离散图论习题解答

合集下载

应用离散数学图论图的连通性题库试卷习题及答案

应用离散数学图论图的连通性题库试卷习题及答案

§5.2 图的连通性习题5.21.证明或否定:(1)简单图G 中有从点u 到点v 的两条不同的通路,则G 中有基本回路。

(2)简单图G 中有从点u 到点v 的两条不同的基本通路,则G 中有基本回路。

解:(1)简单图G 中有从点u 到点v 的两条不同的通道,则G 中有回路。

(2)简单图G 中有从点u 到点v 的两条不同的路,则G 中有回路。

解 (1)不一定:如下图,点1与点3之间有两条通道:(1、2、3)和(1、2、1、2、3),但图中没有回路。

(2)一定:设两条路分别为),,,,,(211v x x x u L m =和),,,,,(212v y y y u L n =。

若对m i ≤≤1,n j ≤≤1有j i y x ≠,则),,,,,,,,,,(12121u y y y y v x x x u n n m -是一条回路。

否则假设l k y x =且是离u 最近的一对(即对k i ≤≤1,l j ≤≤1,不存在j i y x =),则),,,,,,,,,(12121v y y y x x x u l k -是一条回路。

2.设G 是简单图,)(G δ≥2,证明G 中存在长度大于或等于1)(+G δ的基本回路。

证:以图G 中一点v 1出发,与之相邻的点设为v 2,由于)(G δ≥2,则v 2至少还有一个邻接点,设为v 3,若v 3与v 1邻接,则形成长度为1)(+G δ的基本回路,则若v 3不与v 1邻接,则至少还有一个邻接点,设为v 4,若v 4与v 1或v 2邻接,则形成长度为大于或等于1)(+G δ的基本回路,若v 4与v 1和v 2都不邻接,至少还有一个邻接点,设为v 5,…,依次类推,一定可以到达最后一个顶点v i ,由于)(G δ≥2,则除了v i -1外,一定会与前面的某个顶点邻接,就会形成长度为大于或等于1)(+G δ的基本回路。

3.证明:若连通图G 不是完全图,则G 中存在三个点w v u ,,,使E v u ∈)(,,E w v ∈)(,,E w u ∉)(,。

离散数学图论答案

离散数学图论答案

离散数学图论答案离散数学图论答案【篇⼀:离散数学图论习题】综合练习⼀、单项选择题1.设l是n阶⽆向图g上的⼀条通路,则下⾯命题为假的是( ). (a) l可以不是简单路径,⽽是基本路径 (b) l可以既是简单路径,⼜是基本路径 (c) l可以既不是简单路径,⼜不是基本路径 (d) l可以是简单路径,⽽不是基本路径答案:a2.下列定义正确的是( ).(a) 含平⾏边或环的图称为多重图(b) 不含平⾏边或环的图称为简单图 (c) 含平⾏边和环的图称为多重图(d) 不含平⾏边和环的图称为简单图答案:d3.以下结论正确是 ( ).(a) 仅有⼀个孤⽴结点构成的图是零图 (b) ⽆向完全图kn每个结点的度数是n (c) 有n(n1)个孤⽴结点构成的图是平凡图(d) 图中的基本回路都是简单回路答案:d4.下列数组中,不能构成⽆向图的度数列的数组是( ). (a)(1,1,1,2,3) (b) (1,2,3,4,5) (c) (2,2,2,2,2) (d) (1,3,3,3) 答案:b5.下列数组能构成简单图的是( ). (a) (0,1,2,3)(b) (2,3,3,3)(c) (3,3,3,3)(d) (4,2,3,3) 答案:c6.⽆向完全图k3的不同构的⽣成⼦图的个数为(). (a) 6 (b)5(c) 4 (d) 3 答案:c7.n阶⽆向完全图kn中的边数为().(a)n(n?1)n(n?1)(b) (c) n (d)n(n+1) 22答案:b8.以下命题正确的是( ).(a) n(n?1)阶完全图kn都是欧拉图(b) n(n?1)阶完全图kn都是哈密顿图(c) 连通且满⾜m=n-1的图v,e(?v?=n,?e?=m)是树 (d) n(n?5)阶完全图kn都是平⾯图答案:c10.下列结论不正确是( ).(a) ⽆向连通图g是欧拉图的充分必要条件是g不含奇数度结点(b) ⽆向连通图g有欧拉路的充分必要条件是g最多有两个奇数度结点 (c) 有向连通图d是欧拉图的充分必要条件是d的每个结点的⼊度等于出度(d) 有向连通图d有有向欧拉路的充分必要条件是除两个结点外,每个结点的⼊度等1于出度答案:d11.⽆向完全图k4是().(a)欧拉图(b)哈密顿图(c)树答案:b12.有4个结点的⾮同构的⽆向树有 ( )个.(a) 2 (b) 3(c) 4(d) 5 答案:a13.设g是有n个结点,m条边的连通图,必须删去g的( )条边,才能确定g的⼀棵⽣成树.(a) m?n?1 (b) n?m (c) m?n?1 (d) n?m?1 答案:a14.设g是有6个结点的完全图,从g中删去( )条边,则得到树. (a) 6 (b) 9 (c) 10 (d) 15 答案:c⼆、填空题1.数组{1,2,3,4,4}是⼀个能构成⽆向简单图的度数序列,此命题的真值是 . 答案:02.⽆向完全图k3的所有⾮同构⽣成⼦图有个.答案:43.设图g??v,e?,其中?v??n,?e??m.则图g是树当且仅当g是连通的,且m?.答案:n-14.连通图g是欧拉图的充分必要条件是答案:图g⽆奇数度结点 5.连通⽆向图g有6个顶点9条边,从g中删去g的⼀棵⽣成树t.答案:46.⽆向图g为欧拉图,当且仅当g是连通的,且g中⽆答案:奇数度7.设图g??v,e?是简单图,若图中每对结点的度数之和,则g⼀定是哈密顿图.答案:?8.如图1所⽰带权图中最⼩⽣成树的权是.答案:12三、化简解答题1.设⽆向图g=v,e,v={v1,v2,v3,v4,v5,v6}, e={( v1,v2), ( v2,v2), ( v4,v5), ( v3,v4), ( v1,v3),( v3,v1), ( v2,v4)}. (1) 画出图g的图形;2图15图22(2) 写出结点v2, v4,v6的度数; (3) 判断图g是简单图还是多重图.解:(1) 图g的图形如图5所⽰.(2) deg(v2)?4,deg(v4)?3,deg(v6)?0.(3) 图g是多重图.作图如图2. 2.设图g=v,e,其中v={a,b,c,d,e}, e={(a,b),(b,c),(c,d), (a,e)}试作出图g的图形,并指出图g是简单图还是多重图?是连通图吗?说明理由.b e解:图g如图8所⽰.. 图g中既⽆环,也⽆平⾏边,是简单图. cd 图g是连通图.g中任意两点都连通.图3所以,图g有9个结点.作图如图3.四、计算题1.设简单连通⽆向图g有12条边,g中有2个1度结点,2个2度结点,3个4度结点,其余结点度数为3.求g中有多少个结点.试作⼀个满⾜该条件的简单⽆向图.解:设图g有x个结点,由握⼿定理2?1+2?2+3?4+3?(x?2?2?3)=12?23x?24?21?18?27x=9 故图g有9个结点.图4满⾜该条件的简单⽆向图如图4所⽰2.设图g(如图5表⽰)是6个结点a,b,c, d,e,f的图,试求,图g的最⼩⽣成树,并计算它的权.c 解:构造连通⽆圈的图,即最⼩⽣成树,⽤克鲁斯克尔算法:第⼀步:取ab=1;第⼆步:取af=4第三步:取fe=3;第四步:取ad=9图5 第五步:取bc=23如图6.权为1+4+3+9+23=403.⼀棵树t有两个2度顶点,1个3度顶点;3个4问它有⼏⽚树叶?解:设t有n顶点,则有n-1条边.t中有2个 2度顶点,1个3度顶点,3个4度顶点,其余n-2-1-3个1度顶点.五、证明题1.若⽆向图g中只有两个奇数度结点,则这两个结点⼀定是连通的.证:⽤反证法.设g中的两个奇数度结点分别为u和v.假若u和v不连通.即它们之间⽆任何通路,则g⾄少有两个连通分⽀g1,g2,且u和v分别属于g1和g2,于是g1和g2各含有⼀个奇数度结点.这与握⼿定理的推论⽭盾.因⽽u和v⼀定是连通的.3【篇⼆:离散数学图论练习题】题1、设g是⼀个哈密尔顿图,则g⼀定是()。

离散数学图论答案

离散数学图论答案

离散数学图论答案【篇一:离散数学图论习题】综合练习一、单项选择题1.设l是n阶无向图g上的一条通路,则下面命题为假的是( ). (a) l可以不是简单路径,而是基本路径 (b) l可以既是简单路径,又是基本路径 (c) l可以既不是简单路径,又不是基本路径 (d) l可以是简单路径,而不是基本路径答案:a2.下列定义正确的是( ).(a) 含平行边或环的图称为多重图(b) 不含平行边或环的图称为简单图 (c) 含平行边和环的图称为多重图(d) 不含平行边和环的图称为简单图答案:d3.以下结论正确是 ( ).(a) 仅有一个孤立结点构成的图是零图 (b) 无向完全图kn每个结点的度数是n (c) 有n(n1)个孤立结点构成的图是平凡图(d) 图中的基本回路都是简单回路答案:d4.下列数组中,不能构成无向图的度数列的数组是( ). (a)(1,1,1,2,3) (b) (1,2,3,4,5) (c) (2,2,2,2,2) (d) (1,3,3,3) 答案:b5.下列数组能构成简单图的是( ). (a) (0,1,2,3)(b) (2,3,3,3)(c) (3,3,3,3)(d) (4,2,3,3) 答案:c6.无向完全图k3的不同构的生成子图的个数为(). (a) 6 (b)5(c) 4 (d) 3 答案:c7.n阶无向完全图kn中的边数为().(a)n(n?1)n(n?1)(b) (c) n (d)n(n+1) 22答案:b8.以下命题正确的是( ).(a) n(n?1)阶完全图kn都是欧拉图(b) n(n?1)阶完全图kn都是哈密顿图(c) 连通且满足m=n-1的图v,e(?v?=n,?e?=m)是树 (d) n(n?5)阶完全图kn都是平面图答案:c10.下列结论不正确是( ).(a) 无向连通图g是欧拉图的充分必要条件是g不含奇数度结点(b) 无向连通图g有欧拉路的充分必要条件是g最多有两个奇数度结点 (c) 有向连通图d是欧拉图的充分必要条件是d的每个结点的入度等于出度(d) 有向连通图d有有向欧拉路的充分必要条件是除两个结点外,每个结点的入度等1于出度答案:d11.无向完全图k4是().(a)欧拉图(b)哈密顿图(c)树答案:b12.有4个结点的非同构的无向树有 ( )个.(a) 2 (b) 3(c) 4(d) 5 答案:a13.设g是有n个结点,m条边的连通图,必须删去g的( )条边,才能确定g的一棵生成树.(a) m?n?1 (b) n?m (c) m?n?1 (d) n?m?1 答案:a14.设g是有6个结点的完全图,从g中删去( )条边,则得到树. (a) 6 (b) 9 (c) 10 (d) 15 答案:c二、填空题1.数组{1,2,3,4,4}是一个能构成无向简单图的度数序列,此命题的真值是 . 答案:02.无向完全图k3的所有非同构生成子图有个.答案:43.设图g??v,e?,其中?v??n,?e??m.则图g是树当且仅当g是连通的,且m?.答案:n-14.连通图g是欧拉图的充分必要条件是答案:图g无奇数度结点 5.连通无向图g有6个顶点9条边,从g中删去g的一棵生成树t.答案:46.无向图g为欧拉图,当且仅当g是连通的,且g中无答案:奇数度7.设图g??v,e?是简单图,若图中每对结点的度数之和,则g一定是哈密顿图.答案:?8.如图1所示带权图中最小生成树的权是.答案:12三、化简解答题1.设无向图g=v,e,v={v1,v2,v3,v4,v5,v6}, e={( v1,v2), ( v2,v2), ( v4,v5), ( v3,v4), ( v1,v3),( v3,v1), ( v2,v4)}. (1) 画出图g的图形;2图15图22(2) 写出结点v2, v4,v6的度数; (3) 判断图g是简单图还是多重图.解:(1) 图g的图形如图5所示.(2) deg(v2)?4,deg(v4)?3,deg(v6)?0.(3) 图g是多重图.作图如图2. 2.设图g=v,e,其中v={a,b,c,d,e}, e={(a,b),(b,c),(c,d), (a,e)}试作出图g的图形,并指出图g是简单图还是多重图?是连通图吗?说明理由.b e解:图g如图8所示.. 图g中既无环,也无平行边,是简单图. cd 图g是连通图.g中任意两点都连通.图3所以,图g有9个结点.作图如图3.四、计算题1.设简单连通无向图g有12条边,g中有2个1度结点,2个2度结点,3个4度结点,其余结点度数为3.求g中有多少个结点.试作一个满足该条件的简单无向图.解:设图g有x个结点,由握手定理2?1+2?2+3?4+3?(x?2?2?3)=12?23x?24?21?18?27x=9 故图g有9个结点.图4满足该条件的简单无向图如图4所示2.设图g(如图5表示)是6个结点a,b,c, d,e,f的图,试求,图g的最小生成树,并计算它的权.c 解:构造连通无圈的图,即最小生成树,用克鲁斯克尔算法:第一步:取ab=1;第二步:取af=4第三步:取fe=3;第四步:取ad=9图5 第五步:取bc=23如图6.权为1+4+3+9+23=403.一棵树t有两个2度顶点,1个3度顶点;3个4问它有几片树叶?解:设t有n顶点,则有n-1条边.t中有2个 2度顶点,1个3度顶点,3个4度顶点,其余n-2-1-3个1度顶点.五、证明题1.若无向图g中只有两个奇数度结点,则这两个结点一定是连通的.证:用反证法.设g中的两个奇数度结点分别为u和v.假若u和v不连通.即它们之间无任何通路,则g至少有两个连通分支g1,g2,且u和v分别属于g1和g2,于是g1和g2各含有一个奇数度结点.这与握手定理的推论矛盾.因而u和v一定是连通的.3【篇二:离散数学图论练习题】题1、设g是一个哈密尔顿图,则g一定是()。

离散图论部分习题

离散图论部分习题
一个路径是哈密顿回路,如果它通过图中的每个顶点恰好一 次,并从某个顶点开始,最后回到这个顶点结束。
图的着色问题习题解答
01
图的着色问题:给定一个图,使 用最少的颜色对图中顶点进行着 色,使得相邻的顶点颜色不同。
02
图的着色问题是一个经典的NP难 问题,其求解方法包括贪心算法 、回溯算法等。
最小生成树问题习题解答
习题解答与解析
欧拉路径与回路习题解答
欧拉路径
一个路径是欧拉路径,如果它通过图 中的每条边恰好一次。
欧拉回路
一个路径是欧拉回路,如果它通过图 中的每条边恰好一次,并从某一条边 开始,最后回到这条边结束。
哈密顿路径与回路习题解答
哈密顿路径
一个路径是哈密顿路径,如果它通过图中的每个顶点恰好一 次。
哈密顿回路
02
基础问题解析
欧拉路径与回路
定义
一个遍历图中的所有边且每条边只遍历一 次的路径称为欧拉路径。如果这个路径的 起点和终点是同一点,则称为欧拉回路。
求解方法
应用
在计算机科学中,欧拉回路可用于解 决一些优化问题,如旅行商问题。
通过穷举法或动态规划法寻找是否存 在欧拉回路,并确定回路的长度。
哈密顿路径与回路
应用场景
最短路径问题在路由选择、 物流配送、旅行规划等领 域有广泛应用。
图的连通性问题
连通性定义
一个无向图是连通的,如果任意两个顶点之间都存在一条路径。
连通性判定
常用的连通性判定算法有深度优先搜索和广度优先搜索。
应用场景
图的连通性问题在社交网络分析、交通网络分析、通信网络分析 等领域有广泛应用。
04
离散图论部分习
目录
• 基础知识回顾 • 基础问题解析 • 高级问题解析 • 习题解答与解析

离散数学习题解答第6部分(图论)

离散数学习题解答第6部分(图论)

离散数学习题解答 习题六 (第六章 图论)1.从日常生活中列举出三个例子,并由这些例子自然地导出两个无向图及一个向图。

[解] ①用V 代表全国城市的集合,E 代表各城市间的铁路线的集合,则所成之图G=(V ,E )是全国铁路交通图。

是一个无向图。

②V 用代表中国象棋盘中的格子点集,E 代表任两个相邻小方格的对角线的集合,则所成之图G=(V ,E )是中国象棋中“马”所能走的路线图。

是一个无向图。

③用V 代表FORTRAN 程序的块集合,E 代表任两个程序块之间的调用关系,则所成之图G+(V ,E )是FORTRAN 程序的调用关系图。

是一个有向图。

2.画出下左图的补图。

[解] 左图的补图如右图所示。

3.证明下面两图同构。

a v 2 v 3 v 4图G图G ′[证] 存在双射函数ϕ:V →V ′及双射函数ψ : E →E ′ϕ (v 1)=v 1′ ϕ (v 1,v 2)=(v 1′,v 2′) ϕ (v 2)=v 2′ ϕ (v 2,v 3)=(v 2′,v 3′) ϕ (v 3)=v 3′ ϕ (v 3,v 4)=(v 3′,v 4′) ϕ (v 4)=v 4′ ϕ (v 4,v 5)=(v 4′,v 5) ϕ (v 5)=v 5′ ϕ (v 5,v 6)=(v 5′,v 6′) ϕ (v 6)=v 6′ϕ (v 6,v 1)=(v 6′,v 1′) ϕ (v 1,v 4)=(v 1′,v 4′) ϕ (v 2,v 5)=(v 2′,v 5′) ϕ (v 3,v 6)=(v 3′,v 6′)显然使下式成立:ψ (v i ,v j )=(v i ,v j ′)⇒ ϕ (v i )=v i ′∧ϕ (v j )=v j ′ (1≤i ·j ≤6) 于是图G 与图G ′同构。

4.证明(a ),(b )中的两个图都是不同构的。

图G 中有一个长度为4的圈v 1v 2v 6v 5v 1,其各顶点的度均为3点,而在图G ′中却没有这样的圈,因为它中的四个度为3的顶点v 1',v 5',v 7',v 3'不成长度的4的圈。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题1. 关于图论的基本概念,以下哪个说法是正确的?A. 无向图中的边无方向性,有向图中的边有方向性。

B. 有向图中的边无方向性,无向图中的边有方向性。

C. 无向图和有向图都是由顶点和边组成的。

D. 无向图和有向图都只由边组成。

答案:A2. “若顶点集合为V,边集合为E,那么图G可以表示为G(V, E)”是关于图的哪个基本概念的描述?A. 图的顶点B. 图的边C. 图的邻接D. 图的表示方法答案:D3. 以下哪个命题是正确的?A. 若集合A和B互相包含,则A和B相等。

B. 若集合A和B相交为空集,则A和B相等。

C. 若集合A和B相等,则A和B互相包含。

D. 若集合A和B相等,则A和B相交为空集。

答案:C二、填空题1. 有一个集合A = {1, 2, 3, 4},则集合A的幂集的元素个数为__________。

答案:162. 设A = {a, b, c},B = {c, d, e},则集合A和B的笛卡尔积为__________。

答案:{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, c), (c, d), (c, e)}3. 若p为真命题,q、r为假命题,则合取范式(p ∨ q ∨ r)的值为__________。

答案:真三、计算题1. 计算集合A = {1, 2, 3, 4}和集合B = {3, 4, 5, 6}的交集、并集和差集。

答案:交集:{3, 4}并集:{1, 2, 3, 4, 5, 6}差集:{1, 2}2. 计算下列命题的真值:(~p ∨ q) ∧ (p ∨ ~q),其中p为真命题,q为假命题。

答案:真四、证明题证明:对于任意集合A和B,如果A和B互相包含,则A和B相等。

证明过程:假设A和B互相包含,即A包含于B且B包含于A。

设x为集合A中的任意元素,则x也必然存在于集合B中,即x属于B。

同理,对于集合B中的任意元素y,y也属于集合A。

(图论)离散数学习题参考答案2

(图论)离散数学习题参考答案2
2 6 2 4 1 1 3 3 2 5 8 7 5 1 3 6 8 6 6 3
解此不等式可得 n ≥ 7 , 即 G 中至少有 7 个顶点, 当为 7 个顶点时, 其度数列为 2, 2, 2, 3, 3, 4, 4 , Δ = 4, δ = 2 8. 设有 n 个顶点,由握手定理可得: ∑ d (vi ) = 2m ,即
i =1 n
1 × (3 + 5) + (n − 2) × 2 = 2 × 6
d − (v1 ) = 3, d + (v1 ) = 0; d − (v2 ) = 1, d + (v2 ) = 2; d − (v3 ) = 1, d + (v3 ) = 3; d − (v4 ) = 2, d + (v4 ) = 2
第十一次: (欧拉图与哈密顿图)P305 1.2.11.21 (无向树及其性质)P318 2.24(a), 25(b) 1. (a),(c) 是欧拉图,因为它们均连通且都无奇度顶点; (b),(d)都不是欧拉图;因为(b) 不连通,(d) 既不连通又有奇度顶点;要使(b),(d)变为欧拉图 均至少加两条边,使其连通并且无奇度顶点。如下图所示。
(1) v2 到 v5 长度为 1,2,3,4 的通路数分别为 0, 2, 0,0 条; (2) v5 到 v5 长度为 1,2,3,4 的通路数分别为 0,0,4,0 条; (3) D 中长度为 4 的通路(含回路)为 32 条; (4) D 中长度为小于或等于 4 的回路数为 12 条; (5) 因为 D 是强连通图,所以可达矩阵为 4 阶全 1 方阵,如上图所示。 46. 各点的出度和入度分别如下:
(v2,12)** (v5, 7)*
根据上表的最后一行,从 v1 到其余各点的最短路径和距离如下: v1v2, d(v1,v2)=6 v1v2v6, d(v1,v6)=12 v1v3, d(v1,v3)=3 v1v3v4v5v7, d(v1,v7)=7 v1v3v4, d(v1,v4)=5 v1v3v4v5v7v8, d(v1,v8)=10 v1v3v4v5, d(v1,v5)=6

离散图论习题解答

离散图论习题解答

以下内容供参考!欢迎补充~~~14.19. 19.设G 是n 阶自补图, 证明n = 4k 或n = 4k+1, 其中k 为正整数.设G 是n 阶m 条边的自补图, 则G 为n 阶m 条边的简单图, 且G≅⎯G. 于是,⎯G 的边数m' = m, 且m+m'= 2m = n(n−1)/2. 于是n(n−1) = 4m, 因而n = 4k, 或n−1 = 4k, k 为正整数.14.21. 21. 无向图G 如图14.19 所示.(1)求G 的全部点割集和边割集, 并指出其中的割点和桥(割边);(2)求G 的点连通度κ(G)和边连通度λ(G).(1)点割集两个{a, c}, {d}, d 是割点. 7 个边割集:{e5}, {e1, e3}, {e2, e4}, {e1, e2}, {e2, e3}, {e3, e4}, {e1, e4}, e5 是桥.(2)因为既有割点又有桥, 所以κ= λ= 1.14.22. 22.无向图G 如图14.20 所示, 现将该图顶点和边标定. 然后求图中的全部割点和桥, 以及图的点连通度和边连通度.第14 题答图标定如答图. 3 个割点: d, f , h. 3 个桥: e5, e9, e10. 因为既有割点又有桥, 所以κ= λ= 1.14.23. 23. 求图14.21 所示图G 的κ(G), λ(G)和δ(G).κ= 2, λ= 3, δ= 4.14.43. 43.有向图D 如图14.22 所示.(1)D 中有多少种非同构的圈? 有多少种非同构的简单回路?答:有2种非同构的圈,长度为2和3;有3种非同构的简单回路,长度为2,3,5(2)求a 到d 的短程线和距离d<a, d>.a 到d 的短程线为aed,d<a, d>=2(3)求d 到a 的短程线和距离d<d, a>.d 到a 的短程线为deba,d<d, a>.=3(4)判断D 是哪类连通图.单向连通图(5)对D 的基图讨论(1), (2), (3)三个问题.答:有4种非同构的圈,长度为2,3,4,5;有7种非同构的简单回路除了4种非同构的圈外,还有3种非圈的简单回路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以下内容供参考!欢迎补充~~~
14.19. 19.设G 是n 阶自补图, 证明n = 4k 或n = 4k+1, 其中k 为正整数.
设G 是n 阶m 条边的自补图, 则G 为n 阶m 条边的简单图, 且G≅⎯G. 于是,⎯G 的边数m' = m, 且m+m'= 2m = n(n−1)/2. 于是n(n−1) = 4m, 因而n = 4k, 或n−1 = 4k, k 为正整数.
14.21. 21. 无向图G 如图14.19 所示.
(1)求G 的全部点割集和边割集, 并指出其中的割点和桥(割边);
(2)求G 的点连通度κ(G)和边连通度λ(G).
(1)点割集两个{a, c}, {d}, d 是割点. 7 个边割集:{e5}, {e1, e3}, {e2, e4}, {e1, e2}, {e2, e3}, {e3, e4}, {e1, e4}, e5 是桥.
(2)因为既有割点又有桥, 所以κ= λ= 1.
14.22. 22.无向图G 如图14.20 所示, 现将该图顶点和边标定. 然后求图中的全部割点和桥, 以及图的点连通度和边连通度.
第14 题答图
标定如答图. 3 个割点: d, f , h. 3 个桥: e5, e9, e10. 因为既有割点又有桥, 所以κ= λ= 1.
14.23. 23. 求图14.21 所示图G 的κ(G), λ(G)和δ(G).
κ= 2, λ= 3, δ= 4.
14.43. 43.有向图D 如图14.22 所示.
(1)D 中有多少种非同构的圈? 有多少种非同构的简单回路?
答:有2种非同构的圈,长度为2和3;有3种非同构的简单回路,长度为2,3,5
(2)求a 到d 的短程线和距离d<a, d>.
a 到d 的短程线为aed,d<a, d>=2
(3)求d 到a 的短程线和距离d<d, a>.
d 到a 的短程线为deba,d<d, a>.=3
(4)判断D 是哪类连通图.
单向连通图
(5)对D 的基图讨论(1), (2), (3)三个问题.
答:有4种非同构的圈,长度为2,3,4,5;有7种非同构的简单回路除了4种非同构的圈外,还有3种非圈的简单回路。

长度为5,6,8;
a 到d 的短程线有3条,d<a, d>=2
d 到a 的短程线有3条d<d, a>=2
15.14. 14. 今有n 个人, 已知他们中的任何二人合起来认识其余的n − 2 个人. 证明: 当n ≥ 3 时, 这n 个人能排成一列, 使得中间的任何人都认识两旁的人, 而两旁的人认识左边(或右边)的人. 而当n ≥4 时, 这n个人能排成一个圆圈, 使得每个人都认识两旁的人.
作n 阶简单无向图G = <V, E>, V = 这n 个人的集合, E = {(u, v)|u, v ∈V ∧u ≠v ∧u 与v 认识}. ∀u, v ∈V,.
(1)若u, v 相邻, 则d(u) + d(v) ≥(n −2) + 2 = n.
(2)若u, v 不相邻, 则∀w∈V −{u, v}, w 必与u 和v 都相邻. 否则, 比如u 和w 不相邻, 则v, w 都不邻接u,于是u 和w 合起来至多与其余的n − 3 个人认识, 与已知条件不符. 因而d(u) + d(v) ≥2(n −2).当n ≥3 时, 2(n −2) ≥n −1, 因此无论第(1)或(2)种情形, 都有d(u) + d(v) ≥n −1, 由定理15.7 知G 中有哈密顿通路, 通路上的人按在通路中的顺序排成一列, 满足要求. 当n ≥4 时, 2(n −2) ≥n, 因此无论第(1)或(2)种情形, 都有d(u) + d(v) ≥n, 由定理15.7 的推论知G 中有哈密顿回路, 回路上的人按在回路中的顺序排成一个圆圈, 满足要求.
15.15. 15. 某工厂生产由6 种不同颜色的纱织成的双色布. 已知在品种中, 每种颜色至少能与其他5 中颜色中的3 种相搭配. 证明可以挑出3 种双色布, 他们恰由6 种不同颜色的纱织成.
作无向简单图G = <V, E>, V = {v|v 为6 种颜色的纱之一}, |V| = 6, E = {(u, v)|u, v ∈V ∧u ≠v ∧u 与v 能搭配}. 由给出的条件知, ∀u, v ∈V, 有
d(u) + d(v) ≥3 + 3 = 6 = |V|.
由定理15.7 的推论知, G 是哈密顿图, 因而有哈密顿回路, 设C = vi1vi2vi3vi4vi5vi6vi1
为其中的一条. 任何两个顶点在 C 中相邻, 说明这两个顶点代表的颜色的纱可以搭配成双色布. 让vi1与vi2的搭配, vi3与vi4的搭配, vi5与vi6的搭配就可以织成3 种双色布, 恰用了6 种不同的颜色.
16.26. 26. 设T 为非平凡树, Δ(T) ≥k, 证明T 至少有k 片树叶.
证法一设T 中有x 片树叶, 则T 中有n −x 个分枝点(度数≥2), 其中至少有个1 个顶点度数为Δ(≥k). 由树的性质及握手定理知
2m = 2(n −1) = Σd(v) ≥x⋅1 + (n −x−1)⋅2 + Δ. 整理得x ≥Δ≥k.
16.29. 29.设G 为n (n ≥5)阶简单图, 证明G 或⎯G 中必含圈.
首先利用第23 题的结论确认无圈的图(森林)的边数m = n −p ≤n − 1. (反证法)假如G 和⎯G 都不含圈, 则
1/2 n(n −1) =| E(Kn ) |= |E(G)| +|E(G)| ≤2(n −1),于是n(n −4) ≤0, 而这与(n ≥5)矛盾.
16.31
(1) 4 (2) 4 (3) 5(4) 6
讲过的例题:P315 例16.5 P312 例16.3 (例15.3有没讲?)。

相关文档
最新文档