小学奥数周期问题

合集下载

小学奥数周期问题专题训练含答案

小学奥数周期问题专题训练含答案

小学奥数周期问题专题训练姓名:1.马路一侧插满了彩旗,它们的规律是“红, 黄, 红, 蓝, 蓝, 紫, 红, 黄, 红, 蓝, 蓝, 紫……”请问,第97根旗是什么颜色的?2.如下图摆法摆251个图形,其中有几个正方形? 3.把72化成小数后第351位是几?4.某闰年二月的最终一天是星期日,则同年的7月1日是星期几?5.21999=n ,n 的最终一位是多少?6.下表是11位数,随意相邻的三个数字之和是17,请将剩下几位填完。

7.下表中,每列上下的两个汉字成为一组,如第一组为“学做”, 第二组为“习接”,则第649组是什么? 8.循环小数··51238.0及··522348944.0首次出现该数位的数字都是5是在小数点后的哪一位? 9.2001年的植树节是星期一,则这年的国庆节是星期几?10.一本童话书,每2页文字之间有3页插图,也就是说3页插图前后各有1页文字,假如这本书有128页,而第1页是文字,这本书共有插图多少页?11.100个3相乘,得数的个位是几?12.小张工作3天休息1天,小李工作4天休息一天,小刘工作7天休息一天,假设今日他们都休息,则下次都休息是在几天以后?小学奥数周期问题专题训练(答案)1.马路一侧插满了彩旗,它们的规律是“红, 黄, 红, 蓝, 蓝, 紫, 红, 黄, 红, 蓝, 蓝, 紫……”请问,第97根旗是什么颜色的?97÷6=16(组)……1(根)答:第97根旗是红颜色的。

2.如下图摆法摆251个图形,其中有几个正方形?251÷7=35(组)……6(个) 35×2+2=72(个)答:其中有72个正方形。

3.把72化成小数后第351位是几?2÷7=``485712.0 351÷6=58(组)……3(位) 答:把72化成小数后第351位是5。

4.某闰年二月的最终一天是星期日,则同年的7月1日是星期几? 31×2+30×2+1=123(天) 123÷7=17(周)……4(天)答:同年的7月1日是星期四5.21999=n ,n 的最终一位是多少?规律:2个位2,2²个位4,2³个位8,24个位6,25个位2又开始循环 1999÷4=499(组)……3(位) 答:n 的最终一位是8。

小学四年级奥数第28讲 周期问题(含答案分析)

小学四年级奥数第28讲 周期问题(含答案分析)

第28讲周期问题一、知识要点:在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖、每周的七天等等。

我们把这种特殊的规律性问题称为周期问题。

解答周期问题的关键是找规律,找出周期。

确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是特球的个数后,再继续算。

二、精讲精练例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。

(1)□△□△□△□△……(2)□△△□△△□△△……练习一(1)□□△△□□△△□□△△……第28个图形是什么?(2)盼望祖国早日统一盼望祖国早日统一盼望祖国早日统一…第2001个字是什么字?例2:有一列数,按5、6、2、4、5、6、2、4…排列。

(1)第129个数是多少?(2)这129个数相加的和是多少?练习二1、有一列数:1,4,2,8,5,7,1,4,2,8,5,7…(1)第58个数是多少?(2)这58个数的和是多少?2、小青把积存下来的硬币按先四个1分,再三个2分,最后两个5分这样的顺序一直往下排。

(1)他排到第111个是几分硬币?(2)这111个硬币加起来是多少元钱?例3:假设所有的自然数排列起来,如下所示39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45 6 7 89…练习三1、有a、b、c三条直线,从a线开始,从1起依次在三条直线上写数(如下图),22、59、2001各在哪一条线上?c b2、假设所有自然数如下图排列起来,36、43、78、2000应分别排在哪个字母下面?A B C D1 2 3 48 7 6 59 10 11 12…例4:1991年1月1日是星期二。

(1)该月的22日是星期几?该月28日是星期几?(2)1994年1月1日是星期几?练习四1、1990年9月22日是星期六,1991年元旦是星期几?2、1989年12月5日是星期二,那么再过10年的12月5日是星期几?例5:我国农历用鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪12种动物按顺序轮流代表年号,例如,第一年如果属鼠年,第二年就属牛年,第三年就是虎年…。

五年级奥数周期问题练习题

五年级奥数周期问题练习题

五年级奥数周期问题练习题问题1:某个班级有30个学生,其中15个是男生,剩下的是女生。

男生和女生一起组成了几对?请在下面作答:解答1:班级有30个学生,其中15个是男生,剩下的是15个女生。

男生和女生是一对一配对的,所以有15对。

问题2:在一个奥数比赛中,一支队伍需要有4个人。

有9个学生报名参赛。

请问一共有多少种不同的组队方式?请在下面作答:解答2:从9个学生中选出4个来组成一支队伍,可以使用组合的方法来计算。

C(9, 4) = 9! / (4! * (9-4)!) = 126所以一共有126种不同的组队方式。

问题3:一个街区有10幢房子,每幢房子都有不同的颜色。

现在有4个人,每个人都要住在不同颜色的房子里。

请问一共有多少种不同的安排方式?请在下面作答:解答3:第一个人有10种选择,第二个人有9种选择,第三个人有8种选择,第四个人有7种选择。

所以一共有10 * 9 * 8 * 7 = 5040种不同的安排方式。

问题4:某个月有31天,现在要将这31天分成3个连续的周期(每个周期可以不完整)。

请问一共有多少种不同的分法?请在下面作答:解答4:将31天分成3个周期,可以使用组合的方法来计算。

C(31+3-1, 3-1) = C(33, 2) = 33! / (2! * (33-2)!) = 528所以一共有528种不同的分法。

问题5:一个四位数的各位数字互不相同,且是4个奇数。

请问一共有多少个满足条件的四位数?请在下面作答:解答5:个位数字只能是1、3、5、7、9中的一个。

百位数字只能是1、3、5、7、9中的一个,并且不能和个位数字相同,所以有4种选择。

千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字相同,所以有3种选择。

千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字、千位数字相同,所以有2种选择。

所以一共有5 * 4 * 3 * 2 = 120个满足条件的四位数。

四年级奥数周期问题

四年级奥数周期问题
7、一条长900米的马路两侧每隔6米植树一棵,从头到尾一共植树多少棵?
8、一列长230米的火车,以平均速度每秒30米的速度过一座长730米的大桥,完全过桥需要多少秒时间?

课前审核: 家长签字:

日期:年月日日期:年月日
上课班级:
中年级
课பைடு நூலகம்:
周期问题
授课人:

老师




例题1:有一列数5,6,2,4,5,6,2,4 …… (1)第89个数是多少?(2)这89个数相加的和是多少?
2、有一列数1,4,2,8,5,7,1,4,2,8,5,7……(1)第58个数是多少?(2)这58个数相加的和是多少?
3、有一列数是4、5、3、7、4、5、3、7……(1)第80个数是多少?(2)前50个数的和是多少?
5、一些彩笔按2支红色、3支蓝色、5支绿色的顺序依次排列,如果从头到尾一共排了47支,那其中蓝笔比绿笔少多少支?
练习:1、有一列数按6、7、3、4、9、6、7、3、4、9……排列,(1)那么前66个数的和是多少?(2)前88个数字中数字6比数字9多多少个?
2、
















上表中汉字按规律排列,每一列两个汉字组成一组,如第一组“甲春”,第二组“乙夏”……问第20组是什么?第100组又是什么?
3、计算(1)6+10+14+18+22+……+102(2)10000-3-6-9-12-……-90
4、小天和小美一共有500张卡片,如果小天给小美43张,小天还比小美多42张,原来两人各有多少张卡片?

小学四年级奥数-周期问题

小学四年级奥数-周期问题

周期问题(一)我们知道,一年有12个月,从一月开始,一月、二月、三月、……十二月;每周有七天,从星期一开始,星期一、星期二、……星期天。

在日常生活中有许多类似这样重复出现的现象,一些数、图形的变化也是周而复始地循环出现的,我们把这种特殊的规律性问题称为周期问题。

解答这类题目只有找到规律,才能获得正确的方法。

例1.●●○●●○●●○……上面黑、白两色小球按照一定的规律排列着,其中第90个是( )例2.有同样大小的红、白黑珠共150个,按先5个红的,再4个白的,再3个黑的排列着。

第144个珠是什么颜色?例3.有249朵花,按5朵红花、9朵黄花、13朵绿花的顺序排列,最后一朵花是什么颜色的?例4.有同样大小的红、黄、蓝弹子共180个,按先4个红的,再2个黄的,再3个蓝的排列着。

三种颜色的弹子各有多少个? 例5.上表中,将每列上下两个字组成一组,例如,第一组为(共,社),第二组为(产,会),那么,第128组是( )练习与思考1.根据图中物体的排列规律,填空。

(2)□○△□○△…… 第55个是( )2.把1~100号的卡片依次发给小红、小芳、小华、小明四个人,已知1号发绘小红,16号发给谁?38号呢? 3.四(1)班六位同学在进行报数游戏,他们围成一圈,小娟报“1”,小华报“2”,小丽报“3”,小勇报“4”,小强报“5”,小琳报“6”,每位报的数总比前一位多1。

“72”是谁报的?“190”呢? 4.一些黑白珠子按一定规律排列(如图),如果这些珠子共有50个,则倒数第六个珠子是什么颜色?●●●○●●●○●●●○……5.有同样大小的红、白、黑珠共90个,按先3个红的,后2个白的,再1个黑的排列。

黑珠共有几个?第68个珠子是什么颜色?6.有100朵花,按4朵红花,3朵绿花,5朵黄花,2朵紫花的顺序排列,最后一朵是什么颜色的花?四种花各有几朵?7.第26列的字母和数字各是什么?B ), 第26组是什么?周期问题(二)例1.10个2连乘的积的个位数是几?例2.1998年元旦是星期四,1999年元旦是星期几? 例3.黑珠、白珠共185个串成一串,排列如图:○●○○○●○○○●○○○……例4.把自然数按下图的规律排列后,分成A 、B 、C 、D 、E 五类,例如,4在D 类,10在B 类。

小学奥数 周期问题 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  周期问题 精选练习例题 含答案解析(附知识点拨及考点)

1. 掌握各种周期问题的求解方法.2. 培养学生观察、分析和逻辑推理能力。

知识点说明:周期问题: 周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类: 1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,1829÷=,所以第18个数是2.⑵如果比整数个周期多n 个,那么为下个周期里的第n 个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,16351÷=⋅⋅⋅,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,(161)271-÷=⋅⋅⋅,所以第16个数是2.板块一、图形中的周期问题 【例 1】 小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【考点】周期问题 【难度】2星 【题型】解答【解析】 仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再例题精讲知识精讲教学目标周期问题看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为90330÷=,正好有30个周期,第90个是白球.100333÷=…1,有33个周期还多1个,所以,第100个是黑球.【答案】第90个是白球,第100个是黑球【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【考点】周期问题【难度】2星【题型】解答【解析】观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为102425÷=…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有25126+=(个)【答案】最后一个珠子是黑色的,黑色珠子在这串珠子中共有26个【巩固】黑珠、白珠共101颗,穿成一串,排列如下图。

小学奥数之周期问题(一)

小学奥数之周期问题(一)

环形周期问题
【例4】如图,电子跳蚤每跳一步,可从一个圆圈跳到相邻的圆圈。现在, 一只红跳蚤从标有数字“0”的圆圈按顺时针方向跳了1991步,落在一个 圆圈里。一只黑跳蚤也从标有数字“0”的圆圈起跳,但它是沿着逆时针 方向跳了1949步,落在另一个圆圈里。问:这两个圆圈里数字的乘积是多 少? 解析:电子跳蚤每跳12步就回到了原来的位置,如此循环,周期为12。 1991÷12=165(组)······11(步) 0 11 红跳蚤跳了1991步后落到了标有数字11的圆圈 1 10 2 1949÷12=162(组)······5(步) 黑跳蚤跳了1949步后落到了标有数字7的圆圈 3 9 11×5=55 8 4 答:这两个圆圈里数字的乘积是55。 7 5
周期=3 95 ÷3=31(组) ······2(个) 31 ×1=31(个)
答:第95个是黑球,前95个球中有31个白球。 问第99个球是什么球呢? 99 ÷3=33(组)
Tips
1. 找规律:确定周期 2. 除周期:总数除以周期 3. 对余数:余数是几对应周期中的第几个 没有余数,对应周期最后一个
6
Thank you!
ห้องสมุดไป่ตู้
环形周期问题
【例3】冬冬和其他五个小朋友围城一圈,圆圈中央摆放着55个乒乓球, 从小明开始,小朋友沿逆时针方向开始拿球,每人每次拿3个,直到把乒 乓球全部拿完为止(最后剩下的球不足3个就全拿走)。那么,小明总共 拿到了几个球? 解析: 6×3=18(个)··········周期 55÷18=3(组)······1(个) 3×3+1=10(个) 答:小明总共拿到了10个球。
基本周期问题
【例2】下表的第一行的文字和第二行的字母都有各自的周期,那么第 2011列的文字和字母分别是什么?

小学奥数周期问题

小学奥数周期问题

第十四讲:周期问题知识点说明周期问题:周期现象:事物在运动变化过程中,某些特征有规律循环出现;周期:我们把连续两次出现所经过的时间叫周期;解决有关周期性问题的关键是确定循环周期.分类:1.图形中的周期问题;2.数列中的周期问题;3.年月日中的周期问题.周期性问题的基本解题思路是:首先要正确理解题意,从中找准变化的规律,利用这些规律作为解题的依据;其次要确定解题的突破口。

主要方法有观察法、逆推法、经验法等。

主要问题有年月日、星期几问题等。

⑴观察、逆推等方法找规律,找出周期.确定周期后,用总量除以周期,如果正好有整数个周期,结果就为周期里的最后一个;例如:1,2,1,2,1,2,…那么第18个数是多少?这个数列的周期是2,,所以第18个数是2.⑵如果比整数个周期多个,那么为下个周期里的第个;例如:1,2,3,1,2,3,1,2,3,…那么第16个数是多少?这个数列的周期是3,,所以第16个数是1.⑶如果不是从第一个开始循环,可以从总量里减掉不是循环的个数后,再继续算.例如:1,2,3,2,3,2,3,…那么第16个数是多少?这个数列从第二个数开始循环,周期是2,,所以第16个数是2.板块一、图形中的周期问题【例 1】小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列:●●○●●○●●○…你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球呢?【解析】仔细观察图中球的排列,不难发现球的排列规律是:2个黑球,1个白球;2个黑球,1个白球;……也就是按“2个黑球,1个白球”的顺序循环出现,因此,这道题的周期为3(2个黑球,1个白球).再看看90、100里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个.因为,正好有30个周期,第90个是白球.…1,有33个周期还多1个,所以,第100个是黑球.【巩固】美美有黑珠、白珠共102个,她想把它们做成一个链子挂在自己的床头上,她是按下面的顺序排列的:○●○○○●○○○●○○○……那么你知道这串珠子中,最后一个珠子应是什么颜色吗?美美怕这种颜色的珠子数量不够,你能帮她算出这种颜色在这串珠子中共有多少个吗?【解析】观察可以发现,这串珠子是按“一白、一黑、二白”4个珠子组成一组,并且不断重复出现的.我们先算出102个珠子可以这样排列成多少组,还余多少.我们可以根据排列周期判断出最后一个珠子的颜色,还可以求出有多少个这样的珠子.因为…2,所以最后一个珠子是第26个周期中的第二个,即为黑色.在每一个周期中只有1个黑珠子,所以黑色珠子在这串珠子中共有(个)【例 2】小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第73颗是什么颜色的?⑵第10颗黄珠子是从头起第几颗?⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?【解析】⑴这些珠子是按红、黄、蓝、绿、白的顺序排列,每一组有5颗.(组)……3(颗),第73颗是第15组的第3颗,所以是蓝色的.⑵第10颗黄珠子前面有完整的9组,一共有(颗)珠子.第10颗黄珠子是第l0组的第2颗,所以它是从头数的第47颗.列式:(颗)⑶第8颗红珠子与第11颗红珠子之间一共有14颗珠子.第8颗红珠子与第11颗红珠子之间有完整的两组(第9、10组),共l0颗珠子,第8颗红珠子后面还有4颗珠子,所以是14颗.列式:(颗).【巩固】奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?【解析】这道题是按“北京欢迎你”的规律重复排列,即5个字为一个周期.因为…3,所以28个字里含有5个周期还多3个字,即第28个字就是所列一个周期中的第3个字,所以第28个字是“欢”字.【巩固】节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯.那么第73盏灯是什么颜色的灯?【解析】从第一盏白灯开始,每隔三盏彩灯就又出现一盏白灯,不难看出白灯的编号依次是:1,5,9,13,……,这些编号被4除所得的余数都是1.,即73被4除的余数是1,因此第73盏灯是白灯.【例 3】节日的夜景真漂亮,街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,然后又是5盏红灯、4盏蓝灯、1盏黄灯、……这样排下去.问:⑴第150盏灯是什么颜色?⑵前200盏彩灯中有多少盏蓝灯?【解析】⑴街上的彩灯按照5盏红灯、再接4盏蓝灯、再接1盏黄灯,这样一个周期变化的,实际上一个周期就是(盏)灯.,150盏灯刚好15个周期,所以第150盏应该是这个周期的最后一盏,是黄色的灯.⑵如果是200盏灯,就是的周期.每个周期都有4盏蓝灯,(盏)前200盏彩灯中有80盏蓝灯.【巩固】在一根绳子上依次穿2个红珠、2个白珠、5个黑珠,并按此方式反复,如果从头开始数,直到第50颗,那么其中白珠有多少颗?【解析】…5.(个).【巩固】小莉把平时积存下来的200枚硬币按3个1分,2个2分,1个5分的顺序排列起来.⑴最后1枚是几分硬币⑵这200枚硬币一共价值多少钱?【解析】⑴每个周期有枚硬币,要求最后一枚,用这个数除以6,根据余数来判断……2,所以最后一枚是1分硬币⑵每个周期中6枚硬币共价值(分),用这个数乘以周期次数再加上余下的,就可以得到一共价值多少了(分),所以,这200枚硬币一共价值398分.【巩固】桌子上摆了很多硬币,按一个一角,两个五角,三个一元的次序排列,一共19枚硬币.问:最后一个是多少钱的?第十四个是多少钱的?【解析】…1,…2,所以,第19枚硬币是一角的,第14枚硬币是五角的.【巩固】有249朵花,按5朵红花,9朵黄花,13朵绿花的顺序轮流排列,最后一朵是什么颜色的花?这249朵花中,什么花最多,什么花最少?最少的花比最多的花少几朵?【解析】这些花按5红、9黄、13绿的顺序轮流排列,它的一个周期内有(朵)花.因为……6,所以,这249朵花中含有9个周期还余下6朵花.按花的排列规律,这6朵花中前5朵应是红花,最后一朵应是黄花.在这一个周期里,绿花最多,红花最少,所以在249朵花中,自然也是绿花最多,红花最少.少几朵呢?有两种解法:(方法1) (6)红花有:(朵)绿花有:(朵)红花比绿花少:(朵)(方法2)……6,一个周期少的:(朵),(朵),余下的6朵中还有5朵红花,所以(朵).【例 4】如图所示,每列上、下两个字(字母)组成一组,例如,第一组是“我,”,第二组是“们,”……我们爱科学我们爱科学我…………⑴写出第62组是什么?⑵如果“爱,”代表1991年,那么“科,”代表1992年……问2008年对应怎样的组?【解析】(1)要求第62组是什么数,我们要分别求出上、下两行是什么字(字母),上面一行是以“我们爱科学”五个字为一个周期,下面一行则是以“”七个字母为一个周期……2 ,……6,所以第62组是“们,”⑵2008是1991之后的第17组,现在上面一行按“科学我们爱”五个字为一个周期,下面一行则按“”七个字母为一个周期:(组), (2)……3,所以2008年对应的组为“学,”.【巩固】在图所示的表中,将每列上、下两个字组成一组,例如第一组为(新奥),第二组为(北林),那么第50组是什么?新北京新奥运新北京新奥运新北京新奥运……奥林匹克运动会奥林匹克运动会奥林匹克运动会……【解析】要知道第50组是哪两个数,我们首先要弄清楚第一行和第二行的第50个字分别应该是什么.第一行“新北京新奥运”是6个字一个周期,…2,第50个字就是北.再看第二行“奥林匹克运动会”是7个字一个周期,…1,第50个字就是奥.把第一行和第二行合在一起,第50组就是“北奥”.【例 5】如右图,是一片刚刚收割过的稻田,每个小正方形的边长是1米,A、B、C三点周围的阴影部分是圆形的水洼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周期问题
典型例解
[例1]把围棋里的黑白棋子按一定的规律排列着,其中第90颗是什么棋?第101颗是什么棋?
●●○●●○●●○…
【分析】仔细观察图中棋的排列,不难发现棋的排列规律是:2颗黑棋,1颗白棋,2颗黑棋,1颗白棋,也就是按“两颗黑棋,一颗白棋”的次序循环出现,因此,这道题的周期为3。

再看看90,101里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个。

解答 90÷3=30,正好有30个周期。

101÷3=33……2,有33个周期还多2个。

所以,第90颗棋是白棋,第101颗棋是黑棋。

答:第90颗是白棋,第101颗是黑棋
[举一反三1]
①有一列数:5、6、2、4、5、6、2、4…第129个数是多少?
②有同样大小的黑、白、红珠子共180个,按5个红珠,4个白珠,3个黑珠排列,第158个珠子是什么颜色?这158个珠子中有多少个黑珠?
③△△○△△○△△○…其中第99个是什么图形?
[例2]
7
20277777⨯⨯⨯⨯⨯⨯积的个位数字是几?
相乘为1个周期。

202个7相乘中含有多少个这样的周期?余数是几?如果余数是1,那么积的个位数字是7;如果余数是2,那么积的个位数字是9;如果余数是3,那么积的个位数字是3;如果没有余数,那么积的个位数字是1。

[解答]202÷4=50(周)……2(个)
答:202个7连乘,积的个位数字是9。

[举一反三2]

2
100122222个⨯⨯⨯⨯的积的个位数字是几?

4
2003444个⨯⨯⨯积的个位数字是几?

9
201199999个⨯⨯⨯⨯⨯的积的个位数字是几?
[例3]25÷74的商的小数点后面第80位是几?小数点后面前80个数字之和是多少?
[分析]先找出25÷74的商,25÷74=0.3378378378…,从小数点后第二个数字开始,3,7,8这三个数字依次重复不断地出现,即循环节有三个数字组成:3,7,8,即25÷74=0.3378,显然这道题的周期是3(3,7,8)。

(1)要求小数点后第80位数字,先去掉第一个数字,还剩下80—1=79(个)数字,再算一算79个数字里有几个这样的周期;79÷3=26……1,则小数点后面第80个数字是“3”。

(2)小数点后面前80个数字之和应由三部分组成;第一个数字3,26个周期中的数字和,最后一个数字3,把这三部分加起来,即可求得小数点后面80个数字之和。

[解答](1)这道题的周期是3(3,7,8)
80—1=79(个)
79÷3=26 (1)
所以,小数点后第80位数字是3。

(2)小数点后面前80个数字之和。

3+(3+7+8)×26+3
=3+468+3
=474
答:小数点后面第80位数字是3,小数点后面前80个数字之和是474。

[举一反三3]
①2÷13的商的小数点后面第2005位上的数字是多少?
②2÷7的商的小数点后面第2000位上的数字是多少?
③4÷7的商的小数点后面第2011位上的数字是多少?
[例4]有一个1111位数,各位数字都是1,这个数除以6,余数是几?商的末位数字是几?
的末位数字的周期为3(1,8,5)。

[解答](1)1111÷3=370 (1)
(2)(1111—1)÷3=370
所以,这个数除以6的余数是1,商的末位数字是5。

[举一反三4]

5
300855555个÷,余数是几,商的末位数是几?
②7222222
2006÷
个的余数是几,商的末位数是几?
③有一个2005位数,个位数字都是1,这个数除以6的余数是多少?
[例5]有一根200厘米长的绳子上,自左至右每隔6厘米染一个红点,同时自右向左每隔5厘米也染一个红点,然后沿红点处将绳子逐段剪短。

长度是1厘米的短绳子有多少根?
[分析]两种染色方法的方向不同,若能将两种染色方法统一,则容易找出染色的规律。

因为200被5整除,所以不管按哪种方向染色,两种染色结果都相同。

因此我们可以看作两次都是自左向右染色。

6和5的最小公倍数是30,即在30,60,90,120,150,180的地方同时染色,所
以30厘米为一个周期,每一周期的染色情况如下图所示:
从上图可以看出:一个周期内有2根长度是1厘米的绳子,200里面有6个周期还多20厘米,最后20厘米中有1根长度是1厘米的绳子。

[解答]这道题的周期是30厘米。

200÷30=6 (20)
2×6+1
=12+1
=13(根)
答:长度是1厘米的短绳子有13根。

[举一反三5]
①张华在一根长80米的木棍上,从左到右每隔3米染上一个红点,从右到左每隔5米染上一个红点,然后沿红点将木棍切开,那么,长度是2的短木棒有多少根?
②李健在一根长60分米的彩带上,从左到右每隔3分米染上一个红点,同时从右到左每隔4分米染上一个红点,然后沿红点将彩带剪开,一共有多少根短彩带?
③在一根肠110厘米的木棍上,从左到右每隔4厘米染上一个红点,同时从右到左每隔5厘米染上一个红点,然后沿红点将木棍逐段锯开,那么,长度是1厘米的短木棍有多少根?
【整合集训】
①有同样大小的红、白、黑珠子共90个,按先3个红的后2个白的,再1个黑的顺序排列。

其中白珠子有多少个?第68个珠子是什么颜色?
②用1、3、4、8四个数字组成不同的四位数,把他们从小到大排列,第17个数是多少?
③有2011个3连乘:3×3×…×3,它们的积的个位数字是几?
④有6位同学进行报数游戏,他们围城一圈,小强报“1”,小兰报“2”,小明报“3”,小红报“4”,小胖报“5”,小华报“6”,每位报的数总比前一位多1,那么72是谁报的?190呢?
⑤自然数按下列方式排列:
A B C D E
1 2 3 4 5
9 8 7 6
10 11 12 13
17 16 15 14
18 ……
则数2011在哪个字母下面?
⑥某个数里有三个星期日的日期为偶数,请你推算出这个月的15日是星期几?
⑦有一串数,第一个数是6,第二个数是3,从第二个数起,每隔数都比它前面那个数与后面哪个数的和少5,那么这串数中从第一个数起到398个数为止的398个数的和是多少?
⑧正方形ABCO和正方形ODEF的边长都是2厘米,一条小虫从O点出发,先爬到F点,然后沿箭头所指方向(经过O点),不拐弯连续爬行1054厘米厚停下。

它停在图中的哪一点?
挑战IQ
“六一”儿童节前夕,四(2)班49名同学做纸花,分到没人手中的纸从13到各
不相同,规定用3张或5张纸做一朵花,并要求每人把分到的纸全部用完,尽量
多做5张纸一朵的红花。

用3张纸的红花一共有多少朵?。

相关文档
最新文档