信号与系统第二章.ppt

合集下载

信号与系统课件:第二章 LTI系统

信号与系统课件:第二章 LTI系统
第2章 线性时不变系统
2.1 离散时间LTI系统: 卷积和
(1)用移位单位抽样信号表示离散时间信号 (2)卷积和在离散时间信号LTI系统中的表征 (3)卷积和的计算 (4) 离散时间信号LTI系统的性质
(1)用单位抽样信号表示离散时间信号
x[n] ... x[1] n 1 x[0] n x[1] n 1... x[n][0] x[n 1][1]
(1)初始条件为n<0时,y(n)=0,求其单位抽样响应;
(2)初始条件为n≥0时,y(n)=0,求其单位抽样响应。
解:(1)设x(n) (n),且 y(1) h(1) 0 ,必有
y(n) h(n) 0, n 0
依次迭代
y(0) h(0) (0) 1 y(1) 1 0 1
2
当系统的初始状态为零,单位抽样响应h(n)就 能完全代表系统,那么对于线性时不变系统,任意 输入下的系统输出就可以利用卷积和求得。
差分方程在给定输入和边界条件下,可用迭代 的方法求系统的响应,当输入为δ(n)时,输出 (响应)就是单位抽样响应h(n)。
例:常系数差分方程
y(n) x(n) 1 y(n 1) 2
x[n]u[n] x[k]u[n k] x[k]
k
k
(ii)交换律:
yn xnhn hn xn
例子: 线性时不变系统中的阶跃响应 sn
sn unhn hnun
阶跃输入
输 单位抽样信号 入 响应的累加
n
sn hk
k
(iii)分配律:
xnh1n h2 n xnh1n xnh2 n
y(1) h(1) (1) 1 y(0) 0 1 1
2
22
y(2) h(2) (2) 1 y(1) 0 1 1 (1)2

信号与系统 第二章ppt剖析

信号与系统 第二章ppt剖析
网络拓扑约束:由网络结构决定的电压电流约束关系, KCL,KVL。

例1 求并联电路的端电压 vt 与激励 is t 间的关系。
7 页
电阻
iR t
1 R
vt
电感
iLt
1 L
t v d
ist
电容
iC
t
C
dv d
t
t
iR iL R LC
a ic
vt
b
根据KCL iRt iLt iC t iS t
系统的完全响应
第 17

求出齐次解rh t 和特解rp t 相加即得方程的完全解:
n
rt Aieit rp t i 1
利用初始条件求待定系数Ai 我们一般将激励信号加入的时刻定义为t=0,响应
的求解区间定为 t ,如0 果响应在0时刻没有跳变,通常
取t=0,这样对应的一组条件称为初始条件。
1
2
10
B1
, 3
B2
, 9
B3 27
所以,特解为
rp t
1 3

2 9
t
10 27
第 15

(2)
(原方程:
d2 rt
dt2
2
d rt
dt
3r t
d et
dt
et

当et et时, 很明显, 可选rt Bet。这里,B是待定系数。
代入方程后有:
Bet 2Bet 3Bet et et
于是,特解为 1 et。 3
B 1 3
几种典型激励函数相应的特解
第 16

激励函数e(t)
E(常数)
响应函数r(t)的特解

信号与系统第二章课件.

信号与系统第二章课件.

先假定逆系统的冲击响应的结果为hi1(t),然后经逐步修 正找到最终的hi(t) 。
很遗憾以上关于hi1(t)的假定,虽然可以消除δ(t)项, 却引入了新的a2 δ(t-2T)项。不过回波信号的强度衰减了, 而且时间延迟了,使干扰效果明显减弱。可进一步设
可见若逆系统的冲激响应hi1(t)若采用此结果,回 波信号的强度可以衰减至无穷小,而且时间可以延迟 至无穷远。 实际问题中,我们只须将延时补偿采用几项,就 可达到理想效果。
其中N变量指所有的回波路径。Tm、源自m表示各条路径的延迟 时间和衰减系数。当T较小且a较小时,形成所谓的“混响”。
根据以上分析,可以很容易写出回波系统的冲击响应
这样一般信号的响应,可以很容易根据卷积关系写为
为了从含有干扰信号的回波信号中取出正常信号,我们需设 计一个“逆系统”,其方框图如下。
接下来的工作是从上式求出hi(t),这样的问题是卷 积的反问题,称为解卷积。 对已连续时间系统,解卷积一般难以给出普适的公式,而 对于离散时间问题,§7.7给出了一般的解法。采用变换域 解法(如付里叶变换、拉普拉斯变换),也可较方便给出此问 题冲激响应(或者系统函数)的解法。 下面我们给出此问题的尝试解法。
信号与系统
§2.10用算子符号表示微分方程
采用算子符号可以简化微分、积分方程的计算,本节给 出算子符号的一些基本运算规则,然后通过实例说明此方法 的方便之处。 (一)算子符号的基本规则
(一)用算子符号建立微分方程 用算子符号建立系统的微分方程不仅书写简单,而且非 常方便。电感、电容的等效算子符号为:
实例:用算子符号建立电路微分方程
R1=1
Lp=(1/4)p
1/CP=1/p C R2=3/2
线性电路微分方程求解借鉴课本,P81

南邮信号与系统课后答案第二章 ppt课件

南邮信号与系统课后答案第二章 ppt课件

xk
yk
h1k
h3 k
h2k
解: hkkh1kh2kh3kh3kh1kh3kh2kh3k
1kukuk1kukk11kuk
2
2
2
2kuk22kuk2k1uk12uk2k1uk1
2k2uk12k1uk12k22k1uk1
1 k 2
4 3
0.5k 2
k 1
k 1
2 3
1k 2
4 3
0.5k 2
4 3
1k 1
8 3
0
.5
k
1
u
k
2 3
1k
1 3
0.5k
4 3
1k
4 3
0.5k
u k
2 1k 0.5k uk
2-25 计算下列卷积
2 2e3tut
解原 : 式 e3tut2e3tut2ut
1 uk 1 1 uk 3
n 1
n 1
kuk 1 k 2uk 3
k k 1 k 2 uk 3 k 2uk 3
k k 1 k k 2 2uk 3
k k 1 k k 2 2uk 3
k 1
k2
k 1 2 k 2 2uk 3
k 1 2uk 2
(1)yk10.5ykxk1,xk1kuk
3
解: 设h0k 10.5h0k k
特征方程: 0.5 0 特征根: 0.5
h0k c10.5k uk 1
h011 0.5c1 c2 h0k20.5kuk1
h k h 0 k 1 2 0 . 5 k 1 u k 0 . 5 k u k
ykxkh k 1 kuk0 .5 kuk
3
k

信号与系统 梁风梅主编 电子工业出版社 ppt第二章答案

信号与系统  梁风梅主编   电子工业出版社 ppt第二章答案

习题二2.1信号cos()t e wt σ可以表示为 st e 与 *s t e 之和,其中 s jw σ=+,*s jw σ=-, 粗略画出下列信号的波形,并在s 平面标出其频率位置。

(1)()cos(3)x t t =(2)3()cos(3)t x t e t -=(3)2()cos(3)t x t e t =(4)2()t x t e -=(5)3()t x t e =(6)()5x t =x (t )50t2.2粗略画出下列信号。

(1)()(3)(5)x t u t u t =---012345tx (t )1(2)()(3)(5)x t u t u t =-+-(3)2(){(3)(5)}x t t u t u t =--- x (t )902535t(4)()2(3)(5)(7)x t u t u t u t =-----2.3简化下列表达式(1)2sin ()()2t x t t t δ=+=0 (2)2()()9jw x jw ωδω+=+=2()9δω (3) ()()2sin 22()14t x t t t πδ⎧⎫-⎨⎬⎩⎭=-+=-1(1)5t δ- (4) sin()()()kw x t w wδ==k ()w δ 2.4 求下列积分(1)()()()x t x t d δτττ+∞-∞=-⎰=()()x t d δττ+∞-∞⎰=x(t) (2) ()()()x t x t d τδττ+∞-∞=-⎰=()()()x t t d x t δττ+∞-∞-=⎰ (3) 313()(23)sin()(23)sin()()222x t t t dt t dt t dt δπδπδ+∞+∞+∞-∞-∞-∞=-=-=--⎰⎰⎰=-12(4) ()()()1jwt x t t e dt t dt δδ+∞+∞-∞-∞===⎰⎰(5) ()(2)(3)(1)(3)(1)x t x t t dt x t dt x δδ+∞+∞-∞-∞=--=--=-⎰⎰(6) ()()()()t tjw x t e d d u t τδττδττ-∞-∞===⎰⎰(7) 3()(1)cos[(3)]sin[(3)]|0t x t t w t dt w w t δ+∞=-∞'=--=-=⎰(8)()(2)cos[(2)]cos[(2)](2)t tx t t w t dt w t d t δδ-∞-∞'=--=--=⎰⎰cos[(2)](2)|(2)cos[(2)]tt w t t t d w t δδ-∞-∞-----⎰1(2)sin[(2)]1tw t w t dt δ-∞=----=⎰2.5(1)求信号2()()t x t e u t -=的偶部与奇部2()()t x t e u t -=-偶部 {}{}2211()()(){()()}22t t Ev x t x t x t e u t e u t -=+-=+- 奇部{}{}2211{()}()()()()22t t Od x t x t x t e u t e u t -=--=--(2)2401|()|4t E x t dt e dt +∞+∞-∞-∞===⎰⎰ 总能量422220111|||()()|2448t t t E Ev dt e u t e u t dt e dt -+∞+∞+∞-∞-∞-∞==+-=⨯⨯=⎰⎰⎰偶部能量 422220111|||()()|2448t t t E Od dt e u t e u t dt e dt -+∞+∞+∞-∞-∞-∞==--=⨯⨯=⎰⎰⎰奇部能量 (3)由第二问可以得出信号的总能量等于其奇部与偶部能量之和。

信号与系统 第二章 第3讲

信号与系统 第二章 第3讲
第二节 起始点的跳变

电容电压的跳变 电感电流的跳变 冲激函数匹配法确定初始条件
信号与系统 第2章

一.起始条件与初始条件
一般将激励信号加入的时刻定义为t=0 ,响应r(t)为 t 0 时方程的解,对于n阶系统,起始状态( 0- 状态)指:
d r ( 0 - ) d 2 r (0 - ) d n1 r (0 - ) r (0 ) , , , , 2 dt dt d t n1


0
0
vL ( ) d 0 , 此时iL (0 ) iL (0 )
冲激电压或阶跃电流作 用于电感时:
如果vL (t )为 t
1 0 1 v L ( ) d , L 0 L 此时 i L 0 i L 0
信号与系统 第2章
iL (0 ) iL (0 )
信号与系统 第2章
例2-2-2
d i L (t ) v L (t ) L dt
i L (t )

I s u(t )
L
d[ I s v(t )] L LI s (t ) dt
1 0 i L (0 ) i L (0 ) LI s (t ) d t L 0
v L (t )

i L (0 ) I s

当系统用微分方程表示时,系统从 0 到0 状态有没 有跳变取决于微分方程右端自由项是否包含 (t ) 及其各 阶导数项。

信号与系统 第2章
1. 电容电压的跳变
t c i c (t ) 由伏安关系 vC (t ) 1 iC ( ) d C v (t ) 1 0 1 0 1 t c iC ( ) d iC ( ) d iC ( ) d C C 0 C 0 1 0 1 t vC (0 ) iC ( ) d iC ( ) d C 0 C 0

信号与系统课件(郑君里版)第二章

信号与系统课件(郑君里版)第二章

e ,t≥0;y(0)=2,y’(0)= 2 t ,t≥0;y(0)= 1, e
t
-1
y’(0)=0时的全解。
解: (1) 特征方程为
2 + 5λ+ 6 = 0
其特征根λ1= – 2,λ2= – 3。 齐次解为
yh (t ) C1e2t C2e2t
由表2-2可知,当f(t) = 2 e t
y fh (t ) C f 1e
2t
C f 2e
t
其特解为常数 3 , 于是有
y f (t ) C f 1e2t C f 2et 3
C1 1 C 2 4
根据初始值求得:
y f (t ) e2t 4et 3,t 0
四.系统响应划分
自由响应+强迫响应 (Natural+forced) 暂态响应+稳态响应 (Transient+Steady-state) 零输入响应+零状态响应 (Zero-input+Zero-state)
零输入响应
2.2 冲激响应和阶跃响应
一.冲激响应 1.定义 系统在单位冲激信号δ(t) 作用下产生的零状态响 应,称为单位冲激响应,简称冲激响应,一般用h(t)表 示。
t
ht
H
[例2.2.1] 描述某系统的微分方程为y”(t)+5y’(t)+6y(t)=f(t)求其 冲激响应h(t)。
相互关系
零输入响应是自由响应的一部分,零状态响应有自由响 应的一部分和强迫响应构成 。
y (t ) e 2t 3 y x (t ) y f (t ) (2e 2t 4e t ) (e 2t 4e t 3),t 0

信号与系统 第二章

信号与系统 第二章

( x1 ( t ) + x2 ( t ))* h( t ) = x1 ( t )* h( t ) + x2 ( t )* h( t )
Application: Parallel system a common system Can break a complicated convolution into several simpler ones
Signals & Systems
Example 2.10
1 n x[n] = ( ) u[ n] + 2n u[− n] 2 h[n] = u[n]
Signals & Systems
2.3.3 The Associative Property
x[n]* ( h1 [n]* h2 [n]) = ( x[n]* h1 [n])* h2 [n] x ( t )*[h1 ( t )* h2 ( t )] = [ x ( t )* h1 ( t )]* h2 ( t )
1 h[n] = 0 n = 0,1 otherwise
Example 2.9
If the system is LTI,determine the relationship between input and output If the system is not LTI,determine the relationship between input and output
Signals & Systems
2.2 Continuous-Time LTI System: The Convolution Integral
2.2.1 The Representation ContinuousTime Signals In Term Of Impulse
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、零输入响应和零状态响应
y(t) = yzi(t) + yzs(t) ,也可以分别用经典法求解。 注意:对t=0时接入激励f(t)的系统,初始值
yzi(j)(0+), yzi(j)(0+) (j = 0,1,2,…,n-1)的计算。 y(j)(0-)= yzi(j)(0-)+ yzs(j)(0-) y(j)(0+)= yzi(j)(0+)+ yzs(j)(0+)
例 描述某系统的微分方程为
y”(t) + 5y’(t) + 6y(t) = f(t) 求(1)当f(t) = 2e-t,t≥0;y(0)=2,y’(0)= -1时的全解;
解: (1) 特征方程为λ2 + 5λ+ 6 = 0 其特征根λ1= – 2, λ2= – 3。齐次解为
yh(t) = C1e – 2t + C2e – 3t 由表2-2可知,当f(t) = 2e – t时,其特解可设为
(1)
冲激平衡法是指为保持系统对应的动态方程式的恒等,方
程式两边所具有的冲激信号函数及其各阶导数必须相等。
那么,上式对于t=0-也成立,在0-<t<0+区间等号两端 δ(t)项的系数应相等。
由于等号右端为2δ(t),故y”(t)应包含冲激函数,从而
y’(t)在t= 0处将发生跃变,即y’(0+)≠y’(0-)。
而y(j)(0+)包含了输入信号的作用,不便于描述系统 的历史信息。
在t=0-时,激励尚未接入,该时刻的值y(j)(0-)反映 了系统的历史情况而与激励无关。称这些值为初始 状态或起始值。
通常,对于具体的系统,初始状态一般容易求得。 这样为求解微分方程,就需要从已知的初始状态 y(j)(0-)设法求得y(j)(0+)。下列举例说明。
已知y(0-)=2,y’(0-)=0,f(t)=ε(t)。求该系统的零输入
响应和零状态响应。
解:(1)零输入响应yzi(t) 激励为0 ,故yzi(t)满足 yzi”(t) + 3yzi’(t) + 2yzi(t) = 0 yzi (0+)= yzi(0-)= y(0-)=2 yzi’(0+)= yzi’(0-)= y’(0-)=0
但y’(t)不含冲激函数,否则y”(t)将含有δ’(t)项。由于
y’(t)中不含δ(t),但含有ε(t) ,故y(t)在t=0处是连续的。

y(0+) = y(0-) = 2
对式(1)两端积分有
0
0
0
0
0
y''(t)dt 3 y'(t)dt 2 y(t)dt 2 (t)dt 6 (t)dt
第二章 连续系统的时域分析
LTI连续系统的时域分析,即对于给定的激励,根 据描述系统响应与激励之间的微分方程求的其响应的 方法。归结为:建立并求解线性微分方程。
由于在其分析过程涉及的函数变量均为时间t,故 称为时域分析法。这种方法比较直观,物理概念清楚, 是学习各种变换域分析法的基础。
2.1 LTI连续系统的响应
0
0
0
0
0
由于积分在无穷小区间[0-,0+]进行的,且y(t)在t=0连续,

0
0
y(t)dt 0, (t)dt 0
0
0
于是由上式得
[y’(0+) – y’(0-)] + 3[y(0+) – y(0-)]=2 考虑 y(0+) = y(0-)=2 ,所以
y’(0+) – y’(0-) = 2 , y’(0+) = y’(0-) + 2 =2 由上可见,当微分方程等号右端含有冲激函数(及其各 阶导数)时,响应y(t)及其各阶导数中,有些在t=0处将 发生跃变。但如果右端不含时,则不会跃变。
yp(t) = Pe – t 将其代入微分方程得
Pe – t + 5(– Pe – t) + 6Pe – t = 2e – t 解得 P=1 于是特解为 yp(t) = e – t 全解为: y(t) = yh(t) + yp(t) = C1e – 2t + C2e – 3t + e – t 其中 待定常数C1,C2由初始条件确定。
一、微分方程的经典解
y(n)(t) + an-1y (n-1)(t) + …+ a1y(1)(t) + a0y (t) = bmf(m)(t) + bm-1f (m-1)(t) + …+ b1f(1)(t) + b0f (t)
微分方程的经典解: y(t)(完全解) = yh(t)(齐次解) + yp(t)(特解)
y(0) = C1+C2+ 1 = 2,y’(0) = – 2C1 – 3C2 – 1= – 1 解得 C1 = 3 ,C2 = – 2 最后得全解 y(t) = 3e – 2t – 2e – 3t + e – t , t≥0
二、关于0-和0+初始值
若输入f(t)是在t=0时接入系统,则确定待定系数Ci 时用t = 0+时刻的初始值,即y(j)(0+) (j=0,1,2…,n-1)。
该齐次方程的特征根为–1, – 2,故
齐次解是齐次微分方程 y(n)+an-1y(n-1)+…+a1y(1)(t)+a0y(t)=0
的解。yh(t)的函数形式由上述微分方程的特征根确定。 特解的函数形式与激励函数的形式有关。P41表2-1、2-2
齐次解的函数形式仅与系统本身的特性有关,而与激励 f(t)的函数形式无关,称为系统的固有响应或自由响应; 特解的函数形式由激励确定,称为强迫响应。
例:描述某系统的微分方程为
y”(t) + 3y’(t) + 2y(t) = 2f’(t) + 6f(t)
已知y(0-)=2,y’(0-)= 0,f(t)=ε(t),求y(0+)和y’(0+)。
解:将输入f(t)=ε(t)代入上述微分方程得
y”(t) + 3y’(t) + 2y(t) = 2δ(t) + 6ε(t)
对于零输入响应,由于激励为零,故有 yzi(j)(0+)= yzi(j)(0-) = y (j)(0-)
对于零状态响应,在t=0-时刻激励尚未接入,故应有 yzs(j)(0-)=0
yzs(j)(0+)的求法下面举例说明。
例:描述某系统的微分方程为

y”(t) + 3y’(t) + 2y(t) = 2f’(t) + 6f(t)
相关文档
最新文档