成题图2.2(b)和
题解图 2.7
35
第2章 连续信号与系统的时域分析
由于f1(t)波形净面积
S=-2+0.5=-1.5
所以,卷积积分
y1(t)=2*f1(t)=2S=-3
(2) 因为ε(-∞)=0,故可应用卷积的微积分性质简化公式得
36
第2章 连续信号与系统的时域分析
(3) 因为ε(-∞)=0, 故有 所以
37
第2章 连续信号与系统的时域分析
当t=-1时,f2(t-τ)=f2(-1-τ)。画出f1(τ)、f2(-1-τ)波形如 题解图2.8(a)所示, 两波形重叠区间为[-2,0],求得
40
第2章 连续信号与系统的时域分析
题解图 2.8
41
第2章 连续信号与系统的时域分析
同理,当t=0和1时,分别画出f1(τ)、f2(t-τ)波形如题解图 2.8(b)、(c)所示,并在相应重叠区间上计算卷积结果,得
第2章 连续信号与系统的时域分析
第2章 连续信号与系统 的时域分析
1
第2章 连续信号与系统的时域分析
2.1 对下列信号,当τ→0(τ>0)时,f(t)→δ(t),试确定系数
值K(提示: 利用
的特点求解)。
2
第2章 连续信号与系统的时域分析
解 (1) 因为
对上式两边从-∞到∞取积分,考虑到
求得 所以
自然,根据积分运算的几何意义,上述结果也可通过直接 观察乘积信号f1(τ)·f2(t-τ)波形的净面积得到。
42
第2章 连续信号与系统的时域分析
2.9 已知信号f1(t)和f2(t)波形如题图2.5所示,试计算 f1(t)*f2(t)。
解 先画出f1(t-τ)|t=0, 即f1(-τ)和f2(τ)波形如题解图2.6(a)所 示。再令t从-∞ 开始增长,随f1(t-τ)波形右移,分区间计算卷 积积分:
30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
题解图 2.6
33
第2章 连续信号与系统的时域分析
2.7 试计算下列卷积: (1) 2*t[ε(t+2)-ε(t-1)]; (2) ε(t)*tnε(t); (3) e-tε(t)*δ′(t)*ε(t); (4) e-2tε(t)*δ″(t)*tε(t)。
34
第2章 连续信号与系统的时域分析
解 (1) 画出f1(t)=t[ε(t+2)-ε(t-1)]波形如题解图2.7 所示。
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4
39
第2章 连续信号与系统的时域分析
解 计算两个分段信号在某时刻的卷积积分值,应用图解 法求解比较方便。
第2章 连续信号与系统的时域分析
题解图 2.2
7
第2章 连续信号与系统的时域分析
2.3 各信号波形如题图2.1所示,计算下列卷积,并画出其 波形。
(1) f1(t)*f2(t); (2) f1(t)*f3(t); (3) f4(t)*f3(t); (4) f4(t)*f5(t)。
8
第2章 连续信号与系统的时域分析
(c)所示的f1(t)和f2(t)。 解
27
第2章 连续信号与系统的时域分析
题图 2.2
28
第2章 连续信号与系统的时域分析
2.6 f1(t)和f2(t)如题图2.3(a)和(b)所示,试用图解法求卷积 积分f1(t)*f2(t),并画出其波形。
题图 2.3
29
第2章 连续信号与系统的时域分析
3
(2) 因为
第2章 连续信号与系统的时域分析
所以
4
第2章 连续信号与系统的时域分析
2.2 写出下列复频率s所表示的指数信号est的表达式,并画 出其波形。
(1) 2; (2) -2; (3) -j5; (4) -1+j2。
5
第2章 连续信号与系统的时域分析
解 (1) f1(t)=e2t,波形如题解图2.2(a)所示。 (2) f2(t)=e-2t, 波形如题解图2.2(b)所示。显然, f1(t)和f2(t)都 是实指数信号。 (3) f3(t)=e-j5t=cos5t-j sin5t。f3(t)是虚指数信号,其实部、 虚部分别是等幅余弦、正弦信号。实部信号波形如题解图2.2(c) 所示。 (4) f4(t)=e(-1+j2)t=e-t·ej2t=e-t(cos2t+j sin2t)。f4(t)是复指数信 号,其实部和虚部分别是幅度按指数规律衰减的余弦和正弦信 号。实部信号波形如题解图2.2(d)所示。
18
第2章 连续信号与系统的时域分析
2.4 计算卷积积分f1(t)*f2(t):
19
第2章 连续信号与系统的时域分析
解 应用卷积性质和公式计算卷积积分。
20
第2章 连续信号与系统的时域分析 21
第2章 连续信号与系统的时域分析
结合题解图2.4,求得来自所以22第2章 连续信号与系统的时域分析
题解图 2.4
(3)
波形如题解图2.3-3所示。
14
第2章 连续信号与系统的时域分析
题解图 2.3-3
15
第2章 连续信号与系统的时域分析
(4) 用图解法求卷积积分。求解过程及f4(t)*f5(t)波形如题解 图2.3-4所示。
题解图 2.3-4
16
因为
第2章 连续信号与系统的时域分析
17
所以
第2章 连续信号与系统的时域分析
题图 2.1
9
第2章 连续信号与系统的时域分析
解
波形如题解图2.3-1所示。
10
第2章 连续信号与系统的时域分析
题解图 2.3-1
11
第2章 连续信号与系统的时域分析
(2)
波形如题解图2.3-2所示。
12
第2章 连续信号与系统的时域分析
题解图 2.3-2
13
第2章 连续信号与系统的时域分析
23
第2章 连续信号与系统的时域分析
(9) 将f1(t)、f2(t)改写为
24
先计算
第2章 连续信号与系统的时域分析
再应用卷积时移性质,求得
25
(10) 因为
第2章 连续信号与系统的时域分析
所以
26
第2章 连续信号与系统的时域分析
2.5 已知f(t)如题图2.2(a)所示。试用f(t),δT(t)= 进行两种运算(相乘和卷积),构成题图2.2(b)和
题解图 2.7
35
第2章 连续信号与系统的时域分析
由于f1(t)波形净面积
S=-2+0.5=-1.5
所以,卷积积分
y1(t)=2*f1(t)=2S=-3
(2) 因为ε(-∞)=0,故可应用卷积的微积分性质简化公式得
36
第2章 连续信号与系统的时域分析
(3) 因为ε(-∞)=0, 故有 所以
37
第2章 连续信号与系统的时域分析
当t=-1时,f2(t-τ)=f2(-1-τ)。画出f1(τ)、f2(-1-τ)波形如 题解图2.8(a)所示, 两波形重叠区间为[-2,0],求得
40
第2章 连续信号与系统的时域分析
题解图 2.8
41
第2章 连续信号与系统的时域分析
同理,当t=0和1时,分别画出f1(τ)、f2(t-τ)波形如题解图 2.8(b)、(c)所示,并在相应重叠区间上计算卷积结果,得
第2章 连续信号与系统的时域分析
第2章 连续信号与系统 的时域分析
1
第2章 连续信号与系统的时域分析
2.1 对下列信号,当τ→0(τ>0)时,f(t)→δ(t),试确定系数
值K(提示: 利用
的特点求解)。
2
第2章 连续信号与系统的时域分析
解 (1) 因为
对上式两边从-∞到∞取积分,考虑到
求得 所以
自然,根据积分运算的几何意义,上述结果也可通过直接 观察乘积信号f1(τ)·f2(t-τ)波形的净面积得到。
42
第2章 连续信号与系统的时域分析
2.9 已知信号f1(t)和f2(t)波形如题图2.5所示,试计算 f1(t)*f2(t)。
解 先画出f1(t-τ)|t=0, 即f1(-τ)和f2(τ)波形如题解图2.6(a)所 示。再令t从-∞ 开始增长,随f1(t-τ)波形右移,分区间计算卷 积积分:
30
第2章 连续信号与系统的时域分析 31
最后整理得
第2章 连续信号与系统的时域分析
波形如题解图2.6(b)所示。
32
第2章 连续信号与系统的时域分析
题解图 2.6
33
第2章 连续信号与系统的时域分析
2.7 试计算下列卷积: (1) 2*t[ε(t+2)-ε(t-1)]; (2) ε(t)*tnε(t); (3) e-tε(t)*δ′(t)*ε(t); (4) e-2tε(t)*δ″(t)*tε(t)。
34
第2章 连续信号与系统的时域分析
解 (1) 画出f1(t)=t[ε(t+2)-ε(t-1)]波形如题解图2.7 所示。
(4) 由于tε(t)|t=-∞=0,有 所以
38
第2章 连续信号与系统的时域分析
2.8 已知f1(t)和f2(t)如题图2.4所示。设f(t)=f1(t)*f2(t),试求 f(-1)、f(0)和f(1)的值。
题图 2.4
39
第2章 连续信号与系统的时域分析
解 计算两个分段信号在某时刻的卷积积分值,应用图解 法求解比较方便。