一笔画问题PPT课件
合集下载
第九讲 一笔画问题 PPT

• 解答:图(1)中无奇点,能一笔画出,从任意点开始再回到这一点, 仅举一例:A→B→C→N→F→G→H→M→D→N→E→M→H;
• 图(2)有两个奇点,可以从B开始到E结束,也可以从E开始到B结束, 如:B→C→D→E→A→B→E;
• 图(3)不能一笔画出有4个奇点,要想一笔画出至少应该添一笔,可 以连接A、B,如图1,其它的任何两个奇点都可以。共有多少连法呢, 你能列举出来吗?共有6种分别为AB、AC、AD、BC、BD、CD;
重复.从上图中容易看出:能一笔画出的图首先必须是连
通图.但是否所有的连通图都可以一笔画出呢?下面,我
们就来探求解决这个问题的方法。
•
为了叙述的方便,我们把与奇数条边相连的结点叫做
奇点,把与偶数条边相连的点称为偶点.如上图(a)中的
八个结点全是奇点,上图(b)中E、F为奇点,G为偶点。
•
容易知道,上图(b)可以一笔画出,即从奇点E出发,
得出了一个非常重要的结论,你想知道吗?其实
这就是“一笔画”问题,也是一种数学游戏,学
完了下面的内容,也许你就能像欧拉那样解决
“七桥问题”了。
• 欧拉解决这个问题的方法非常巧妙.他认为: 人们关心的只是一次不重复地走遍这七座桥,而 并不关心桥的长短和岛的大小,因此,岛和岸都 可以看作一个点,而桥则可以看成是连接这些点 的一条线.这样,一个实际问题就转化为一个几何 图形能否一笔画出的问题了.
都有一条通路(即可以从其中一点出发,沿着图 的边走到另一点,如A到I的通路为A→H→I或 A→D→I…),这样的图,我们称为连通图;而 下图中(c)的一些结点之间却不存在通路(如M 与N),像这样的图就不是连通图。
•
所谓图的一笔画,指的就是:从图的一点出发,笔不
一年级思维训练一笔画ppt课件

这样我们发现,一个图形能否一笔画和这个图形 奇点,偶点的个数有某种联系,到底存在什么样 的关系呢,我们再看一个例题。
例【2】 下面各图能否一笔画成?
(1)
(2) (3)
分析 图(1)从任意一点出都可以一笔画成,它的每一个 点都是与两条线相连的偶点。 图(2),经过反复试验,也可找到画法。图中B、D为偶 点,A、C为奇点,即图中有两个奇点,两个偶点。要想一 笔画,需从奇点出发,回到奇点。 经过尝试,图(3)无法一笔画成,而图中有4个奇点,5 个偶点。
不能
能
仔细观察一下这些图形有什么特点?
通过观察,我们可以发现一个几何图形中和一点相连通的线 的条数不同。由一点发出有偶数条线,那么这个点叫做偶点。 相应的,由一点出发有奇数条数,则这个点叫做奇点。
(1)
(2)
(3)
(4)
再看图(1)、(4),其中每一点都是偶点,都可以 一笔画,且可以从任意一点画起。而图(2)有4个奇 点,2个偶点,不能一笔画成。
完成综合练习
• 小朋友们,在纸上描一下,你们能把下面 的图形一笔画出来吗?
• 如果用笔在纸上连续不断又不重复,一笔 画成某种图形,这种图形就叫一笔画。那 么是不是所有的图形都能一笔画成呢?这 一讲我们就一起来学习一笔画的规律。
例【1】 下面这些图形,哪个能一笔画?哪个不能一
笔画?
(1)
(2)
(3)
(4)
能
不能
小结
能否一笔画成,关键在于判别奇点、偶点的个数。
1、只有偶点,可以一笔画,并且可以以任意一 点作为起点。
2、只有两个奇点,可以一笔画,但必须以这两 个奇点分别作为起点和终点。
3、奇点超过两个,则不能一笔画。对于一些比 较复杂的路线问题,可以先转化为简单的几 何图形,然后根据判定是否能一笔画的方法 进行解答。
例【2】 下面各图能否一笔画成?
(1)
(2) (3)
分析 图(1)从任意一点出都可以一笔画成,它的每一个 点都是与两条线相连的偶点。 图(2),经过反复试验,也可找到画法。图中B、D为偶 点,A、C为奇点,即图中有两个奇点,两个偶点。要想一 笔画,需从奇点出发,回到奇点。 经过尝试,图(3)无法一笔画成,而图中有4个奇点,5 个偶点。
不能
能
仔细观察一下这些图形有什么特点?
通过观察,我们可以发现一个几何图形中和一点相连通的线 的条数不同。由一点发出有偶数条线,那么这个点叫做偶点。 相应的,由一点出发有奇数条数,则这个点叫做奇点。
(1)
(2)
(3)
(4)
再看图(1)、(4),其中每一点都是偶点,都可以 一笔画,且可以从任意一点画起。而图(2)有4个奇 点,2个偶点,不能一笔画成。
完成综合练习
• 小朋友们,在纸上描一下,你们能把下面 的图形一笔画出来吗?
• 如果用笔在纸上连续不断又不重复,一笔 画成某种图形,这种图形就叫一笔画。那 么是不是所有的图形都能一笔画成呢?这 一讲我们就一起来学习一笔画的规律。
例【1】 下面这些图形,哪个能一笔画?哪个不能一
笔画?
(1)
(2)
(3)
(4)
能
不能
小结
能否一笔画成,关键在于判别奇点、偶点的个数。
1、只有偶点,可以一笔画,并且可以以任意一 点作为起点。
2、只有两个奇点,可以一笔画,但必须以这两 个奇点分别作为起点和终点。
3、奇点超过两个,则不能一笔画。对于一些比 较复杂的路线问题,可以先转化为简单的几 何图形,然后根据判定是否能一笔画的方法 进行解答。
哥尼斯堡七桥问题与一笔画课件

02
在18世纪,人们开始对图论进行 研究,探索图的结构和性质,其 中哥尼斯堡七桥问题成为了图论 研究的重要问题之一。
哥尼斯堡七桥问题的起源
哥尼斯堡七桥问题起源于18世纪初,当时有一位名叫欧拉的 人,他是一位数学家和工程师,对图论进行了深入研究。
欧拉在研究哥尼斯堡的桥梁和河流时,提出了一个问题:是 否存在一条路径,能够遍历哥尼斯堡的所有桥梁,每座桥只 过一次?这就是著名的哥尼斯堡七桥问题。
哥尼斯堡七桥问题对一笔画问题的影响
哥尼斯堡七桥问题的解决推动了数学领域的发展,它证明了不存在一条遍历七座 桥的路径,每座桥只过一次,最后回到开始的地方。
这个问题的解决对于一笔画问题的研究具有重要意义,它揭示了一笔画问题的复 杂性和多样性,也促使数学家们深入研究一笔画问题的性质和规律。
一笔画问题在哥尼斯堡七桥问题中的应用
哥尼斯堡七桥问题是一笔画问题的经典案例,它探讨的是从哥尼斯堡的一个地方开 始,能否遍历城市的七座桥,每座桥只过一次,最后回到开始的地方。
一笔画问题则是一个更广泛的几何问题,研究的是在一个连通图上,是否存在一条 路径能够遍历所有的边,每条边只过一次。
哥尼斯堡七桥问题实际上是几何图形的一笔画问题,它为后续一笔画问题的研究提 供了基础。
哥尼斯堡七桥问题的历史意义
哥尼斯堡七桥问题的解决标志着图论 的诞生,成为图论发展史上的一个里 程碑。
该问题的解决为后续的图论研究提供 了基础和指导,推动了数学和图论的 发展。
02 一笔画问题概述
一笔画问题的定义
一笔画问题,也称为欧拉路径问题,是图论中的一个经典 问题。它主要探讨的是在一个给定的图形中,是否存在一 条路径,使得这条路径能够遍历图形的每一条边且只遍历 一次。
地图导航
在18世纪,人们开始对图论进行 研究,探索图的结构和性质,其 中哥尼斯堡七桥问题成为了图论 研究的重要问题之一。
哥尼斯堡七桥问题的起源
哥尼斯堡七桥问题起源于18世纪初,当时有一位名叫欧拉的 人,他是一位数学家和工程师,对图论进行了深入研究。
欧拉在研究哥尼斯堡的桥梁和河流时,提出了一个问题:是 否存在一条路径,能够遍历哥尼斯堡的所有桥梁,每座桥只 过一次?这就是著名的哥尼斯堡七桥问题。
哥尼斯堡七桥问题对一笔画问题的影响
哥尼斯堡七桥问题的解决推动了数学领域的发展,它证明了不存在一条遍历七座 桥的路径,每座桥只过一次,最后回到开始的地方。
这个问题的解决对于一笔画问题的研究具有重要意义,它揭示了一笔画问题的复 杂性和多样性,也促使数学家们深入研究一笔画问题的性质和规律。
一笔画问题在哥尼斯堡七桥问题中的应用
哥尼斯堡七桥问题是一笔画问题的经典案例,它探讨的是从哥尼斯堡的一个地方开 始,能否遍历城市的七座桥,每座桥只过一次,最后回到开始的地方。
一笔画问题则是一个更广泛的几何问题,研究的是在一个连通图上,是否存在一条 路径能够遍历所有的边,每条边只过一次。
哥尼斯堡七桥问题实际上是几何图形的一笔画问题,它为后续一笔画问题的研究提 供了基础。
哥尼斯堡七桥问题的历史意义
哥尼斯堡七桥问题的解决标志着图论 的诞生,成为图论发展史上的一个里 程碑。
该问题的解决为后续的图论研究提供 了基础和指导,推动了数学和图论的 发展。
02 一笔画问题概述
一笔画问题的定义
一笔画问题,也称为欧拉路径问题,是图论中的一个经典 问题。它主要探讨的是在一个给定的图形中,是否存在一 条路径,使得这条路径能够遍历图形的每一条边且只遍历 一次。
地图导航
小学数学一笔画课件

THANKS FOR WATCHING
感谢您的观看
03
一笔画问题的解题方法
逐步推理法
总结词
通过逐步推理,按照一定的逻辑顺序,确定笔画的路径。
详细描述
逐步推理法是一种常用的解题方法,它通过逐步分析图形的特点和规律,推断出 笔画的路径。这种方法需要有一定的逻辑推理能力,对于一些较为复杂的图形, 需要仔细分析其结构,找出正确的笔画路径。
奇偶点分析法
拉回路是指一条通过图形的每条边且每条边只通过一次的闭合路径。
02
奇点与偶点
在图形中,如果一个节点发出的线条数是奇数,则该节点称为奇点;如
果一个节点发出的线条数是偶数,则该节点称为偶点。
03
哈密顿路径和哈密顿回路
哈密顿路径是指一条通过图形的每条边且每条边只通过一次的路径,但
不一定是闭合路径;哈密顿回路是指一条通过图形的每条边且每条边只
计算机科学
一笔画问题在计算机科学 中也有广泛应用,例如在 计算机图形学、算法设计 等领域。
实际应用
一笔画问题在现实生活中 也有很多应用,如地图的 绘制、电路设计、交通规 划等。
02
一笔画问题的数学原理
欧拉公式
欧拉公式
对于一个连通图,其边数和顶点数的关系可以用公式(V - E + F = 2)来表示,其中(V)表示顶点数,(E)表示边数,(F)表示面 数。这个公式是解决一笔画问题的重要依据。
问题的能力。
创新的一笔画问题
总结词
创意问题,挑战性
VS
详细描述
创新的一笔画问题通常涉及更为复杂和创 意的图形,如不规则多边形、立体图形等 ,这类问题旨在激发学生的创造力和挑战 精神。同时,这类问题也可能涉及到数学 中的其他知识点,如平面几何、立体几何 等。
小学奥数《一笔画成》PPT课件

画,就是从图形的 某点出发,笔不离开纸, 每条线只画一次,不重 复。
观察图中的点,看它 们分别与几条线相连
1 与一条线相连的点:
2 与两条线相连的点: 3 与三条线相连的点: 4 与四条线相连的点:
单数点:与单数条线相连的 点。 双数点:与双数条线相连的 点。
下列图形中有几个单数点?图形能不能 一笔画成?
有2个或0个单数点的图 形能一笔画成,单数点 在一笔画中只能作为起 点或终点。
怎么画?
1 下图能一笔画成吗?
如果不能,用什么方法使它一笔画成?
下图是某小区主干道平面图,甲乙两人 同时分别从A、B两点出发,以相同的速 度走遍所有的主干道,最后到达C点。 谁能先到?
观察图中的点,看它 们分别与几条线相连
1 与一条线相连的点:
2 与两条线相连的点: 3 与三条线相连的点: 4 与四条线相连的点:
单数点:与单数条线相连的 点。 双数点:与双数条线相连的 点。
下列图形中有几个单数点?图形能不能 一笔画成?
有2个或0个单数点的图 形能一笔画成,单数点 在一笔画中只能作为起 点或终点。
怎么画?
1 下图能一笔画成吗?
如果不能,用什么方法使它一笔画成?
下图是某小区主干道平面图,甲乙两人 同时分别从A、B两点出发,以相同的速 度走遍所有的主干道,最后到达C点。 谁能先到?
最新《一笔画》课件教学讲义ppt课件

问题:
1.本病案应诊断为何病?应用何方? 2.发病机理是什么? 3.如何区分虚实证? 4.治疗原则是什么?
第二章 其他病症 第七节 缺乳
学习目的
掌握缺乳的概念、辨证要点。 熟悉缺乳各证型的临床表现及各证型的病理
机制 了解缺乳各证型的治法与方药加减。
返回本节首页
返回目录
第二章 其他病症 第七节 缺乳
甲乙两个邮递员去送信,两人以同样的速 度走遍所有的街道,甲从A点出发,乙从 B点出发,最后都回到邮局(C)。如果 要选择最短的线路,谁先回到邮局?
邮局
乙
甲
主页
病案
张某,女,25岁,产后15天,乳汁量少3 天,质稠,乳房胀硬,疼痛,胸胁胀闷, 情志抑郁,叹息则气郁稍缓而胸闷稍舒, 食欲不振,舌质正常,苔薄黄,脉弦。
滞
产后为情志所伤
乳汁排泄
返回本节首页
返回目录
第二章 其他病症 第七节 缺乳
辨证论治
证型
临床表现
产后乳少或全无,乳 汁清稀,乳房柔软, 气血虚弱 无胀感,神倦食少, 舌淡,苔少,脉细 弱。
产后乳少或全无,乳 房胀硬疼痛,乳汁浓 肝郁气滞 稠,胸胁胀痛,纳 差,舌红,苔薄黄, 脉弦数。
治 法 方剂 补气养血 通乳 通乳。 丹
连通 的图形 有可能 能一笔画
奇点个数超过两个的连通图形不 能一笔画
全都是偶点的连通 图可以一笔画
画时以任一点为起 点,最后仍回到该点
有两个奇点的连通 图可以一笔画
画时以 一个奇点为起 点,另一个奇
点为终点
你能笔尖不离纸,一笔画出图中 的每个图形吗?
下图是一个公园的平面图,要使游人 走遍每一条路不重复,出口和入口应 设在哪儿?
《一笔画》课件
关于一笔画问题的经典探讨PPT培训课件

段。
一笔画定理及其证明
一笔画定理
一个连通图形可以一笔画成当且仅当该图形中奇数个顶点的度数之和为2。
证明过程
首先,根据连通性规则,图形必须是连通的。然后,根据奇偶性规则,如果图 形中奇数个顶点的度数之和为2,则该图形可以一笔画成;如果图形中奇数个顶 点的度数之和不为2,则该图形不能一笔画成。
一笔画定理的应用实例
应用
一笔画问题在计算机科学、电子工 程、运筹学等领域都有广泛的应用。
一笔画问题的重要性和应用领域
理论价值
一笔画问题在数学理论中具有重 要的价值,是图论、组合数学等 领域的重要研究课题之一。
应用价值
一笔画问题在计算机图形学、电 路设计、物流规划等领域都有广 泛的应用,可以帮助人们解决一 系列实际问题。
06
一笔画问题的实际应用案例
地图着色问题
算法设计
解决地图着色问题需要设计一种有效的算法,能够判断给定的地图是否可以一笔画成,并找出最少所需的颜色数 量。常用的算法包括贪心算法、回溯算法等。
实例分析
地图着色问题可以通过实例来分析,例如给定一个包含多个国家的地图,如何使用最少的颜色对各个国家进行着 色,使得相邻的国家颜色不同。
判断一笔画图形
通过计算图形中奇数个顶点的度数之 和,可以判断该图形是否可以一笔画 成。
设计一笔画图案
解决实际问题
一笔画定理在计算机科学、电子工程、 机械工程等领域都有广泛的应用,例 如在电路设计和布线、机器人路径规 划等方面。
利用一笔画定理,可以设计出具有特 定形状和结构的一笔画图案。
03
一笔画问题的经典问题解析
THANKS
感谢观看
一个顶点的度数为奇数,意味着该顶点是起点或 终点。
一笔画定理及其证明
一笔画定理
一个连通图形可以一笔画成当且仅当该图形中奇数个顶点的度数之和为2。
证明过程
首先,根据连通性规则,图形必须是连通的。然后,根据奇偶性规则,如果图 形中奇数个顶点的度数之和为2,则该图形可以一笔画成;如果图形中奇数个顶 点的度数之和不为2,则该图形不能一笔画成。
一笔画定理的应用实例
应用
一笔画问题在计算机科学、电子工 程、运筹学等领域都有广泛的应用。
一笔画问题的重要性和应用领域
理论价值
一笔画问题在数学理论中具有重 要的价值,是图论、组合数学等 领域的重要研究课题之一。
应用价值
一笔画问题在计算机图形学、电 路设计、物流规划等领域都有广 泛的应用,可以帮助人们解决一 系列实际问题。
06
一笔画问题的实际应用案例
地图着色问题
算法设计
解决地图着色问题需要设计一种有效的算法,能够判断给定的地图是否可以一笔画成,并找出最少所需的颜色数 量。常用的算法包括贪心算法、回溯算法等。
实例分析
地图着色问题可以通过实例来分析,例如给定一个包含多个国家的地图,如何使用最少的颜色对各个国家进行着 色,使得相邻的国家颜色不同。
判断一笔画图形
通过计算图形中奇数个顶点的度数之 和,可以判断该图形是否可以一笔画 成。
设计一笔画图案
解决实际问题
一笔画定理在计算机科学、电子工程、 机械工程等领域都有广泛的应用,例 如在电路设计和布线、机器人路径规 划等方面。
利用一笔画定理,可以设计出具有特 定形状和结构的一笔画图案。
03
一笔画问题的经典问题解析
THANKS
感谢观看
一个顶点的度数为奇数,意味着该顶点是起点或 终点。
哥尼斯堡七桥问题与一笔画通用课件

问题的意义
01
哥尼斯堡七桥问题推动了图论的 发展,成为图论和几何图形研究 的重要基础。
02
问题揭示了图论中节点和边的概 念,以及它们之间的关系和限制 条件,为后续的图论研究提供了 重要的启示。
02
一笔画问题概述
一笔画的基本概念
一笔画
一笔画是指从一个给定的点开始 ,沿着某些路径(通常是线段) 前进,最后回到起始点,路径在 任何地方都不交叉或重复。
际应用价值。
THANKS。
05
哥尼斯堡七桥问题的解决方案
欧拉解决哥尼斯堡七桥问题的方法
欧拉通过数学分析,证明了哥尼斯堡七桥问题没有一笔画的 可能性,即不存在一条路径能够遍历七座桥而不重复经过任 何一座桥。
欧拉的方法基于图论的基本原理,通过分析图中的奇点(起 点和终点)和偶点(中间的交点),证明了七桥问题没有一 笔画的可能性。
地图染色
地图染色问题是一笔画问题的一个变种,它要求将地图上 的国家或地区按照一定的规则进行染色,使得相邻的国家 或地区颜色不同。
物流配送
在物流配送中,一笔画问题可以用于解决最优配送路线问 题,即如何规划一条或多条路线,使得所有客户都被访问 且只被访问一次,同时总距离最短。
一笔画问题的未来发展
算法优化
现代技术的应用
随着计算机技术的发展,现代数学软件和算法可以模拟和验证图论中的问题,为 解决复杂问题提供了更高效的方法。
现代技术可以用于分析和处理大规模的图数据,例如社交网络、交通网络等,这 些网络结构与哥尼斯堡七桥问题类似,可以通过计算机模拟和算法找到最优解或 近似解。
对其他类似问题的启示
哥尼斯堡七桥问题的解决为图论和其他相关领域的研究提 供了基础和启示,推动了数学和科学的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
下列哪些图形能一笔画出来,哪些不能?
10
练习
1、 一辆洒水车要给某城市的街道洒水,街 道地图如下:你能否设计一条洒水车洒水的 路线,使洒水车不重复地走过所有的街道, 再回到出发点?
小广场
超市
文具店
电器城
菜市场
服装城
11
观察下列图形,试着画一画。
图1
图2
图3
图4
图5
图6
12
根据今天学习知识,先判断下列图形能不能 一笔画成?再想一想该从哪里开始画?最后 再动手画画看。
一笔画问题பைடு நூலகம்
“一笔画”是指笔不离开纸,而且 每条线都只画一次不准重复而画成 的图形。
2
你能用一笔画出下列图形吗?
3
两条相交的线处都有一个交点。
4
数一数下列图形各有几个交点?
( 4 )个
( 2 )个
( 9 )个
( 5 )个
5
交点分为两种
(1)从这点出发的线的数目 是双数的,叫双数点(偶点)。 (2)从这点出发的线的数目 是单数的,叫单数点(奇点)。
13
判断下列图形能否一笔画。
14
结束,谢谢
15
6
①从这点出发的线的数目是单数的,叫单数点(奇点)。 如:
●
●
●
②从这点出发的线的数目是双数的,叫双数点(偶点)。 如:
●
●
●
7
我们刚才画的图形都有几个交点? 几个双数点?几个单数点?
8
总结:
一个图形能否一笔画成,关键在于图 中单数点的多少。 (1)一笔画必须是连通的(图形的各部分之间连接在 一起) (2)凡是图形中没有单数点的一定可以一笔画成。 可选任一个点做起点,且一笔画后可以回到出发点。 (3)凡是图形中只有一个或者两个单数点,一定可 以一笔画成。画时必须从一个单数点为起点,以另一 单数点为终点。 (4)凡是图形中单数点的个数多于两个时,此图肯 定是不能一笔画成。
下列哪些图形能一笔画出来,哪些不能?
10
练习
1、 一辆洒水车要给某城市的街道洒水,街 道地图如下:你能否设计一条洒水车洒水的 路线,使洒水车不重复地走过所有的街道, 再回到出发点?
小广场
超市
文具店
电器城
菜市场
服装城
11
观察下列图形,试着画一画。
图1
图2
图3
图4
图5
图6
12
根据今天学习知识,先判断下列图形能不能 一笔画成?再想一想该从哪里开始画?最后 再动手画画看。
一笔画问题பைடு நூலகம்
“一笔画”是指笔不离开纸,而且 每条线都只画一次不准重复而画成 的图形。
2
你能用一笔画出下列图形吗?
3
两条相交的线处都有一个交点。
4
数一数下列图形各有几个交点?
( 4 )个
( 2 )个
( 9 )个
( 5 )个
5
交点分为两种
(1)从这点出发的线的数目 是双数的,叫双数点(偶点)。 (2)从这点出发的线的数目 是单数的,叫单数点(奇点)。
13
判断下列图形能否一笔画。
14
结束,谢谢
15
6
①从这点出发的线的数目是单数的,叫单数点(奇点)。 如:
●
●
●
②从这点出发的线的数目是双数的,叫双数点(偶点)。 如:
●
●
●
7
我们刚才画的图形都有几个交点? 几个双数点?几个单数点?
8
总结:
一个图形能否一笔画成,关键在于图 中单数点的多少。 (1)一笔画必须是连通的(图形的各部分之间连接在 一起) (2)凡是图形中没有单数点的一定可以一笔画成。 可选任一个点做起点,且一笔画后可以回到出发点。 (3)凡是图形中只有一个或者两个单数点,一定可 以一笔画成。画时必须从一个单数点为起点,以另一 单数点为终点。 (4)凡是图形中单数点的个数多于两个时,此图肯 定是不能一笔画成。