六年级上册鸡兔同笼问题应用题练习题知识分享
小学鸡兔同笼类型应用题及答案

小学鸡兔同笼类型应用题及答案小学鸡兔同笼类型应用题及答案鸡兔同笼是很典型的数学应用题,也是小学经常会用来考察学生数学能力的题型,通过对鸡兔同笼问题的处理,能提升小学生数学的把握能力和认知能力,下面是店铺为大家提供的小学鸡兔同笼类型应用题及答案,一起来看看这类型题目是怎么解答的吧!小学鸡兔同笼类型应用题及答案11鸡兔同笼,共有30个头,88只脚。
求笼中鸡兔各有多少只?2.鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?3.一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?4.鸡兔同笼不知数,三十六头笼中露。
数清脚共五十双,各有多少鸡和兔?5.小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?6.小红用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?7.小刚的储蓄罐里共2分和5分硬币70枚,小刚数了一下,一共有194分,求两种硬币各有多少枚?8.三年一班30人共向北京奥运会捐款205元,同学每人了捐了5元或10元,你知道捐5元和10元的.同学各有多少人吗?9.三年二班45个同学向爱心基金会共计捐款100元,其中11个同学每人捐1元,其他同学每人捐2元或5元,求捐2元和5元的同学各有多少人?10.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。
它一连8天共采了112个松籽,这八天有几天晴天几天雨天?11.某校有一批同学参加数学竞赛,平均得63分,总分是3150分。
其中男生平均得60分,女生平均得70分。
求参加竞赛的男女各有多少人?12.一次数学竞赛共有20道题。
做对一道题得5分,做错一题倒扣3分,刘冬考了52分,你知道刘冬做对了几道题?13.一次数学竞赛共有20道题。
做对一道题得8分,做错一题倒扣4分,刘冬考了112分,你知道刘冬做对了几道题?14.52名同学去划船,一共乘坐11只船,其中每只大船坐6人,每只小船坐4人。
六年级总复习“鸡兔同笼”应用题讲解学习

▪ 数学竞赛,小明共做20道题, 做对一道题得5分,没做一 道或错一道都要扣3分。小 明得60分,问他做对几道题?
▪ 鸡和兔共100只,鸡的脚数比 兔的脚数多80只,问鸡兔各多 少只?
▪ 鸡和兔共40只,鸡的脚数比兔 的脚数少70只,问鸡兔各多少 只?
▪ 工人运花瓶250个,规定完整 运一个到达目的给运费20元, 损坏一个要赔100元。运完这 批花瓶后,工人共得4400元, 问损坏了几个花瓶?
法
鸡:20-13=7(只)
答:鸡有13只,兔有7只.
笼子里有若干只鸡和兔.从上面数,有20个头, 从下面数,有54只脚.鸡和兔各有几只?
假设全部都是鸡
现在共有20×2=40只脚 比实际的少54-40=14只脚 一只鸡比一只兔少4-2=2只脚 也就是有14÷2=7只兔 那么鸡就有20-7=13只
答:鸡有13只,兔有7只.
▪ 松鼠妈妈采松果,晴天每天采 20个,雨天每天只能采12个, 它一连几天采112个松果,平均 每天采14个。问这几天有几个 雨天?
1.鸡兔同笼,鸡兔共35个头,94条腿,问鸡、兔各多少 只?
2.鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少 只?
3.在一个停车场上,停了汽车和摩托车一共32辆。其中 汽车有4个轮子,摩托车有3个轮子,这些车一共有108 个轮子。求汽车和摩托车各有多少辆?
3.鸡兔同笼,鸡比兔多10只,但鸡脚却比兔 子少60只,问鸡兔各多少只? 4.鸡兔同笼,鸡比兔多10只,鸡脚比兔脚多 10只,问鸡兔各多少只? 5.张大妈家养的鸡比兔多13只,兔足比鸡足 少16只,求鸡兔各有多少只?
小结与收获
1:经过本节课的学习,你有那些 收获?
笼子里有若干只鸡和兔.从上面数,有20个头, 从下面数,有54只脚.鸡和兔各有几只? (一) 解:设鸡有X只, 那么兔有 (20-X)只.
鸡兔同笼题型汇总与总结

鸡兔同笼题型汇总与总结鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的一类应用题。
它不仅能锻炼我们的逻辑思维能力,还能帮助我们掌握一些基本的数学解题方法。
下面我们就来对鸡兔同笼的题型进行一个汇总与总结。
一、基本题型基本的鸡兔同笼问题通常会给出鸡和兔的总头数和总脚数,然后让我们求出鸡和兔分别的数量。
例如:笼子里有若干只鸡和兔,从上面数,有 8 个头,从下面数,有 26 只脚。
问鸡和兔各有几只?解题思路:我们可以假设笼子里全部都是鸡,那么脚的总数应该是2×8 = 16 只。
但实际有 26 只脚,多出来的 26 16 = 10 只脚是因为把兔当成鸡来算,每只兔少算了 4 2 = 2 只脚,所以兔的数量就是 10÷2= 5 只,鸡的数量就是 8 5 = 3 只。
二、变形题型1、已知头数差和脚数和比如:笼子里鸡比兔多2 只,一共有28 只脚,问鸡和兔各有几只?解题思路:先把多出来的 2 只鸡的脚数算出来,2×2 = 4 只。
然后从总脚数里减去这 4 只脚,28 4 = 24 只。
此时鸡和兔的数量相等,一只鸡和一只兔组成一组,一组有 6 只脚(2 + 4),那么组数就是 24÷6 = 4 组,所以兔有 4 只,鸡有 4 + 2 = 6 只。
2、已知脚数差和头数和举例:笼子里鸡和兔一共有 10 只,鸡的脚比兔的脚少 8 只,问鸡和兔各有几只?解题方法:假设给鸡增加 8 只脚,那么需要增加 8÷2 = 4 只鸡。
此时总头数为 10 + 4 = 14 只,鸡和兔的脚数相等。
一只兔的脚是一只鸡的脚的 2 倍,所以鸡的数量是兔的 2 倍。
把兔看作 1 份,鸡就是 2 份,一共3 份,14÷3 不是整数,说明这种假设不成立。
我们重新假设,给兔减少 8 只脚,那么兔就减少 8÷4 = 2 只。
此时总头数为 10 2 = 8 只,鸡和兔的脚数相等。
鸡兔同笼应用题六年级

鸡兔同笼问题【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
例题1:鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。
例题2:动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只,因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。
把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)。
鸡兔同笼问题讲解及习题(含答案)

鸡兔同笼问题讲解及习题鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。
许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。
问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44—32=12(只)脚,出现这种情况的原因是把兔当作鸡了。
如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。
因此只要算出12里面有几个2,就可以求出兔的只数。
‘解:有兔(44—2×16)÷(4—2)=6(只),有鸡16—6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64—44=20(只)脚,这是因为把鸡当作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4—2=2(只)。
因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16—44)÷(4—2)=10(只),有兔16—10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。
因此这类问题也叫置换问题。
例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。
问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。
如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300—140=160(个)。
现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。
鸡兔同笼习题汇总

鸡兔同笼习题汇总鸡兔同笼问题是中国古代著名的数学趣题之一,也是小学数学中常见的题型。
它不仅能够锻炼我们的逻辑思维能力,还能让我们学会运用不同的方法来解决问题。
接下来,让我们一起来看看各种类型的鸡兔同笼习题。
一、基础型题目 1:笼子里有若干只鸡和兔,从上面数有 8 个头,从下面数有26 只脚。
鸡和兔各有多少只?解题思路:我们可以先假设笼子里全是鸡,那么就应该有 8×2 = 16 只脚。
但实际上有 26 只脚,多出来的脚就是兔子的,每只兔子比鸡多2 只脚。
所以兔子的数量就是(26 16)÷2 = 5 只,鸡的数量就是 8 5 = 3 只。
题目 2:一个笼子里鸡兔共 10 只,脚共有 32 只,鸡兔各几只?解法:假设全是兔,就有 10×4 = 40 只脚,实际少了 40 32 = 8 只脚。
因为每把一只鸡当成兔就多算了 2 只脚,所以鸡有 8÷2 = 4 只,兔有 10 4 = 6 只。
二、变化型题目 1:笼子里鸡比兔多 2 只,共有 28 只脚,鸡兔各几只?解题思路:先去掉多的 2 只鸡的脚,2×2 = 4 只脚,剩下 28 4 =24 只脚。
此时鸡和兔的数量相等,一只鸡和一只兔共有 6 只脚,所以兔有 24÷6 = 4 只,鸡有 4 + 2 = 6 只。
题目 2:鸡兔同笼,鸡兔的脚数差为 6 只,鸡兔共有 20 个头,鸡兔各有多少只?解法:如果鸡兔脚数相等,那么共有 20×2 = 40 只脚。
但实际脚数差为 6 只,当把一只鸡换成一只兔,脚数就会增加 2 只。
所以兔比鸡多 6÷2 = 3 只。
假设兔和鸡一样多,那么脚的总数就是 40 3×4 = 28 只,一只鸡和一只兔共有 6 只脚,所以鸡有 28÷6 = 44,不是整数,说明假设错误。
重新假设鸡比兔多 3 只,脚的总数就是 40 + 3×2 = 46 只,兔有 46÷6 = 74,也不是整数。
小学数学应用题之鸡兔同笼问题

小学数学应用题之鸡兔同笼问题【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
例1:鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?解:假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。
例2:动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只,因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。
把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)。
小学数学专项《应用题》经典鸡兔同笼问题基本知识-5星题(含解析)

应用题经典应用题鸡兔同笼问题根本知识5星题课程目标知识提要鸡兔同笼问题根本知识•鸡兔同笼的由来大约在1500年前,?孙子算经?中就记载了这个有趣的问题.书中是这样表达的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?〞这四句话的意思是:有假设干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.问笼中各有几只鸡和兔?•假设法解鸡兔同笼〔1〕假设全是兔子鸡数=(每只兔子脚数×鸡兔总数−实际脚数)÷(每只兔子脚数−每只鸡的脚数)鸡数=鸡兔总数−鸡数〔2〕假设全是鸡兔数=(实际脚数−每只鸡脚数×鸡兔总数)÷(每只兔子脚数−每只鸡的脚数)鸡数=鸡兔总数−兔数•分组法解鸡兔同笼腿数相同,2鸡1兔为一组;头数相同,1鸡1兔为一组。
精选例题鸡兔同笼问题根本知识1. 一个奥特曼与一群小怪兽战斗.奥特曼有一个头、两条腿,开始时每只小怪兽有两个头、五条腿.在战斗过程中有一局部小怪兽分身了,一只小怪兽分成了两只,分身后的每只小怪兽有一个头、六条腿〔不能再次分身〕,某个时刻战场上一共有21个头,73条腿,那么这时共有只小怪兽.【答案】13【分析】可知小怪兽共有20个头和71条腿.1个头、6条腿的小怪兽肯定为偶数,把它们两个一对捆在一起,那么每组有2个头和12条腿.用假设法易得2个头、12条腿的小怪兽有(71−10×5)÷(12−5)=3(组),2个头5条腿的小怪兽有10−3=7(只),共2×3+7=13(只).2. 甲乙二人相距30米面对面站好.两人玩“石头、剪子、布〞.胜者向前走3米,负者向后退2米.平局两人各向前走1米.玩了15局后,甲距出发点17米,乙距出发点2米.甲胜了次.【答案】7【分析】有胜有负的局,两人距离缩短1米;平局两人距离缩短2米.15局后两人之间的距离缩短15~30米.〔1〕如果两人最后的效果都是后退,两人之间的距离会变大,与上述结论矛盾.〔2〕如果两人最后的效果是“一人前进,另一人后退〞,如果乙前进,甲后退,两人距离增大,这与〔1〕矛盾.那么一定是甲前进,乙后退,两人距离会缩短15米.但如果两人距离缩短15米,只能是15局都是“胜负局〞.假设甲15局都是胜者,他会前进45米,每把一次“胜者〞换成一次“负者〞,他会少前进5米.45减去多少个5都不可能等于17,这种情况不成立.〔3〕如果两人最后的效果是都向前进,两人的距离缩短19米.假设15局都是“胜负局〞,两人之间距离缩短15米,每把一局“胜负局〞换成平局,两人之间距离多缩短1米.由“鸡兔同笼〞法求出,“胜负局〞共11局,平局4局.4局平局中甲前进了4米.假设甲其余11局都是胜者,他一共前进33+4=37〔米〕.每把一局胜局改为败局,他会退5米,要想前进17米,那么改(37−17)÷5=4〔局〕.验算:甲7胜4平4败,前进21+4−8=17〔米〕;乙4胜7败4平,前进12+4−14=2〔米〕.3. 从前有座山,山里有个庙,庙里有许多小和尚,两个小和尚用一根扁担一个桶抬水,一个小和尚用一根扁担两个桶挑水,共用了38根扁担和58个桶,那么有多少个小和尚抬水?多少个挑水?【答案】36人抬水,20人挑水【分析】假设全是抬水,38根扁担应担38个桶,而实际上是58个桶,比实际少了58−38=20(个).因为当我们把一个挑水的当作抬水的就会少算2−1=1(个)桶,所以有20÷1=20(人)抬水的扁担数是38−20=18(根),抬水的人数是18×2=36(人).4. 男生手里拿2个红气球、13个蓝气球,女生手里拿1个红气球、12个蓝气球,一共有62个红气球,且蓝气球的范围在495∼510之间,请问男生多少人?女生多少人?【答案】男生有22人;女生有18人.【分析】不管男生还是女生,每个人手中的蓝气球比红气球多11个,那么总的蓝气球比红气球多的必须是11的倍数,即▫−62是11的倍数,且▫的范围在495−510之间,那么▫=502才行,这样502−62=440才是11的倍数,那么总人数为440÷11=40人;假设这40人全是男生,那么会有红气球40×2=80个,比拟:80−62=18个,将一个男生变成一个女生会少拿1个红气球,那么有18÷1=18个女生,那么男生有22人.5. 一百个和尚刚好喝一百碗粥,一个大和尚喝三碗粥,三个小和尚喝一碗粥,那么大和尚有多少个,小和尚有多少个?【答案】大和尚25、小和尚75【分析】我们把大碗换小碗,换小碗盛粥,把一大碗粥分成三小碗粥,那么原题变为一百个和尚喝三百碗粥,一个大和尚喝九碗粥,一个小和尚喝一碗粥.然后仍然用假设法:假设都是小和尚,只能喝1×100=100(碗),有一个大和尚被当成小和尚会少喝9−1=8(碗),一共少了300−100=200(碗).所以大和尚有200÷8=25(个);小和尚有100−25=75(个).6. 犀牛、羚羊、孔雀三种动物共有头26个,脚80只,犄角20只.犀牛有4只脚、1只犄角,羚羊有4只脚,2只犄角,孔雀有2只脚,没有犄角.那么,犀牛、羚羊、孔雀各有几只呢?【答案】孔雀:12只;羚羊:6只;犀牛:8只.【分析】这道题有三种不同的动物混合在一起,这样假设起来会比拟麻烦,我们可以观察一下:虽然有三种不同的动物,但是犀牛和羚羊都是4只脚,这样,只看脚数,就可以把孔雀与这两种动物分开,转化成我们熟悉的“鸡兔同笼〞问题,然后再通过犄角的不同,把犀牛和羚羊分开,也就是说我们需要做两次“鸡兔同笼〞.假设26只都是孔雀,那么就有脚:26×2=52(只),比实际的少:80−52=28(只),这说明孔雀多了,需要增加犀牛和羚羊.每增加一只犀牛或羚羊,减少一只孔雀,就会增加脚数:4−2=2(只).所以,孔雀有26−28÷2=12(只),犀牛和羚羊总共有26−12=14(只).假设14只都是犀牛,那么就有犄角:14×1=14(只),比实际的少:20−14=6(只),这说明犀牛多了羚羊少了,需要减少犀牛增加羚羊.每增加一只羚羊,减少一只犀牛,犄角数就会增加:2−1=1(只),所以,羚羊的只数:6÷1=6(只),犀牛的只数:14−6=8(只).7. 甲、乙两人合作清理400米环形跑道上的积雪,两人同时从同一地点背向而行各自进行工作,最初,甲清理的速度比乙快13,中途乙曾用10分钟去换工具,而后工作效率比原来提高了一倍,结果从开始算起,经过1小时,就完成了清理积雪的工作,并且两人清理的跑道一样长,问乙换了工具后又工作了多少分钟?【答案】30【分析】方法一:直接求首先求出甲的工作效率,甲1个小时完成了200米的工作量,因此每分钟完成200÷60=103(米),开始的时候甲的速度比乙快13,也就是说乙开始每分钟完成为103÷(1+13)=212(米),换工具之后,工作效率提高一倍,因此每分钟完成212×2=5(米),问题就变成了,乙50分钟扫完了200米的雪,前假设干分钟每分钟完成212米,换工具之后的时间每分钟完成了5米,求换工具之后的时间.这是一个鸡兔同笼类型的问题,我们假设乙一直都是每分钟扫212米,那么50分钟应该能扫212×50=125(米),比实际少了200−125=75(米),这是因为换工具后每分钟多扫了5−212=212(米),因此换工具后的工作时间为75÷212=30(分钟).方法二:其实这个问题中的400米是一个多余条件,我们只需要根据甲乙两人工作量相同和他们之间的工作效率之比就可以求出这个问题的答案.不妨假设乙开始每分钟清理的量为3,甲比他快三分之一,那么甲每分钟清理的量为4;60分钟后,甲共清理的量为4×60=240,乙和甲的工作总量相同,也是240份,但是乙总共的工作时间为60-10=50分钟,并且乙之前的工作效率为3,换工具之后的工作效率为6,和〔方法一〕相同的,利用鸡兔同笼的思想,可以得到乙换工具后工作了(240−3×50)÷(6−3)=30(分钟).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级上册鸡兔同笼问题应用题练习题
鸡兔同笼问题应用题练习题
1、在同一个笼子中,有若干只鸡和兔,从笼子上看有40个头,从笼子
下数有130只脚,那么这个笼子中装有兔鸡各多少只?
2、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和一队翅膀,现在这三只小虫共21只,有140条腿和24对翅膀,求每只小虫个几只?
3、鸡和兔共40只,鸡的脚数比兔的脚数少70只,问鸡与兔各多少只?
4、学校购买每只价格为4角和8角两种铅笔,共花了68元,已知8角一支的铅笔比4角一支的铅笔多40支,那么两种铅笔个买了多少支?
5、在一个停车场,停放的车辆(汽车和三轮摩托车)数恰好是24,其中每辆汽车有4个轮子,每辆摩托车有3个轮子。
这些车共有86个轮子。
那么,三轮摩托车有多少辆?
6、某工厂共有27位师傅带徒弟40名,每一位师傅可以带一位徒弟,两名徒弟或三名徒弟。
如果带一名徒弟的师傅人数是其他师傅人数的两倍,请问带两名徒弟的师傅有多少人?
7、某学校现有12间宿舍,住着80个学生,宿舍的大小有三种:大号房间住8个学生,中号房间住7个学生,小号房间住5
收集于网络,如有侵权请联系管理员删除
个学生。
其中中号房间的宿舍最多,问中间号的房间宿舍有几
间?
8、今有鸡兔共35只,脚共有94只,求鸡兔各有多少只?
9、动物园里有一群鸵鸟和长颈鹿,他们共有30只眼睛和44只腿,问鸵鸟和长颈鹿各有多少只?
10、三只昆虫共有18只,他们共有20对翅膀116条腿,其中每只蜘蛛无翅8条腿;每只蜻蜓有两队翅膀,6条腿;每只蝉有一对翅膀6条腿,问这三种昆虫各有多少只?11、买语文书30本,数学书24本共花83.40元,每本语文书比每本数学书贵0.44元。
每本语文书和每本数学书的价格各是多少?
12、松鼠妈妈采松子,晴天每天可采16个,雨天每天可采11个,一连采了若干天,有晴天也有雨天,其中晴天比雨天多3天,但采的个数却比晴天采的个数少27个,问一共采了多少天?
13、某次数学检测共有20提,作对一题得5分,作错一题扣1分,不做得0分,小华得了76分,问小华作对了几题?
收集于网络,如有侵权请联系管理员删除
14、甲乙两地相距12千米,小张从甲地到乙地,在乙地停留半小时后,有从乙地返回甲地,小王从乙地到甲地,在甲地停留了40分钟后,又丛甲地返回乙地。
已知两人同时分别从甲乙两地出发,经过4小时后,他们在返回途中相遇,如果小张速度比小王每小时多走1。
5千米。
求两人速度.
15、有辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破的瓶子不给运费,还要每只赔偿一元,结果得到运费379。
6元,搬运中玻璃瓶破了几只?16、一件工程,甲独做12天完成,乙独做18天完成,现在甲做若干天后,再由乙接着做余下的部分,这样前后功用了16天,甲先作了多少天?
17、开明书店5天买出“五年级数学同步练习”和“六年级数学同步练习“共120本,其中“六年级数学同步练习”每本5元,“五年级数学同步练习”每本3.75元。
统计表明这五天内所卖“六年级数学同步练习”比“五年级数学同步练习”多162.5元。
书店这5天所卖这两中书各多少本?
收集于网络,如有侵权请联系管理员删除
18、箱子里有红白两种颜色的玻璃球,红球是白球三倍多2个。
每次从箱子里取出7只白球,15只红球,若经过若干次取球后,箱子里剩下3只白球,53只红球,箱子里原由多少只红球?
19、甲乙两人射击。
若命中,甲得4分,乙得5分,若不中甲失2分乙失3分,每人各射10发,共命中14发,结算分数时,甲不乙多10分,问甲乙各中几发?
20、佼佼和天天两位同学进行数学比赛,算对一题给20分,错一题扣12分,他们各算对了10题,共得208分,佼佼比天天多64分,问他们各算对了几题?21、某考试已经举行24次,共426道题,每次出的题数有25道,或者16道,或者20道,那么,其中考25题的有多少次?
22、有首民谣“一队猎手一队狗,二对并着一起走,数头一共三百六,数腿一共三百九。
”有多少个猎手和多少狗?
23、用一元钱买4分,8分,一角的邮票共15张,最多可以买1角的邮票多少张?
24、某小学3名同学去参加数学竞赛,共有10道题,答对一题得10分,答错一题扣3分,不做的0分,他们都做了所有的
收集于网络,如有侵权请联系管理员删除
题,一人得87,一人得74,一人得9分,他们一共答对了多少
题?
25、某班外出春游,买车票99张,共花280元,其中单程每张2
元,往返每张4元,问单程与往返票相差几张?
26、某商场举办购物抽奖,一等奖1000元,二等奖250元,三等
奖50元,有100人中奖,奖金总额为9500元.其中二等奖有多少名?
收集于网络,如有侵权请联系管理员删除。