鸡兔同笼10道应用题

合集下载

五年级数学下册鸡兔同笼应用题专项练习与答案

五年级数学下册鸡兔同笼应用题专项练习与答案

五年级数学下册鸡兔同笼应用题专项练习与答案1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?2、红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支?3、一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?4、今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?5、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?6、某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人?7、买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?8、一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天工程要多少天才能完成?9、鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?10、古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?11、有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?12、学校组织新年游艺晚会,用于奖品的铅笔,圆珠笔和钢笔共232支,共花了300元.其中铅笔数量是圆珠笔的4倍.已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元.问三种笔各有多少支?13、商店出售大,中,小气球,大球每个3元,中球每个1.5元,小球每个1元.张老师用120元共买了55个球,其中买中球的钱与买小球的钱恰好一样多.问每种球各买几个?14、某人去时上坡速度为每小时走3千米,回来时下坡速度为每小时走6千米,求他的平均速度是多少?15、从甲地至乙地全长45千米,有上坡路,平路,下坡路.李强上坡速度是每小时3千米,平路上速度是每小时5千米,下坡速度是每小时6千米.从甲地到乙地,李强行走了10小时;从乙地到甲地,李强行走了11小时.问从甲地到乙地,各种路段分别是多少千米?16、某种考试已举行了24次,共出了426题.每次出的题数,有25题,或者16题,或者20题.那么,其中考25题的有多少次?17、有50位同学前往参观,乘电车前往每人1.2元,乘小巴前往每人4元,乘地下铁路前往每人6元.这些同学共用了车费110元,问其中乘小巴的同学有多少位?五年级数学下册鸡兔同笼应用题专项练习与答案1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).2、红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支?蓝笔数=(19×16-280)÷(19-11)=3(支)红笔数=16-3=13(支).答:买了13支红铅笔和3支蓝铅笔.3、一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?(30-3×7)÷(5-3)=4.57-4.5=2.5答:甲打字用了4小时30分4、今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?兄的年龄是(25×4-86)÷(4-3)=14(岁).1998年,兄年龄是14-4=10(岁)父年龄是(25-14)×4-4=40(岁).当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10)÷(3-1)=15(岁)5、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?蜘蛛数=(118-6×18)÷(8-6)=5(只)18-5=13(只)6、某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人?解:对2道,3道,4道题的人共有52-7-6=39(人)181-1×7-5×6=144(道)7、买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多. (680-8×40)÷(8+4)=30(张),余下的邮票中,8分和4分的各有30张.因此8分邮票有40+30=70(张).解二:假设有20张4分,根据条件"8分比4分多40张",那么应有60张8分.以"分"作为计算单位,此时邮票总值是4×20+8×60=560.比680少,因此还要增加邮票.为了保持"差"是40,每增加1张4分,就要增加1张8分,每种要增加的张数是(680-4×20-8×60)÷(4+8)=10(张).因此4分有20+10=30(张),8分有60+10=70(张).8、一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天工程要多少天才能完成?我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有(150-8×3)÷(10+8)= 7(天). 雨天是7+3=10天,总共7+10=17(天).9、鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚4÷2=2(倍),于是鸡的只数是兔的只数的2倍.兔的只数是(100+28÷2)÷(2+1)=38(只).鸡是100-38=62(只).解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是4×50-2×50=100,比28多了72.就说明假设的兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少的兔数是(100-28)÷(4+2)=12(只).兔只数是50-12=38(只).10、古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首.解一:如果去掉13首五言绝句,两种诗首数就相等,此时字数相差13×5×4+20=280(字).每首字数相差7×4-5×4=8(字).因此,七言绝句有28÷(28-20)=35(首).五言绝句有35+13=48(首)11、有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只解:如果没有破损,运费应是400元.但破损一只要减少1+0.2=1.2(元).因此破损只数是(400-379.6)÷(1+0.2)=17(只).答:这次搬运中破损了17只玻璃瓶.12、学校组织新年游艺晚会,用于奖品的铅笔,圆珠笔和钢笔共232支,共花了300元.其中铅笔数量是圆珠笔的4倍.已知铅笔每支0.60元,圆珠笔每支2.7元,钢笔每支6.3元.问三种笔各有多少支?解:从条件"铅笔数量是圆珠笔的4倍",这两种笔可并成一种笔,四支铅笔和一支圆珠笔成一组,这一组的笔,每支价格算作(0.60×4+2.7)÷5=1.02(元).现在转化成价格为1.02和6.3两种笔.用"鸡兔同笼"公式可算出,钢笔支数是(300-1.02×232)÷(6.3-1.02)=12(支).铅笔和圆珠笔共232-12=220(支).其中圆珠笔220÷(4+1)=44(支).铅笔220-44=176(支).答:其中钢笔12支,圆珠笔44支,铅笔176支.13、商店出售大,中,小气球,大球每个3元,中球每个1.5元,小球每个1元.张老师用120元共买了55个球,其中买中球的钱与买小球的钱恰好一样多.问每种球各买几个解:因为总钱数是整数,大,小球的价钱也都是整数,所以买中球的钱数是整数,而且还是3的整数倍.我们设想买中球,小球钱中各出3元.就可买2个中球,3个小球.因此,可以把这两种球看作一种,每个价钱是(1.5×2+1×3)÷(2+3)=1.2(元).从公式可算出,大球个数是(120-1.2×55)÷(3-1.2)=30(个).买中,小球钱数各是(120-30×3)÷2=15(元).14、某人去时上坡速度为每小时走3千米,回来时下坡速度为每小时走6千米,求他的平均速度是多少解:去和回来走的距离一样多.这是我们考虑问题的前提.平均速度=所行距离÷所用时间去时走1千米,要用20分钟;回来时走1千米,要用10分钟.来回共走2千米,用了30分钟,即半小时,平均速度是每小时走4千米.平均速度不是两个速度的平均值:每小时走(6+3)÷2=4.5千米.15、从甲地至乙地全长45千米,有上坡路,平路,下坡路.李强上坡速度是每小时3千米,平路上速度是每小时5千米,下坡速度是每小时6千米.从甲地到乙地,李强行走了10小时;从乙地到甲地,李强行走了11小时.问从甲地到乙地,各种路段分别是多少千米解:把来回路程45×2=90(千米)算作全程.去时上坡,回来是下坡;去时下坡回来时上坡.把上坡和下坡合并成"一种"路程,根据例15,平均速度是每小时4千米.现在形成一个非常简单的"鸡兔同笼"问题.头数10+11=21,总脚数90,鸡,兔脚数分别是4和5.因此平路所用时间是(90-4×21)÷(5-4)=6(小时).单程平路行走时间是6÷2=3(小时).从甲地至乙地,上坡和下坡用了10-3=7(小时)行走路程是45-5×3=30(千米).又是一个"鸡兔同笼"问题.从甲地至乙地,上坡行走的时间是(6×7-30)÷(6-3)=4(小时).行走路程是3×4=12(千米).下坡行走的时间是7-4=3(小时).行走路程是6×3=18(千米).答:从甲地至乙地,上坡12千米,平路15千米,下坡18千米.16、某种考试已举行了24次,共出了426题.每次出的题数,有25题,或者16题,或者20题.那么,其中考25题的有多少次解:如果每次都考16题,16×24=384,比426少42道题.每次考25道题,就要多25-16=9(道).每次考20道题,就要多20-16=4(道).就有9×考25题的次数+4×考20题的次数=42.请注意,4和42都是偶数,9×考25题次数也必须是偶数,因此,考25题的次数是偶数,由9×6=54比42大,考25题的次数,只能是0,2,4这三个数.由于42不能被4整除,0和4都不合适.只能是考25题有2次(考20题有6次).17、有50位同学前往参观,乘电车前往每人1.2元,乘小巴前往每人4元,乘地下铁路前往每人6元.这些同学共用了车费110元,问其中乘小巴的同学有多少位解:由于总钱数110元是整数,小巴和地铁票也都是整数,因此乘电车前往的人数一定是5的整数倍.如果有30人乘电车,110-1.2×30=74(元).还余下50-30=20(人)都乘小巴钱也不够.说明假设的乘电车人数少了.如果有40人乘电车110-1.2×40=62(元).还余下50-40=10(人)都乘地下铁路前往,钱还有多(62>6×10).说明假设的乘电车人数又多了.30至40之间,只有35是5的整数倍.现在又可以转化成"鸡兔同笼"了:总头数 50-35=15,总脚数 110-1.2×35=68.因此,乘小巴前往的人数是(6×15-68)÷(6-4)=11.答:乘小巴前往的同学有11位.。

鸡兔同笼应用题100道

鸡兔同笼应用题100道

1.鸡兔同笼,共有 30 个头, 88 只脚。

求笼中鸡兔各有多少只2.鸡兔同笼,共有头 48 个,脚 132 只,求鸡和兔各有多少只3.一个饲养组一共养鸡、兔 78 只,共有 200 只脚,求饲养组养鸡和兔各多少只4.鸡兔同笼不知数,三十六头笼中露。

数清脚共五十双,各有多少鸡和兔5.小明用 10 元钱正好买了 20 分和 50 分的邮票共 35张,求这两种邮票名买了多少张6.小红用 13 元 6 角正好买了 50 分和 80 分邮票共计 20 张,求两种邮票各买了多少张7.小刚的储蓄罐里共 2 分和 5 分硬币 70 枚,小刚数了一下,一共有 194 分,求两种硬币各有多少枚8.三年一班 30 人共向北京奥运会捐款 205 元,同学每人了捐了 5 元或 10 元,你知道捐 5 元和 10 元的同学各有多少人吗9.三年二班 45 个同学向爱心基金会共计捐款 100 元,其中 11 个同学每人捐 1元,其他同学每人捐 2 元或 5 元,求捐 2 元和 5 元的同学各有多少人10.松鼠妈妈采松籽,晴天每天可以采 20个,雨天每天只能采 12 个。

它一连 8天共采了 112 个松籽,这八天有几天晴天几天雨天11.某校有一批同学参加数学竞赛,平均得 63 分,总分是 3150分。

其中男生平均得60 分,女生平均得 70 分。

求参加竞赛的男女各有多少人12.一次数学竞赛共有 20 道题。

做对一道题得 5 分,做错一题倒扣 3 分,刘冬考了52 分,你知道刘冬做对了几道题13.一次数学竞赛共有 20 道题。

做对一道题得 8 分,做错一题倒扣 4 分,刘冬考了112 分,你知道刘冬做对了几道题14.52 名同学去划船,一共乘坐 11 只船,其中每只大船坐 6 人,每只小船坐 4人。

求大船和小船各几只15.在一个停车场上,停了小轿车和摩托车一共 32 辆,这些车一共 108 个轮子。

求小轿车和摩托车各有多少辆16.解放军进行野营拉练。

鸡兔同笼的练习题及答案

鸡兔同笼的练习题及答案

鸡兔同笼问题的练习题及答案一、基础题1. 有一个笼子里有鸡和兔,共有头30个,脚90只,请问笼子里各有几只鸡和兔?2. 鸡和兔共40只,脚共有112只,求鸡和兔各有多少只?3. 笼子里有鸡和兔共35只,脚共有94只,鸡和兔各有多少只?4. 笼子里有鸡和兔共18只,脚共有52只,求鸡和兔的数量。

5. 有一个笼子里鸡和兔共有26只,脚共有70只,问鸡和兔各有多少只?二、提高题6. 有两个笼子,第一个笼子里有鸡和兔共20只,脚共有60只;第二个笼子里有鸡和兔共25只,脚共有70只。

请问两个笼子中鸡和兔各有多少只?7. 有三个笼子,分别装有鸡和兔,第一个笼子共15只,第二个笼子共20只,第三个笼子共25只,三个笼子的脚总数为96只。

求每个笼子中鸡和兔的数量。

8. 笼子里有鸡和兔共30只,如果增加5只鸡,脚的总数将增加20只,求原来笼子里鸡和兔各有多少只?9. 笼子里有鸡和兔共50只,脚共有140只,如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。

求原来鸡和兔各有多少只?10. 有两个笼子,第一个笼子里鸡和兔共15只,第二个笼子里鸡和兔共25只,两个笼子的脚总数为100只。

求两个笼子中鸡和兔各有多少只?三、拓展题11. 有三个笼子,分别装有鸡和兔,第一个笼子共10只,第二个笼子共15只,第三个笼子共20只,三个笼子的脚总数为68只。

求每个笼子中鸡和兔的数量。

12. 笼子里有鸡和兔共40只,脚共有110只。

如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将减少30只。

求原来鸡和兔各有多少只?13. 有四个笼子,分别装有鸡和兔,第一个笼子共8只,第二个笼子共12只,第三个笼子共16只,第四个笼子共20只,四个笼子的脚总数为只。

求每个笼子中鸡和兔的数量。

14. 笼子里有鸡和兔共60只,脚共有160只。

如果将鸡换成兔,兔换成鸡,那么笼子里的脚总数将增加40只。

求原来鸡和兔各有多少只?15. 有五个笼子,分别装有鸡和兔,每个笼子的鸡和兔总数分别为10、15、20、25、30只,五个笼子的脚总数为140只。

鸡兔同笼应用题

鸡兔同笼应用题

鸡兔同笼1、鸡兔同笼,鸡兔共有35只,笼中共有100条腿。

试计算,笼中鸡有多少只?兔子有多少只?想想练练:鸡兔同笼,头共46只,足共128条,鸡兔各几只?2、在一个停车场上,现在车辆24辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有86个轮子,那么三轮车有多少辆?3、学校宿舍楼一共有30间宿舍,大宿舍每间住6人,小宿舍每间住4人,已知这些宿舍中共住了168名学生,那么其中有多少间大宿舍?有多少间小宿舍?4、小松鼠采松果,晴天每天可以采10个,雨天每天只能采6个,它一连几天采了80个松果,平均每天采8个,那么其中有几天是雨天呢?5、松鼠妈妈采松果,晴天每天可以采20个,雨天每天只能采12个,它一连几天采了112个松果,平均每天采14个,那么其中有几天是雨天呢?6、东湖路小学三年级举行数学竞赛,共20道试题,做对一题得5分,没有做一题或做错一题都要倒扣3分,刘钢得了60分,问他做对了几道题?7、想想练练:工人运青花瓶250个,规定完整运到目的地一个给运纲20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400,则损坏了多少个?8、杯赛提高:100个和尚1人分3个馍,小和尚1人分1个馍,问大、小和尚各有多少人?/10、停车场上的自行车和三轮车一共有24辆,其中每辆自行车有2个轮子,每辆三轮车有3个轮子,所有自行车和三轮车一共有56个轮子,请问自行车有多少辆?三轮车有多少辆?/11、理想小学150老师参加新年联欢会,其中有一直趣味游戏,要求男老师2人一组,女老师3人一组,结果共分了62组,恰好分完,请问:女老师与男老师各有多少人?/12、班有象棋、飞行棋共14副,恰好可供全班40名同学同时进行活动,象棋要2人人一副,飞行棋要4人下一副,则飞行棋和跳棋各有几副?13、某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?14、钱大叔买了小布老虎和大布老虎共18只,共用了210元,其中小布虎每件10元。

鸡兔同笼综合应用题复习

鸡兔同笼综合应用题复习

鸡兔同笼复习一:鸡兔同笼——基本题型例 1. 笼子里有若干只鸡和兔。

从上面数,有35个头,从下面数,有94只脚。

鸡和兔各有多少只?练1. 鸡兔同笼,共有头100个,足316只,那么鸡有多少只?兔有多少只?例 2.乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。

问:搬运过程中共打破了几只花瓶?练2. 运输2000只陶瓷碗,运费按到达时完好的数目计算,每只3角,如有破损,破损1个陶瓷碗还要倒赔7角,结果得到运费535元,问这次搬运中陶瓷碗损坏了( )只。

例 3. 开心辞典智力竞赛中,开心队抢答了10道题,如果以100分开始算分,答对一题加10分,答错一题减10分,最后开心队得了140分,开心队答错了几题?练习3.某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分。

小华参加了这次竞赛,得了64 分。

问:小华做对几道题?二:鸡兔同笼——复杂型例 1. 鸡、兔共100只,鸡脚比兔脚多20只。

问:鸡、兔各多少只?练习1.鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?例2. 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对,蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀。

求蜘蛛、蜻蜓、蝉各有多少只?练习2.大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛。

小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?例 3.鸡兔同笼,鸡和兔子的数量一样多,兔子和鸡的总腿数有30条,鸡和兔子各有多少只?练3.鸡兔同笼,鸡和兔子的数量一样多,兔子和鸡的总腿数有90条,鸡和兔子各有多少只?例4.鸡兔同笼,鸡的数量是兔子的3倍,兔子和鸡的腿数总和是110条,鸡和兔子各有多少只?练4.鸡兔同笼,兔子的数量是鸡的2倍,兔子和鸡的腿数总和是80条,鸡和兔子各有多少只?例5.鸡兔同笼,兔子的数量是鸡的3倍,且兔子比鸡多80条腿,鸡和兔子各有多少只?练5.有一群狗追一群鸭子,狗是鸭子的2倍,且狗腿比鸭子腿多60条腿,狗和鸭子各有多少只?作业1.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。

鸡兔同笼应用题及答案(最新版)

鸡兔同笼应用题及答案(最新版)

鸡兔同笼应用题及答案鸡兔同笼应用题及答案鸡兔同笼是小学数学课本中的经典应用题,是常见的题型,以下是常见的鸡兔同笼的题型及解答,为大家分析鸡兔同笼应用题及答案鸡兔同笼应用题及答案一、鸡兔同笼问题例题透析例题1:有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只? 解:我们设想,每只鸡都是金鸡独立,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,也就是 244 2=122=24 8 =3.红笔数=16-3=13. 答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的脚数 19与11之和是30.我们也可以设想16只中,8只是兔子,8只是鸡,根据这一设想,脚数是 8 =240. 比280少40. 40 =5. 就知道设想中的8只鸡应少5只,也就是鸡数是3.30 8比19 16或11 16要容易计算些.利用已知数的特殊性,靠心算来完成计算. 实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,兔数为10,鸡数为6,就有脚数 19 10+11 6=256. 比280少24.24 =3,就知道设想6只鸡,要少3只.要使设想的数,能给计算带来方便,常常取决于你的心算本领.二、鸡兔同笼问题练习题及答案1.鸡兔同笼,共有30个头,88只脚。

求笼中鸡兔各有多少只?2.鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?3.一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?4.鸡兔同笼不知数,三十六头笼中露。

数清脚共五十双,各有多少鸡和兔?5.小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?6.小红用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?7.小刚的储蓄罐里共2分和5分硬币70枚,小刚数了一下,一共有194分,求两种硬币各有多少枚?8.三年一班30人共向北京奥运会捐款205元,同学每人了捐了5元或10元,你知道捐5元和10元的同学各有多少人吗?9.三年二班45个同学向爱心基金会共计捐款100元,其中11个同学每人捐1元,其他同学每人捐2元或5元,求捐2元和5元的同学各有多少人?10.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。

鸡兔同笼应用题(讲解,答案)

鸡兔同笼应用题(讲解,答案)

鸡兔同笼问题(讲解,答案)1、鸡兔同笼,共有头100个,足316只,求鸡兔各有多少只?兔:316÷2-100=58 鸡:100-58=422、小明花4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分。

问:买了几张贺年卡,几张明信片?3角5分:(4-0.25×14)÷(0.35-0.25)=5 2角5分:14-5=93、鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。

鸡兔各几只?(100-92÷2)=4 鸡:(100-4×4)÷(2+4)=14 兔:14+4=184、100个馒头100个和尚吃,大和尚每人吃3个,小和尚每3人吃一个。

大、小和尚各有多少人?大和尚:100÷(3+1)=25 小和尚:25×3=755、30枚硬币,由2分和5分组成,共值9角9分。

两种硬币各多少枚?5分:(99-2×30)÷(5-2)=13 2分:30-13=176、有2角、5角和1元的人民币20张,共计12元,三种票子各多少张?2角的是5的倍数。

2角5张。

20-5=15张 12-0.2×5=11元5角:(1×15-11)÷(1-0.5)=8 1元:15-8=77、班主任老师带五年级二班50名学生去栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽两棵,总共栽树120棵。

有几名男生?几名女生?120-5=115 女生:(50×3-115)÷(3-2)=35 男生:50-35=158、100名师生绿化校园,老师每人栽3棵树,学生每两人栽1棵树,总共栽树100棵,求老师和学生各栽树多少棵?(2×100-100)÷(3-1/2)=80名学生:80÷2=40棵老师: 100-40=60棵9、80本语文书和100本数学书总价相等。

鸡兔同笼应用题

鸡兔同笼应用题

鸡兔同笼应用题1、大小两辆汽车共同运216吨货物,小汽车运了7小时,大汽车运了8小时,已知小汽车5小时运的数量等于大汽车2小时运的数量,则大汽车每小时运多少吨?2、笼子里有鸡兔共27只,兔脚比鸡脚多18只,问:有鸡兔各多少只?3、有182只兔子,把它们分别装在甲乙两种笼子里,甲种笼子每笼装6只,乙种笼子每笼装4只,两种笼子正好用36个,问:两种笼子个多少个?4、一个大人一餐吃2个面包,两个小孩一餐吃1个面包,现在有大人和小孩共99人,一餐刚好吃了99个面包,大人、小孩各有多少人?5、四年级共有52位同学参加植树,男生每人种3棵,女生每人种2棵,已知男生比女生多种36棵,求:有多少名男生?6、有面值分别为2元、5元、10元的邮票共34张,价值共计178元。

其中5元与10元的邮票张数相等,问:各种面值的邮票各有多少张?7、公园门票出售5元、8元、10元共100张,收入748元,其中5元和8元的张数相等。

各种票售出多少张?8、犀牛、鹿、鸵鸟三种动物共有26个头,80只脚,20只角。

犀牛有4只脚,1只角;鹿有4只脚,2只角,鸵鸟有2只脚。

三种动物分别有多少只?答案:1、大小两辆汽车共同运216吨货物,小汽车运了7小时,大汽车运了8小时,已知小汽车5小时运的数量等于大汽车2小时运的数量,则大汽车每小时运多少吨?假设全是小汽车(8÷2)×5=20小时,7+20=27小时……小汽车一共运的时间,216÷27=8(吨)……小汽车每小时运的量;8×5÷2=20吨……大汽车每小时运的量。

2、笼子里有鸡兔共27只,兔脚比鸡脚多18只,问:有鸡兔各多少只?假设全是兔:4×27=108只,兔脚比鸡脚多108-0=108只,可实际兔脚比鸡脚只多了18只,那其中的108-18=90只脚是怎么回事?现在我们把一只兔子的脚换回鸡的脚,要相差6只脚,90÷6=15只鸡,那么兔子就是27-15=12只3、有182只兔子,把它们分别装在甲乙两种笼子里,甲种笼子每笼装6只,乙种笼子每笼装4只,两种笼子正好用36个,问:两种笼子个多少个?假如全部装甲笼,那么6×36=216只,现在只有182只,多余的34只,是因为本来应该是乙种笼子装的我们却都按甲种算,换回去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼10道应用题
1.一个大笼子里关了一些鸡和兔子。

数它们的`头,一共有36个;数它们的腿,共100条。

则鸡有多少只,兔有多少只?
2.王老师用40元钱买来20枚邮票,全是1元和5元的。

求这两种邮票分别买了多少枚和多少枚。

3.兔妈妈上山采蘑菇,晴天,每天能採30个,雨天,每天能採12个它从4月10号开始,到4月29号,中间没休息,一共採了510个蘑菇。

那么,晴天是多少天?雨天有多少天?
4.肖老师带51名学生去公园里划船。

他们一共租了44条船,其中有大船和小船,每条大船坐6人,小船4人。

每条都坐满了人。

他们租的大船有几条,小船有几条?
5.一辆汽车参加车赛,9天共行了5000公里。

已知它晴天每天行688公里,雨天平均每天行390公里。

在比赛期间,有几个晴天?有几个雨天。

6.有大小两种塑料桶共60只。

每个大桶装水5公斤,每个小桶只能装水2公斤。

又知大桶一共比小桶多装26公斤。

则大桶有多少只,小桶有多少只?
7.用单价为6元/公斤的两种水果糖,配制成单价为6元/公斤的混合型糖15公斤。

有的原来单价11元/公斤的糖
取了几公斤?
8.一百个和尚吃一百个馒头,大和尚一人吃三个,小和尚三人吃一个。

大和尚有多少个?小和尚有多少个?
9.孙老师带领99名同学种100棵树,他先种了一棵示范后,安排男同学一人种两棵,女生每两人种一棵。

植树的男生有多少人?而女生有多少人?
10.某化工厂甲、乙两车间共110人,现在要求甲车间每8人选出一名代表,乙车间每6人选出一名代表。

两车间一共选出了16名代表。

则甲车间有多少名工人,乙车间有多少名工人?。

相关文档
最新文档