七年级数学 暑假提高练习 平面直角坐标系(无答案)

合集下载

(必考题)初中七年级数学下册第七单元《平面直角坐标系》经典题(提高培优)(1)

(必考题)初中七年级数学下册第七单元《平面直角坐标系》经典题(提高培优)(1)

一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,1 2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 3.太原植物园是山西省唯一集科学研究、科普教育、园艺观赏和文化旅游于一体的综合性植物园.其标志性建筑为热带植物馆、沙生植物馆、主题花卉馆三个展览温室,远远望去犹如镶嵌在湖边的3颗大小不一的“露珠”(图1).若利用网格(图2)建立适当的平面直角坐标系,表示东门的点的坐标为()3,2A ,表示热带植物馆入口的点的坐标为()3,3B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()8,3--D .()5,1-- 4.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 5.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 6.点A(-π,4)在第( )象限A .第一象限B .第二象限C .第三象限D .第四象限 7.在平面直角坐标系中,点P (−1,−2+3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,9.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( ) A .(-3,1) B .(0,-2) C .(3,1) D .(0,4)10.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 3030,3)D .(3030,﹣3) 11.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 12.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .88613.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求.A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭14.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处15.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题16.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.17.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.18.写一个第三象限的点坐标,这个点坐标是_______________.19.在平面直角坐标系中,将点A (5,﹣8)向左平移得到点B (x +3,x ﹣2),则点B 的坐标为_____.20.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 21.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .22.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.23.如图,已知A 1(1,2),A 2(2,2),A 3(3,0),A 4(4,﹣2),A 5(5,﹣2),A 6(6,0)…,按这样的规律,则点A 2020的坐标为______.24.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.25.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.26.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题27.在平面直角坐标系中,(,0)A a ,(0,)B b ,且a ,b 2|6|0a b ++-=.(1)求A 、B 两点的坐标;(2)若P 从点B 出发沿着射线BO 方向运动(点P 不与原点重合),速度为每秒2个单位长度,连接AP ,设点P 的运动时间为t ,AOP 的面积为S .请你用含t 的式子表示S . (3)在(2)的条件下,点Q 与点P 同时运动,点Q 从A 点沿x 轴正方向运动,Q 点速度为每秒1个单位长度.A 、B 、P 、Q 四个点围成四边形的面积为S '.当4S =时,求:S S '的值.28.暑假期间,张明和爸爸妈妈到福建屏南旅游,以下是张明和妈妈对本次旅游的景点分布图作出的描述:张明:“瑞光塔的坐标是()1,3-,白水洋的坐标是()1,3”;妈妈:“瑞光塔在水松林的西北方向上”.根据以上信息回答下列问题:(1)根据张明的描述在下图中建立合适的平面直角坐标系;(2)请判断妈妈的说法对吗?并说明理由;(3)直接写出在(1)的平面直角坐标系中,白水洋、鸳鸯溪、水松林的坐标. 29.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC 的顶点在格点上,且A(2,−4),B(5,−4),C(4,−1)(1)画出ABC ;(2)求出ABC 的面积;(3)若把ABC 向上平移2个单位长度,再向左平移4个单位长度得到A B C ''',在图中画出A B C ''',并写出B '的坐标30.若点(1m -,32m -)在第二象限内,求m 的取值范围。

初一数学平面直角坐标系30道必做题(含答案和解析及考点)

初一数学平面直角坐标系30道必做题(含答案和解析及考点)

初一数学平面直角坐标系30道必做题(含答案和解析及考点)1、如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示成.答案:(2,1).解析:略.考点:函数——平面直角坐标系——点的位置与坐标.2、如图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校().A.(0,4)(0,0)(4,0)B.(0,4)(4,4)(4,0)C.(0,4)(1,4)(1,1)(4,1)(4,0)D.(0,4)(3,4)(4,2)(4,0)答案:D.解析:(3,4)(4,2)所走路线为斜线,不符合题意,不能正常到达学校.考点:函数——平面直角坐标系.3、如图,围棋盘放置在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么,黑棋的坐标应该分别是.答案:(-6,-6),(-4,-7).解析:黑棋①的坐标是(-6,-6),黑棋③的坐标是(-4,-7).考点:函数——平面直角坐标系——点的位置与坐标.4、如果点A(x,y)在第三象限,则点B(-x,y-1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案: D.解析:∵点A(x,y)在第三象限,∴{x<0y<0.∴-x>0,y-1<0.∴点B(-x,y-1)在第四象限.考点:函数——平面直角坐标系——点的位置与坐标.5、如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点()落在第象限.答案:四.解析:由图象可知,b<5,a<7.∴6-b>0,a-10<0.∴点(6-b,a-10)落在第四象限.考点:函数——平面直角坐标系——点的位置与坐标.6、已知A(-2,0),B(a,0)且AB=5,则B点坐标为.答案:(3,0)或(-7,0).解析:由题知︱a+2︱=5,∴a=3或-7.∴B点坐标为(3,0)或(-7,0).考点:函数——平面直角坐标系——坐标与距离.7、若点A(-2,n)在x轴上,则点B(n-1,n+1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.8、点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为().A.(1,-2)B.(2,0)C.(4,0)D.(0,-4)答案:B.解析:∵点P(m+3,m+1)在直角坐标系的轴上.∴m+1=0.∴m=-1.∴点P的坐标为(2,0).考点:函数——平面直角坐标系——点的位置与坐标.9、已知点M(3a-8,a-1).(1)若点M在第二象限,并且a为整数,则点M的坐标为.(2)若点N的坐标为(3,-6),并且直线MN∥x轴,则点M的坐标为.答案:(1)(-2,1).(2)(-23,-6).解析:(1)若点M在第二象限,3a<0,a-1>0.∴1<a<8,又a为整数.3∴a=2.∴M(-2,1).(2)若点N的坐标为(3,-6),并且直线MN∥x轴.∴a-1=-6,即a=7.∴点M(-23,-6).考点:函数——平面直角坐标系——点的位置与坐标.10、若点P(-1,a),Q(b,2),且PQ∥x轴,则a ,b .答案:a=2.b≠-1.解析:∵PQ∥x轴.∴PQ两点的纵坐标相同.∴a=2.又∵P、Q应为不重合的两点.∴b≠-1.考点:函数——平面直角坐标系——点的位置与坐标.11、点P(a,b)是平面直角坐标系内的点,请根据点的坐标判断点P的特征:(1)若a=b,则P点在.(2)若a+b=0,则P点在.答案:(1)一三象限坐标轴夹角平分线上.(2)二四象限坐标轴夹角平分线上.解析:(1)略.(2)略.考点:函数——平面直角坐标系——点的位置与坐标.12、若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是().A.(2,2)B.(-2,-2)C.(2,2)或(-2,-2)D.(2,-2)或(-2,2)答案:C.解析:略.考点:函数——平面直角坐标系——坐标与距离.13、已知点(3-2k2,4k-3)在第一象限的角平分线上,则k= .答案:1.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.14、若点M(5-a,2a-6)在第四象限,且点M到x轴与y轴的距离相等,试求(a-2)2014-a-2015的值.答案:0.解析:由题意得,5-a+2a-6=0.解得a=1.所以,(a-2)2014-a-2015=(1-2)2014-1-2015=1-1=0.考点:函数——平面直角坐标系——坐标与距离.15、若点P位于y轴左方,距y轴3个单位长,位于x轴上方,距x轴四个单位长,则点P的坐标是.答案:(-3,4).解析:略.考点:函数——平面直角坐标系——特殊点的坐标.16、在平面直角坐标系中,点P(-3,6)关于y轴的对称点的坐标为.答案:(3,6).解析:根据关于谁对称,谁不变,可知,点P(-3,6)关于y轴的对称点的坐标为(3,6). 考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.17、在平面直角坐标系中,点P(-1,2)关于y轴的对称点为.答案:(1,2).解析:由关于谁对称谁不变,可知点P(-1,2)关于y轴的对称点为(1,2).考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.18、在平面直角坐标系中,点P(-1,2)关于x轴的对称点在第象限.答案:三.解析:点P(-1,2)满足点在第二象限的条件.关于x轴的对称点的横坐标与P点的横坐标相同,是-2.纵坐标互为相反数,是-3.则P关于x 轴的对称点是(-2,-3),在第三象限.考点:几何变换——图形的对称——关于x轴、y轴对称的点的坐标.19、平面直角坐标系中,将线段OA向左平移2个单位,平移后,点O 、A的对应点分别为点O1 、A1,则点O1 、A1的坐标分别是().A.(0,0),(1,4)B.(0,0),(3,4)C.(-2,0),(1,4)D.(-2,0),(-1,4)答案:D.解析:∵线段OA向左平移2个单位,点O(0,0),A(1,4).∴点O1,A1的坐标分别是(-2,0),(-1,4).考点:几何变换——图形的平移——坐标与图形变化:平移.20、已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,()是平移得到的.A.(0,3),(0,1),(-1,-1)B.(-3,2),(3,2),(-4,0)C.(1,-2),(3,2),(-1,-3)D.(-1,3),(3,5),(-2,1)答案:D.解析:由(-2,1)→(-1,3),(2,3)→(3,5),(-3,-1)→(-2,1)可以看作点向右平移1个单位长度,向上平移2个单位长度,而图形的平移是相同的,所以D对,A、B、C错.考点:函数——平面直角坐标系——点的位置与坐标.几何变换——图形的平移——点的平移.21、线段CD是由线段AB平移得到的,点A(-1,4)的对应点为,则点B(-4,-1)的对应点D坐标为().A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)答案:C.解析:略.考点:函数——平面直角坐标系——点的位置与坐标.22、已知点A(0,0),B(3,0),点C在y轴上,且△ABC的面积为6,则点C的坐标是.答案:(0,4)或(0,-4).解析:由题意可知1AC·AB=6.2∴AC=4.∴点C的坐标是(0,4)或(0,-4).考点:函数——平面直角坐标系——坐标与面积.23、如图所示,半圆AB平移到半圆CD的位置时所扫过的面积为().A.3B.3+πC.6D.6+π答案:C.解析:扫过面积即为矩形ABDC的面积.∴扫过面积=2×3=6.考点:函数——平面直角坐标系——坐标与面积.24、在正方形网格上有一个△ABC ,网格上最小正方形的边长为1.(1) 把△ABC 平移,使点A 移动到点A’的位置,画出平移后的△A’B’C’,写出结论:__________.(2)△A’B’C’的面积为__________.(3)若点A 的坐标是(-5,2),点C’为坐标是(0,-2),在图中画出平面直角坐标系,点B’的坐标是__________.答案:(1) 结论:A’B’∥AB (答案不唯一).(2)△A’B’C’的面积是为5. (3)点B’的坐标是(-3,-3).解析:(1)平移后的△A’B’C’如图所示,结论:A’B’∥AB (答案不唯一).(2)观察图形可知,△A’B’C’内接在一个长为4,宽为3的长方形中.S △A’B’C’=4×3 −12×1×3−12×1×3−12×2×4=5. ∴△A’B’C’的面积是为5.(3)平面直角坐标系如图所示,点B’的坐标是(-3,-3).考点:三角形——三角形基础——三角形面积及等积变换.几何变换——图形的平移——平移的性质——坐标与图形变化:平移——作图:平移变换.25、定义:f (a,b )=(b,a ),g (m,n )=(-m,-n ).例如f (2,3)=(3,2),g (-1,-4)=(1,4).则g[f (-5,6)] 等于 . 答案:(-6,5).解析:根据所给定义,g[f (-5,6)]=g (6,-5)=(-6,5). 考点:式——探究规律——定义新运算.函数——平面直角坐标系.26、在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换①f (m ,n )=(m ,-n ),如f (2,1)=(2,-1);②g (m ,n )=(-m ,-n ),如g (2,1)=(-2,-1).按照以上变换有:f[g (3,4)]=f (-3,-4)=(-3,4),那么g[f (-3,2)] 等于( ). A.(3,2) B.(3,-2) C.(-3,2) D.(-3,-2) 答案:A.解析:∵f (-3,2)=(-3,-2).∴g[f (-3,2)]=g (-3,-2)=(3,2). 考点:式——探究规律——定义新运算.27、观察下列有规律的点的坐标:A 1(1,1),A 2(2,-4),A 3(3,4),A 4(4,-2),A 5(5,7),A 6(6,−43),A 7(7,10),A 8(8,-1)依此规律,A 11的坐标为 ,A 12的坐标为 . A.(12,16),(12,−23) B.(11,15),(11,−23)C.(11,16),(11,−23) D.(11,16),(12,−23)答案:D. 解析:略.考点:函数——平面直角坐标系——点的位置与坐标.28、如图,边长为1,2的长方形ABCD 以右下角的顶点为中心旋转90°,此时A 点的坐标为 ;依次旋转2011次,则顶点A 的坐标为 . A.(3,3),(3027,0) B.(3,3),(3017,0) C.(3,2),(3027,0) D.(3,2),(3017,0) 答案:D. 解析:略.考点:式——探究规律.方程与不等式.函数——平面直角坐标系.29、一个粒子在第一象限内及x 轴、y 轴上运动,在第1min 内它从原点运动到(1,0),而后接着按如图所示方式在与x 轴、y 轴平行的方向上来回运动,且每分钟移动1个单位长度,那么,在2011min 后,求这个粒子所处的位置坐标.A.(41,13)B.(41,14)C.(44,13)D.(44,14) 答案:C.解析:弄清粒子的运动规律,并求出靠近2011min 后粒子所在的特殊点的坐标,最后确定所求点的坐标.对于这种运算数较大的题目,我们首先来寻找规律,先观察横坐标与纵坐标相同的点:(0,0),粒子运动了0min. (1,1),粒子运动了1×2=2(min ),向左运动. (2,2),粒子运动了2×3=6(min ),向下运动.(3,3),粒子运动了3×4=12(min),向左运动.(4,4),粒子运动了4×5=20(min),向下运动.……于是点(44,44)处粒子运动了44×45=1980(min).这时粒子向下运动,从而在运动了2011后,粒子所在的位置是(44,44-31),即(44,13).考点:函数——平面直角坐标系.30、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.①填写下列各点的坐标:A1(,),A3(,),A12(,).②写出点A4n的坐标为(是正整数).③指出蚂蚁从点A100到A101的运动方向为.A. ①(1,1),(1,0),(5,0);②(2n,0);③ 从下到上.B. ①(1,1),(1,0),(6,0);②(2n,0);③ 从上到下.C. ①(0,1),(1,0),(5,0);②(2n,0);③ 从上到下.D. ①(0,1),(1,0),(6,0);②(2n,0);③ 从下到上.答案:D.解析:略.考点:函数——平面直角坐标系——点的位置与坐标——坐标与距离.。

精品解析2021-2022学年人教版初中数学七年级下册第七章平面直角坐标系综合训练练习题(精选)

精品解析2021-2022学年人教版初中数学七年级下册第七章平面直角坐标系综合训练练习题(精选)

初中数学七年级下册第七章平面直角坐标系综合训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,任意两点1(A x ,1)y ,2(B x ,2)y .规定运算:①12(A B x x =+⊕,12)y y +;②1212A B x x y y ⊗=+;③当12x x =,且12y y =时,A B =.有下列三个命题:(1)若(1,2)A ,(2,1)B -,则(3,1)A B ⊕=,0A B ⊗=;(2)若A B B C ⊕=⊕,则A C =;(3)对任意点A ,B ,C ,均有()()A B C A B C ⊕⊕=⊕⊕成立.其中正确命题的个数为( )A .0个B .1个C .2个D .3个2、如图所示,笑脸盖住的点的坐标可能为( )A .(5,2)B .(﹣2,3)C .(﹣4,﹣6)D .(3,﹣4)3、根据下列表述,能确定位置的是( )A .光明剧院8排B .毕节市麻园路C .北偏东40°D .东经116.16°,北纬36.39°4、在平面直角坐标系中,点A 的坐标为()21,,将点A 向左平移3个单位长度,再向上平移1个单位长度得到点'A ,则点'A 的坐标为( )A .()12-,B .()50,C .()10-,D .()52,5、如图,在平面直角坐标系中,已知“蝴蝶”上有两点(3,7)A ,(7,7)B ,将该“蝴蝶”经过平移后点A 的对应点为(1,3)A ',则点B 的对应点B '的坐标为( )A .(9,11)B .(9,3)C .(3,5)D .(5,3)6、将点()2,3P -向右平移3个单位,再向下平移2个单位后得到的点P '的坐标为( )A .(-5,1)B .(-4,6)C .(1,1)D .(1,5)7、如图,这是一所学校的平面示意图,在同一平面直角坐标系中,教学楼A 的坐标为()3,0-,实验楼B 的坐标为()2,0,则图书馆C 的坐标为( )A .()0,3B .()1,3--C .()3,0D .()2,0-8、已知A (3,﹣2),B (1,0),把线段AB 平移至线段CD ,其中点A 、B 分别对应点C 、D ,若C (5,x ),D (y ,0),则x +y 的值是( )A .﹣1B .0C .1D .29、如图,A 、B 两点的坐标分别为A (-2,-2)、B (4,-2),则点C 的坐标为( )A .(2,2)B .(0,0)C .(0,2)D .(4,5)10、已知A 、B 两点的坐标分别是()2,3-和()2,3,则下面四个结论:①点A 在第四象限;②点B 在第一象限;③线段AB 平行于y 轴:④点A 、B 之间的距离为4.其中正确的有( )A .①②B .①③C .②④D .③④二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,将点P (﹣1,2)向右平移3个单位得到点Q ,则点Q 的坐标为 ___.2、下图是小明、小刚、小红做课间操时的位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,那么小红的位置可表示为________.3、小华将平面直角坐标系中的点A 向上平移了3个单位长度,得到对应点A 1(10 ,1),则点A 的坐标为_______.4、如图,将一片银杏叶放置到平面直角坐标系中,若银杏叶上A ,B 两点的坐标分别为(﹣1,﹣1),(﹣1,2),则银杏叶杆处点C 的坐标为________.5、已知点P (2﹣2a ,4﹣a )到x 轴、y 轴的距离相等,则点P 的坐标_______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.2、如图,在平面直角坐标系中,已知O 是原点,四边形ABCD 是长方形,且四个顶点都在格点上.(1)分别写出A ,B ,C ,D 四个点的坐标;(2)画出将长方形ABCD 先向下平移4个单位,再向右平移2个单位得到的四边形1111D C B A ,并写出其四个顶点的坐标.3、在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A (2,- 4),B (4,-2).C 是第四象限内的一个格点,由点C 与线段AB 组成一个以AB 为底,且腰长为无理数的等腰三角形.(1)填空:C 点的坐标是 ,△ABC 的面积是(2)将△ABC 绕点C 旋转180°得到△A 1B 1C 1,连接AB 1、BA 1, 则四边形AB 1A 1B 的形状是何特殊四边形?___________________.(3)请探究:在坐标轴上是否存在这样的点P ,使四边形ABOP 的面积等于△ABC 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.4、如图是由边长为2的六个等边三角形组成的正六边形,建立适当的直角坐标系,写出各顶点的坐标.5、(1)写出图中八边形各顶点的坐标;(2)找出图中几个具有特殊位置关系的点,说说它们的坐标之间的关系.---------参考答案-----------一、单选题1、D【分析】根据新的运算定义分别判断每个命题后即可确定正确的选项.【详解】解:(1)A⊕B=(1+2,2-1)=(3,1),A⊗B=1×2+2×(-1)=0,∴①正确;(2)设C(x3,y3),A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),∵A⊕B=B⊕C,∴x1+x2=x2+x3,y1+y2=y2+y3,∴x1=x3,y1=y3,∴A=C,∴②正确.(3)∵(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),∴(A⊕B)⊕C=A⊕(B⊕C),∴③正确.正确的有3个,故选:D.【点睛】本题考查了命题与定理,解题时注意:判断一件事情的语句,叫做命题.有些命题的正确性是用推理证实的,这样的真命题叫做定理.2、D【分析】根据平面直角坐标系中,各象限内点坐标的特征得出笑脸的位置对应点的特征,进而得出答案.【详解】解:由图形可得:笑脸盖住的点在第四象限,∵第四象限的点横坐标为正数,纵坐标为负数,故笑脸盖住的点的坐标可能为(3,-4).故选D.【点睛】此题主要考查了点所在象限的坐标特征,得出笑脸的横纵坐标符号是解题关键.3、D【分析】根据位置的确定需要两个条件对各选项分析判断即可得解.【详解】解:A.光明剧院8排,没有明确具体位置,故此选项不合题意;B.毕节市麻园路,不能确定位置,故此选项不合题意;C.北偏东40︒,没有明确具体位置,故此选项不合题意;D.东经116.16︒,北纬36.39︒,能确具体位置,故此选项符合题意;故选:D.【点睛】本题考查了坐标确定位置,解题的关键是理解位置的确定需要两个条件.4、A【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:∵点A的坐标为(2,1),将点A向左平移3个单位长度,再向上平移1个单位长度得到点A′,∴点A′的横坐标是2-3=-1,纵坐标为1+1=2,即(-1,2).故选:A.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.5、D先根据(37)A ,与点(1,3)A '对应,求出平移规律,再利用平移特征求出点B′坐标即可 【详解】解:∵(37)A ,与点(1,3)A '对应, ∴平移1-3=-2,3-7=-4,先向下平移4个单位,再向左平移2个单位,∵点B (7,7),∴点B′(7-2,7-4)即(5,3)B '.如图所示故选:D .【点睛】本题考查图形与坐标,点的平移特征,掌握点的平移特征是解题关键.6、C【分析】根据平面直角坐标系中点的平移规律求解即可.解:将点()2,3P -向右平移3个单位,得到坐标为(1,3),再向下平移2个单位后得到的点P '的坐标为()1,1.故选:C .【点睛】此题考查了平面直角坐标系中点的平移,解题的关键是熟练掌握平面直角坐标系中点的平移规律.7、B【分析】直接利用已知点坐标得出原点位置,进而得出答案.【详解】解:如图所示:图书馆C 的坐标为(−1,−3).故选:B .【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.8、C【分析】由对应点坐标确定平移方向,再由平移得出x ,y 的值,即可计算x +y .【详解】∵A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),∴平移方法为向右平移2个单位,∴x=﹣2,y=3,∴x+y=1,故选:C.【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.9、B【分析】根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标.【详解】解:∵A点坐标为(-2,-2),B点坐标为(4,-2),∴可以建立如下图所示平面直角坐标系,∴点C的坐标为(0,0),故选B.【点睛】本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系.10、C【分析】根据点的坐标特征,结合A、B两点之间的距离进行分析即可.【详解】解:∵A、B两点的坐标分别是(-2,3)和(2,3),∴①点A在第二象限;②点B在第一象限;③线段AB平行于x轴;④点A、B之间的距离为4,故选:C.【点睛】本题主要考查了坐标与图形的性质,关键是掌握点的坐标特征.二、填空题1、(2,2)【解析】【分析】点P向右平移3个单位,横坐标加3,纵坐标不变,进而得出点Q的坐标.【详解】解:将点P(﹣1,2)向右平移3个单位得到点Q,点Q的坐标为(13,2)-+,即(2,2),故答案为:(2,2).【点睛】此题考查了坐标与图形的变化-平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.2、(-1,3)【解析】【分析】先根据小明和小刚的位置确定直角坐标系,然后确定小红的位置即可.【详解】解:根据小明和小刚的位置坐标可建立如图平面直角坐标系.由上图可知小红的位置坐标为(-1,3).故填(-1,3).【点睛】本题主要考查了运用类比法确定点的坐标以及平面直角坐标系的应用,根据已知条件建立平面直角坐标系成为解答本题的关键.3、()10,2--【解析】【分析】根据题意,将()110,1A -向下平移3个单位长度即可得到点A ;【详解】∵点A 向上平移了3个单位长度,得到对应点A 1(10-,1),∴将()110,1A -向下平移3个单位长度即可得到点A ,∴点A 的坐标是()10,2--;故答案是()10,2--.【点睛】本题主要考查了坐标与图形平移变化,准确分析计算是解题的关键.4、(1,1)-【解析】【分析】由题意根据A ,B 两点的坐标建立平面直角坐标系,进而即可得出C 的坐标.【详解】解:由题意上A ,B 两点的坐标分别为(﹣1,﹣1),(﹣1,2),可建立如图坐标系,由图可知点C 的坐标为(1,1)-.故答案为:(1,1)-.【点睛】本题考查平面直角坐标系,熟练掌握根据点的坐标建立平面直角坐标系是解题的关键.5、()22-,或()66, 【解析】【分析】利用点P 到x 轴、y 轴的距离相等,得出横纵坐标相等或互为相反数进而得出答案.【详解】解:∵点P (2﹣2a ,4﹣a )到x 轴、y 轴的距离相等,∴224a a =--或()224a a =---,解得:12a =,22a =-,故当2a =时,222a =﹣﹣,42a =﹣,则P (-2,2); 故当2a =-时,226a =﹣,46a =﹣,则P (6,6); 综上所述:P 的坐标为()22-,或()66,. 故答案为:()22-,或()66,. 【点睛】此题主要考查了点的坐标性质,用到的知识点为:点到两坐标轴的距离相等,那么点的横纵坐标相等或互为相反数.三、解答题1、(1)见解析;(2)5【解析】【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O 1、B 1、C 1的坐标,然后顺次连接O 1、B 1、C 1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法.2、(1)A (-3,1),B (-3,3),C (2,3),D (2,1);(2)图见解析,四个顶点的坐标分别为:A1(-1,-3),()11,1B --,()14,1C -,()14,3D -【解析】【分析】(1)根据已知图形写出点的坐标即可;(2)求出A ,B ,C ,D 四个点向下平移4个单位,再向右平移2个单位的点,连接即可;【详解】(1)由图可知:A (-3,1),B (-3,3),C (2,3),D (2,1);(2)∵A (-3,1),B (-3,3),C (2,3),D (2,1),∴向下平移4个单位,再向右平移2个单位后对应点为()11,3A --,()11,1B --,()14,1C -,()14,3D -,作图如下,【点睛】本题主要考查了平面直角坐标系中写点的坐标,图形的平移,准确分析作图是解题的关键.3、(1)(1,-1); 4 ;(2)矩形;(3)存在,点P 的坐标为(-1,0),(0,-2).【解析】【详解】.解:(1)(1,-1); 4 ;(2) 矩形,(3)存在.由(1)知S △ABC =4,则S 四边形ABOP =8.同(1)中的方法得S △ABO =16-4-4-2=6.当P 在x 轴负半轴时,S △APO =2,高为4,那么底边长为1,所以P (-1,0);当P 在y 轴负半轴时,S △APO =2,高为2,所以底边长为2,此时P (0,-2).而当P 在x 轴正半轴及y 轴正半轴时均不能形成四边形ABOP故点P 的坐标为(-1,0),(0,-2).4、建立平面直角坐标系见解析,六个顶点的坐标分别为()2,0,(,(-,()2,0-,(1,-,(1,.【解析】【分析】首先,根据题意以正六边形的中心为坐标原点,一条对角线所在的直线为x 轴,建立平面直角坐标系;再根据正六边形的性质,写出各顶点的坐标即可.【详解】如果以正六边形的中心为原点,建立如图所示的平面直角坐标系,那么六个顶点的坐标分别为()2,0,(,(-,()2,0-,(1,-,(1,.【点睛】通过此题的解答,主要是考查图形与坐标的知识;根据正六边形的性质,以正六边形的中心为坐标原点,一条对角线所在的直线为x 轴,建立平面直角坐标系,就可以写出各顶点的坐标.5、(1)()6,3A ,()3,6B ,()2,6C -,()5,3D -,()5,2E --,()2,5F --,()3,5G -,()6,2H -;(2)见解析.【解析】【分析】(1)根据图形在平面直角坐标系中的位置即可得出各点坐标;(2)根据点的坐标特点,则可判断点的位置及关系.【详解】解:(1)由图知: ()6,3A ,()3,6B ,()2,6C -,()5,3D -,()5,2E --,()2,5F --,()3,5G -,()6,2H -;(2)具有特殊位置关系的点很多,如下表所示,只要学生能写出几组即可.【点睛】本题考查了点的坐标及其规律,熟练掌握在平面直角坐标系中确定点的坐标和位置的方法是解题的关键.。

(2021年整理)七年级数学《平面直角坐标系》练习题及答案

(2021年整理)七年级数学《平面直角坐标系》练习题及答案

七年级数学《平面直角坐标系》练习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学《平面直角坐标系》练习题及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学《平面直角坐标系》练习题及答案的全部内容。

七年级数学《平面直角坐标系》练习题A卷•基础知识班级姓名得分一、选择题(4分×6=24分)1.点A(4,3-)所在象限为( )A、第一象限B、第二象限C、第三象限D、第四象限2.点B(0,3-)在()上A、在x轴的正半轴上B、在x轴的负半轴上C、在y轴的正半轴上D、在y轴的负半轴上3.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A 、(3,2) B、(3-) D、(2,3-)-) C、 (2,3,2-4.若点P(x,y)的坐标满足xy=0,则点P 的位置是()A、在x轴上B、在y轴上C、是坐标原点 D 、在x轴上或在y轴上5.某同学的座位号为(4,2),那么该同学的所座位置是()A、第2排第4列B、第4排第2列C、第2列第4排D、不好确定6.线段AB两端点坐标分别为A(4,1-),现将它向左平移4个单位长度,得到线段-),B(1,4A1B1,则A1、B1的坐标分别为()A、 A1(0,5-) B 、 A1(7,3), B1(0,5)-),B1(3,8-C、 A1(4,5-) B1(-8,1) D、 A1(4,3) B1(1,0)二、填空题( 1分×50=50分)7.分别写出数轴上点的坐标:A-1A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-F9。

初中数学平面直角坐标系提高题与常考题和培优题(含解析)-

初中数学平面直角坐标系提高题与常考题和培优题(含解析)-

初中数学直角坐标系提高题与常考题和培优题(含解析)一.选择题(共12小题)1.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.42.如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣2)B.(﹣2,3)C.(﹣3,2)D.(2,﹣3)3.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限4.已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′于点A对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A.(3,0) B.(3,﹣3)C.(3,﹣1)D.(﹣1,3)5.对于任意实数m,点P(m﹣2,9﹣3m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5 B.3 C.﹣3 D.﹣57.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)8.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b 的值为()A.2 B.3 C.4 D.59.如图,小手盖住的点的坐标可能是()A.(6,﹣4)B.(5,2) C.(﹣3,﹣6)D.(﹣3,4)10.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)11.在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出下列定义:若b′=,则称点Q为点的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5),如果一个点的限变点的坐标是(,﹣1),那么这个点的坐标是()A.(﹣1,) B.(﹣,﹣1)C.(,﹣1) D.(,1)12.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);②g(a,b)=(b,a).如:g(1,3)=(3,1);③h(a,b)=(﹣a,﹣b).如,h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(h(2,﹣3)))=f(g(﹣2,3))=f(3,﹣2)=(﹣3,﹣2),那么f(g(h(﹣3,5)))等于()A.(﹣5,﹣3)B.(5,3) C.(5,﹣3)D.(﹣5,3)二.填空题(共13小题)13.点P(3,﹣2)到y轴的距离为个单位.14.点P(x﹣2,x+3)在第一象限,则x的取值范围是.15.线段AB的长为5,点A在平面直角坐标系中的坐标为(3,﹣2),点B的坐标为(3,x),则点B的坐标为.16.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.17.将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为.18.已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为.19.如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,﹣1),表示桃园路的点的坐标为(﹣1,0),则表示太原火车站的点(正好在网格点上)的坐标是.20.定义:直线l1与l2相交于点O,对于平面内任意一点P1点P到直线l1与l2的距离分别为p、q则称有序实数对(p,q)是点P的“距离坐标”.根据上述定义,“距离坐标”是(3,2)的点的个数有个.21.在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位,…,依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第8步时,棋子所处位置的坐标是;当走完第2016步时,棋子所处位置的坐标是.22.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.23.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.24.在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣….的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是.25.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是.三.解答题(共15小题)26.在如图所示的直角坐标系中描出下列各点:A(﹣2,0),B(2,5),C(﹣,﹣3)27.在如图中,确定点A、B、C、D、E、F、G的坐标.请说明点B和点F有什么关系?28.求图中四边形ABCD的面积.29.在平面直角坐标系中,点A(2m﹣7,m﹣5)在第四象限,且m为整数,试求的值.30.如图,一个小正方形网格的边长表示50米.A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是;(3)在你所建的直角坐标系中,如果C同学家的坐标为(﹣150,100),请你在图中描出表示C同学家的点.31.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.(1)图中B→C (,),C→(+1,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记作什么?32.如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.33.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.34.已知:如图,在平面直角坐标系xOy中,A(4,0),C(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着长方形OABC移动一周(即:沿着O→A→B→C→O的路线移动).(1)写出B点的坐标();(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.35.如图,某校七年级的同学从学校O点出发,要到某地P处进行探险活动,他们先向正西方向走8千米到A处,又往正南方向走4千米到B处,又折向正东方向走6千米到C处,再折向正北方向走8千米到D处,最后又往正东方向走2千米才到探险处P,以点O为原点,取O点的正东方向为x轴的正方向,取O点的正北方向为y轴的正方向,以2千米为一个长度单位建立直角坐标系.(1)在直角坐标系中画出探险路线图;(2)分别写出A、B、C、D、P点的坐标.36.已知:P(4x,x﹣3)在平面直角坐标系中.(1)若点P在第三象限的角平分线上,求x的值;(2)若点P在第四象限,且到两坐标轴的距离之和为9,求x的值.37.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.已知点A(1,2),B(﹣3,1),P(0,t).(1)若A,B,P三点的“矩面积”为12,求点P的坐标;(2)直接写出A,B,P三点的“矩面积”的最小值.38.如图,在平面直角坐标系中,原点为O,点A(0,3),B(2,3),C(2,﹣3),D(0,﹣3).点P,Q是长方形ABCD边上的两个动点,BC交x轴于点M.点P从点O出发以每秒1个单位长度沿O→A→B→M的路线做匀速运动,同时点Q 也从点O出发以每秒2个单位长度沿O→D→C→M的路线做匀速运动.当点Q 运动到点M时,两动点均停止运动.设运动的时间为t秒,四边形OPMQ的面积为S.(1)当t=2时,求S的值;(2)若S<5时,求t的取值范围.39.问题情境:在平面直角坐标系xOy中有不重合的两点A(x1,y1)和点B(x2,y2),小明在学习中发现,若x1=x2,则AB∥y轴,且线段AB的长度为|y1﹣y2|;若y1=y2,则AB∥x轴,且线段AB的长度为|x1﹣x2|;【应用】:(1)若点A(﹣1,1)、B(2,1),则AB∥x轴,AB的长度为.(2)若点C(1,0),且CD∥y轴,且CD=2,则点D的坐标为.【拓展】:我们规定:平面直角坐标系中任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为d(M,N)=|x1﹣x2|+|y1﹣y2|;例如:图1中,点M(﹣1,1)与点N(1,﹣2)之间的折线距离为d(M,N)=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)如图1,已知E(2,0),若F(﹣1,﹣2),则d(E,F);(2)如图2,已知E(2,0),H(1,t),若d(E,H)=3,则t=.(3)如图3,已知P(3,3),点Q在x轴上,且三角形OPQ的面积为3,则d (P,Q)=.40.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…A n,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…B n,图形与x轴负半轴的交点依次记作C1(﹣3,0),C2(﹣7,0),…C n,图形与y轴负半轴的交点依次记作D1(0,﹣4),D2(0,﹣8),…D n,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:A n,B n,C n,D n;(3)请求出四边形A5B5C5D5的面积.初中数学直角坐标系提高题与常考题和培优题(含解析)参考答案与试题解析一.选择题(共12小题)1.(2017•河北一模)已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.4【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.【点评】此题主要考查了点的坐标,正确把握x轴上点的坐标性质是解题关键.2.(2016•柳州)如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣2)B.(﹣2,3)C.(﹣3,2)D.(2,﹣3)【分析】根据平面直角坐标系以及点的坐标的定义写出即可.【解答】解:点P的坐标为(3,﹣2).故选A.【点评】本题考查了点的坐标,熟练掌握平面直角坐标系中点的表示是解题的关键.3.(2016•临夏州)已知点P(0,m)在y轴的负半轴上,则点M(﹣m,﹣m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据y轴的负半轴上点的横坐标等于零,纵坐标小于零,可得m的值,根据不等式的性质,可得到答案.【解答】解:由点P(0,m)在y轴的负半轴上,得m<0.由不等式的性质,得﹣m>0,﹣m+1>1,则点M(﹣m,﹣m+1)在第一象限,故选:A.【点评】本题考查了点的坐标,利用点的坐标得出不等式是解题关键.4.(2017•禹州市一模)已知点A(﹣1,0)和点B(1,2),将线段AB平移至A′B′,点A′于点A对应,若点A′的坐标为(1,﹣3),则点B′的坐标为()A.(3,0) B.(3,﹣3)C.(3,﹣1)D.(﹣1,3)【分析】根据平移的性质,以及点A,B的坐标,可知点A的横坐标加上了4,纵坐标减小了1,所以平移方法是:先向右平移4个单位,再向下平移1个单位,根据点B的平移方法与A点相同,即可得到答案.【解答】解:∵A(﹣1,0)平移后对应点A′的坐标为(1,﹣3),∴A点的平移方法是:先向右平移2个单位,再向下平移3个单位,∴B点的平移方法与A点的平移方法是相同的,∴B(1,2)平移后B′的坐标是:(3,﹣1).故选:C.【点评】本题考查了坐标与图形的变化﹣平移,解决问题的关键是运用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.5.(2016•乌鲁木齐)对于任意实数m,点P(m﹣2,9﹣3m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【解答】解:A、当点在第一象限时,解得2<m<3,故选项不符合题意;B、当点在第二象限时,解得m<3,故选项不符合题意;C、当点在第三象限时,,不等式组无解,故选项符合题意;D、当点在第四象限时,解得m>0,故选项不符合题意.故选C.【点评】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.6.(2016•台湾)如图为A、B、C三点在坐标平面上的位置图.若A、B、C的x 坐标的数字总和为a,y坐标的数字总和为b,则a﹣b之值为何?()A.5 B.3 C.﹣3 D.﹣5【分析】先求出A、B、C三点的横坐标的和为﹣1+0+5=4,纵坐标的和为﹣4﹣1+4=﹣1,再把它们相减即可求得a﹣b之值.【解答】解:由图形可知:a=﹣1+0+5=4,b=﹣4﹣1+4=﹣1,a﹣b=4+1=5.故选:A.【点评】考查了点的坐标,解题的关键是求得a和b的值.7.(2016•滨州)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)【分析】由题目中A点坐标特征推导得出平面直角坐标系y轴的位置,再通过C、D点坐标特征结合正五边形的轴对称性质就可以得出E点坐标了.【解答】解:∵点A坐标为(0,a),∴点A在该平面直角坐标系的y轴上,∵点C、D的坐标为(b,m),(c,m),∴点C、D关于y轴对称,∵正五边形ABCDE是轴对称图形,∴该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,∴点B、E也关于y轴对称,∵点B的坐标为(﹣3,2),∴点E的坐标为(3,2).故选:C.【点评】本题考查了平面直角坐标系的点坐标特征及正五边形的轴对称性质,解题的关键是通过顶点坐标确认正五边形的一条对称轴即为平面直角坐标系的y 轴.8.(2016•菏泽)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9.(2016•盐城校级一模)如图,小手盖住的点的坐标可能是()A.(6,﹣4)B.(5,2) C.(﹣3,﹣6)D.(﹣3,4)【分析】先判断手所在的象限,再判断象限横纵坐标的正负即可.【解答】解:因为小手盖住的点在第四象限,第四象限内点的坐标横坐标为正,纵坐标为负,且横坐标的绝对值大于纵坐标的绝对值.故只有选项A符合题意,故选:A.【点评】解答此题的关键是熟记平面直角坐标系中各个象限内点的坐标符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.(2016•安顺)如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)【分析】直接利用平移中点的变化规律求解即可.【解答】解:由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).故选A.【点评】本题考查了图形的平移变换,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.11.(2016•临澧县模拟)在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出下列定义:若b′=,则称点Q为点的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(﹣2,5)的限变点的坐标是(﹣2,﹣5),如果一个点的限变点的坐标是(,﹣1),那么这个点的坐标是()A.(﹣1,) B.(﹣,﹣1)C.(,﹣1) D.(,1)【分析】根据新定义的叙述可知:这个点和限变点的横坐标不变,当横坐标a≥1时,这个点和限变点的纵坐标不变;当横坐标a<1时,纵坐标是互为相反数;据此可做出判断.【解答】解:∵>1∴这个点的坐标为(,﹣1)故选C.【点评】本题考查了点的坐标和对新定义的阅读理解,准确找出这个点与限变点的横、纵坐标与a的关系即可.12.(2016•高新区一模)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);②g(a,b)=(b,a).如:g(1,3)=(3,1);③h(a,b)=(﹣a,﹣b).如,h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(h(2,﹣3)))=f(g(﹣2,3))=f(3,﹣2)=(﹣3,﹣2),那么f(g(h(﹣3,5)))等于()A.(﹣5,﹣3)B.(5,3) C.(5,﹣3)D.(﹣5,3)【分析】根据f(a,b)=(﹣a,b).g(a,b)=(b,a).h(a,b)=(﹣a,﹣b),可得答案.【解答】解:f(g(h(﹣3,5)))=f(g(3,﹣5)=f(﹣5,3)=(5,3),故选:B.【点评】本题考查了点的坐标,利用f(a,b)=(﹣a,b).g(a,b)=(b,a).h (a,b)=(﹣a,﹣b)是解题关键.二.填空题(共13小题)13.(2017春•海宁市校级月考)点P(3,﹣2)到y轴的距离为3个单位.【分析】求得3的绝对值即为点P到y轴的距离.【解答】解:∵|3|=3,∴点P(3,﹣2)到y轴的距离为3个单位,故答案为:3.【点评】本题主要考查了点的坐标的几何意义:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.14.(2016•衡阳)点P(x﹣2,x+3)在第一象限,则x的取值范围是x>2.【分析】直接利用第一象限点的坐标特征得出x的取值范围即可.【解答】解:∵点P(x﹣2,x+3)在第一象限,∴,解得:x>2.故答案为:x>2.【点评】此题主要考查了点的坐标,正确得出关于x的不等式组是解题关键.15.(2017•涿州市一模)线段AB的长为5,点A在平面直角坐标系中的坐标为(3,﹣2),点B的坐标为(3,x),则点B的坐标为(3,3)或(3,﹣7).【分析】由线段AB的长度结合点A、B的坐标即可得出关于x的含绝对值符号的一元一次方程,解之即可得出x值,由此即可得出点B的坐标.【解答】解:∵线段AB的长为5,A(3,﹣2),B(3,x),∴|﹣2﹣x|=5,解得:x1=3,x2=﹣7,∴点B的坐标为(3,3)或(3,﹣7).故答案为:(3,3)或(3,﹣7).【点评】本题考查了坐标与图形性质、两点间的距离公式以及含绝对值符号的一元一次方程,根据两点间的距离公式找出关于x的含绝对值符号的一元一次方程是解题的关键.16.(2016•黔南州)在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于(﹣3,4).【分析】根据三种变换规律的特点解答即可.【解答】解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4).故答案为:(﹣3,4).【点评】本题考查了点的坐标,读懂题目信息,理解三种变换的变换规律是解题的关键.17.(2016•广安)将点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为(﹣2,2).【分析】根据向左平移横坐标减,向上平移纵坐标加求解即可.【解答】解:∵点A(1,﹣3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到点A′,∴点A′的横坐标为1﹣3=﹣2,纵坐标为﹣3+5=2,∴A′的坐标为(﹣2,2).故答案为(﹣2,2).【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.(2016•鞍山二模)已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标为(﹣1,﹣1).【分析】根据第三象限点的坐标性质得出a的取值范围,进而得出a的值,即可得出答案.【解答】解:∵点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,∴,解得:2<a<3.5,故a=3,则点P坐标为:(﹣1,﹣1).故答案为:(﹣1,﹣1).【点评】此题主要考查了点的坐标,正确得出a的取值范围是解题关键.19.(2016•山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图,若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,﹣1),表示桃园路的点的坐标为(﹣1,0),则表示太原火车站的点(正好在网格点上)的坐标是(3,0).【分析】根据双塔西街点的坐标可知:1号线起点所在的直线为x轴,根据桃园路的点的坐标可知:2号线起点所在的直线为y轴,建立平面直角坐标系,确定太原火车站的点的坐标.【解答】解:由双塔西街点的坐标为(0,﹣1)与桃园路的点的坐标为(﹣1,0)得:平面直角坐标系,可知:太原火车站的点的坐标是(3,0);故答案为:(3,0)【点评】本题考查了利用坐标确定位置,解题的关键就是确定坐标原点和x、y 轴的位置.20.(2016•厦门校级模拟)定义:直线l1与l2相交于点O,对于平面内任意一点P1点P到直线l1与l2的距离分别为p、q则称有序实数对(p,q)是点P的“距离坐标”.根据上述定义,“距离坐标”是(3,2)的点的个数有4个.【分析】首先根据“距离坐标”的含义,可得“距离坐标”是(3,2)到直线l1与l2的距离分别为3、2,然后根据到直线l1的距离是3的点在与直线l1平行且与l1的距离是3的两条平行线上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线上,一共有4个交点,所以“距离坐标”是(3,2)的点的个数有4个,据此解答即可.【解答】解:“距离坐标”是(3,2)到直线l1与l2的距离分别为3、2,因为到直线l1的距离是3的点在与直线l1平行且与l1的距离是3的两条平行线上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线上,一共有4个交点,所以“距离坐标”是(3,2)的点的个数有4个.故答案为:4.【点评】此题主要考查了点的“距离坐标”的含义以及应用,考查了分析推理能力,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:“距离坐标”是(3,2)到直线l1与l2的距离分别为3、2.21.(2016•汕头校级自主招生)在平面直角坐标系中,小明玩走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位,…,依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第8步时,棋子所处位置的坐标是(9,2);当走完第2016步时,棋子所处位置的坐标是(2016,672).【分析】设走完第n步时,棋子所处的位置为点P n(n为自然数),根据走棋子的规律找出部分点P n的坐标,根据坐标的变化找出变化规律“P3n+1(3n+1,n),P3n+2(3n+3,n),P3n+3(3n+3,n+1)”,依此规律即可得出结论.【解答】解:设走完第n步时,棋子所处的位置为点P n(n为自然数),观察,发现规律:P1(1,0),P2(3,0),P3(3,1),P4(4,1),…,∴P3n+1(3n+1,n),P3n+2(3n+3,n),P3n+3(3n+3,n+1).∵8=3×2+2,∴P8(9,2).∵2016=3×671+3,∴P 2016(2016,672).故答案为:(9,2);(2016,672).【点评】本题考查了规律型中的点的坐标变化,解题的关键是找出变化规律“P 3n +1(3n +1,n ),P 3n +2(3n +3,n ),P 3n +3(3n +3,n +1)”.本题属于中档题,难度不大,解决该题型题目时,根据点的变化找出变化规律是关键.22.(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P 1,P 2,P 3,…,均在格点上,其顺序按图中“→”方向排列,如:P 1(0,0),P 2(0,1),P 3(1,1),P 4(1,﹣1),P 5(﹣1,﹣1),P 6(﹣1,2)…根据这个规律,点P 2016的坐标为 (504,﹣504) .【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P 2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.【解答】解:由规律可得,2016÷4=504,∴点P 2016的在第四象限的角平分线上,∵点P 4(1,﹣1),点P 8(2,﹣2),点P 12(3,﹣3),∴点P 2016(504,﹣504),故答案为(504,﹣504).【点评】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.23.(2016•三明)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是(20,0).【分析】根据图形分别求出n=3、6、9时对应的点的坐标,可知点P3n(n,0),将n=20代入可得.【解答】解:∵P3(1,0),P6(2,0),P9(3,0),…,∴P3n(n,0)当n=20时,P60(20,0),故答案为:(20,0).【点评】本题考查了点的坐标的变化规律,仔细观察图形,分别求出n=3、6、9时对应的点的对应的坐标是解题的关键.24.(2016•金华模拟)在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣….的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(0,﹣2).【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2016÷10=201…6,∴细线另一端在绕四边形第202圈的第6个单位长度的位置,即CD中间的位置,点的坐标为(0,﹣2),故答案为:(0,﹣2).【点评】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD 一周的长度,从而确定2016个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.25.(2016•乐亭县一模)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是(2016,0).【分析】观察动点P运动图象可知,运动次数为偶数时,P点在x轴上,比较其横坐标与运动次数发现规律,根据规律即可解决问题.【解答】解:结合图象可知,当运动次数为偶数次时,P点运动到x轴上,且横坐标与运动次数相等,∵2016为偶数,∴运动2016次后,动点P的坐标是(2016,0).故答案为:(2016,0).【点评】本题考查了点的坐标以及数的变化,解题的关键是发现“当运动次数为偶数次时,P点运动到x轴上,且横坐标与运动次数相等”这已变化规律.本题属于基础题,难度不大,解题时可先看求什么?根据所求再去寻找规律能够简化很多.三.解答题(共15小题)26.(2016春•黄埔区期末)在如图所示的直角坐标系中描出下列各点:A(﹣2,0),B(2,5),C(﹣,﹣3)【分析】根据平面直角坐标系中点的表示方法找出各点的位置即可.【解答】解:如图所示.【点评】本题考查了点坐标,熟练掌握平面直角坐标系中的点的表示方法是解题的关键.27.(2016秋•商河县校级月考)在如图中,确定点A、B、C、D、E、F、G的坐标.请说明点B和点F有什么关系?【分析】从图形中找到各点对应的横纵坐标,从而进行求解.【解答】解:各点的坐标为:A(﹣4,4)、B(﹣3,0)、C(﹣2,﹣2)、D(1,﹣4)、E(1,﹣1)、F(3,0)、G(2,3),点B和点F关于y轴对称,且关于原点对称.【点评】本题考查了在平面直角坐标系中确定点的坐标,是一道简单的基础题.28.(2017春•滨海县月考)求图中四边形ABCD的面积.【分析】由图可得:四边形ABCD的面积=矩形EFGH的面积﹣△AEB的面积﹣△AHD的面积﹣△BFC的面积﹣△CGD的面积,即可解答.【解答】解:如图,S四边形ABCD=S矩形EFGH﹣S△AEB﹣S△AHD﹣S△BFC﹣S△CDG==25.【点评】本题考查了坐标与图形性质,解决本题的关键是结合图形四边形ABCD 的面积=矩形EFGH的面积﹣△AEB的面积﹣△AHD的面积﹣△BFC的面积﹣△CGD的面积.29.(2016春•垦利县期末)在平面直角坐标系中,点A(2m﹣7,m﹣5)在第四象限,且m为整数,试求的值.【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列不等式组求出m 的取值范围,再根据m是整数解答即可.【解答】解:∵点A(2m﹣7,m﹣5)在第四象限,∴解得:.∵m为整数,∴m=4.∴.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).。

人教版七年级下《第七章平面直角坐标系》单元提升试卷(含答案)

人教版七年级下《第七章平面直角坐标系》单元提升试卷(含答案)

人教版七年级数学下册第七章平面直角坐标系单元提高一、选择题1. 在平面直角坐标系中,点P(2,﹣ 3)在(D)A.第一象限 B .第二象限C.第三象限 D .第四象限2.经过两点 A( 2, 3)、 B(﹣ 4, 3)作直线 AB,则直线 AB( A )A.平行于x 轴B.平行于y 轴C. . 经过原点D.没法确立3.象棋在中国有着三千多年的历史,因为器具简单,兴趣性强,成为流行极为宽泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2, 1),则表示棋子“炮”的点的坐标为(D)A.(﹣ 3, 3)B.( 3, 2) C.( 0, 3)D.( 1, 3)4.已知△ ABC极点坐标分别是 A( 0, 6), B(﹣ 3,﹣ 3), C( 1, 0),将△ ABC平移后极点 A 的对应点A1的坐标是( 4, 10),则点 B 的对应点 B1的坐标为(C)A.( 7, 1) B. B(1, 7)C.( 1, 1)D.( 2, 1)5.如图,正五边形 ABCDE放入某平面直角坐标系后,若极点A, B, C, D 的坐标分别是( 0,a),(﹣ 3,2),( b,m),( c,m),则点 E 的坐标是(C)A.( 2,﹣ 3)B.( 2, 3) C.( 3, 2)D.( 3,﹣ 2)6.象棋在中国有三千多年的历史,因为器具简单,兴趣性强,成为流行极为宽泛的益智游戏.图 7-2- 1 是一局(4 ,3) , ( - 2,1) ,则棋子象棋残局,已知棋子“马”和“车”所在地点用坐标表示分别为“炮”所在地点用坐标表示为( D )A.( -3,3) B . (3,2)C.(0 ,3) D.(1,3)7. 如图,线段AB经过平移获得线段A′ B′,此中点A, B 的对应点分别为点A′, B′,这四个点都在网格的格点上.若线段AB上有一个点P( a, b),则点 P 在线段 A′ B′上的对应点 P′的坐标为( A )A. ( a- 2,b+ 3) B . ( a- 2,b- 3) C . ( a+ 2,b+ 3) D . ( a+ 2,b- 3)8.游戏植物大战僵尸中,一个小正方形土地上能够放一株植物,而且当坚果墙在向日葵正右方时,能够保护向日葵. 如图,假如向日葵所在的地点是(0,1) ,豌豆的地点是 ( 2,2) ,D .A.(0,2)B.(3,0)C.(2,1)D.(4,1)9. 如图,点A, B 的坐标分别为(2,0),(0,1).若将线段A B 平移至 A1B1的地点,则a+ b 的值为( A )A.2 B.3 C.4 D.510. 如图,矩形BCDE的各边分别平行于x 轴或y 轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形 BCDE的边作围绕运动,物体甲按逆时针方向以 1 个单位 / 秒匀速运动,物体乙按顺时针方向以 2 个单位 / 秒匀速运动,则两个物体运动后的第2014 次相遇地址的坐标是(B)A.( 2, 0)B 1, 1)C 2, 1)D 1 1)二、填空题11.若点 P是第二象限内的点,且点 P 到 x 轴的距离是 4,到 y 轴的距离是 3,则点 P 的坐标是.答案:(﹣ 3, 4)12. 如图,动点 P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第 2 次接着运动到点(2,0),第 3 次接着运动到点(3,2),按这样的运动规律,经过第 2016 次运动后,动点P 的坐标是.答案:( 2016, 0).A1B1,则a+b 的值为.13. 如图, A,B 的坐标为( 2,0),(0,1),若将线段AB平移至答案: 214. 知点m( 3a-9 , 1- a),将m点向左平移 3 个单位长度后落在y 轴上,则 a=______.【答案】 415.如图,一艘船在 A 处遇险后向相距 50 海里位于 B 处的救生船报警,用方向和距离描绘遇险船相关于救生船的地点 __________.【答案】南偏西15°, 50 海里16.如图,圆 A 经过平移获得圆 O.假如圆 A 上一点 P 的坐标为( m,n),那么平移后的对应点P′的坐标为__________.【答案】 ( m+ 2,n-1)三、解答题17.如图,一个小正方形网格的边长表示 50 米.A 同学上学时从家中出发,先向东走 250 米,再向北走 50 米就抵达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中成立直角坐标系:(2) B 同学家的坐标是;(3)在你所建的直角坐标系中,假如 C同学家的坐标为(﹣ 150,100),请你在图中描出表示 C 同学家的点.解:( 1)如图,(2) B 同学家的坐标是( 200, 150);(3)如图.故答案为( 200, 150).18.据某报社报导,某省 4 艘渔船 ( 如图 ) 在回港途中,遭受 9 级强风,岛上面防战士接到命令后立刻搜救.你能告诉边防战士这些渔船的地点吗?[ 分析 ]利用方向角和距离确立物体的地点,其重点在于选择参照点.由题图可知应选小岛为参照点.解:渔船 A 在小岛的北偏东40°方向 25 km 处;渔船 B 在小岛的正南方向20 km 处;渔船 C 在小岛的北偏西30°方向 30 km 处;渔船 D 在小岛的南偏东65°方向 35 km 处.19. 在平面直角坐标系xOy 中,关于随意两点P1( x1, y1)与 P2( x2, y2)的“友善距离” ,给出以下定义:若|x ﹣ x | ≥ |y ﹣ y | ,则点 P ( x , y )与点 P ( x , y )的“友善距离”为|x ﹣ x |;1 2 1 2 1 1 1 2 2 2 1 2若|x 1﹣ x2| < |y 1﹣ y2| ,则 P1(x1, y1)与点 P2( x2, y2)的“友善距离”为|y 1﹣y2| ;3(1)已知点 A(﹣2, 0), B 为 y 轴上的动点,①若点 A 与 B 的“友善距离为”3,写出知足条件的 B 点的坐标:.②直接写出点 A 与点 B 的“友善距离”的最小值.2(2)已知 C 点坐标为 C( m,3m+3)(m< 0),D( 0,1),求点 C与 D 的“友善距离”的最小值及相应的 C 点坐标.解:( 1)①∵ B 为 y 轴上的一个动点,∴设点 B 的坐标为( 0, y).3 3∵|﹣2﹣0|= 2≠3,∴|0 ﹣ y|=3 ,解得, y=3 或 y=﹣ 3;∴点 B 的坐标是( 0, 3)或( 0,﹣ 3);故填写:( 0, 3)或( 0,﹣ 3).3②依据题意,得:| ﹣2﹣ 0| ≥|0 ﹣ y| ,3即|y| ≤2,3∴点 A 与点 B 的“友善距离”的最小值为2.3故答案为:2;2(2)∵ C(m,3m+3), D( 0,1),2∴|m|=| 3m+2|,∵m< 0,2当 m≤﹣ 3 时, m= m+2,解得 m=6,(舍去);32 6当﹣ 3< m<0 时,﹣ m= m+2,解得 m=﹣,3 56 ∴点 C 与点 D 的“友善距离”的最小值为:|m|= 5,此时 C(﹣6,11).5 520.先阅读以下一段文字,再回答以下问题.已知平面内两点P1( x1, y1), P2( x2,y2),这两点间的距离 P1P2=(x2-x1)2+(y2-y1)2. 同时,当两点所在的直线在座标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为 | x2-x1| 或 | y2-y1|.(1)已知点 A(2,4), B(-3,-8),试求 A, B 两点间的距离;(2) 已知点A,B所在的直线平行于y 轴,点 A 的纵坐标为5,点B的纵坐标为- 1,试求 A, B 两点间的距离;(3)已知一个三角形各极点的坐标分别为 A(0,6), B(-3,2), C(3,2),你能判断三角形 ABC的形状吗?说明原因.解: (1) ∵A(2 ,4) ,B( -3,- 8) ,∴ AB=(-3-2)2+(-8-4)2=169.∵132= 169,∴ 169= 13,即 A,B 两点间的距离是13.(2) ∵点A,B所在的直线平行于y轴,点A的纵坐标为 5,点B的纵坐标为- 1,∴AB=|-1-5|=6,即 A,B 两点间的距离是 6.(3) 三角形ABC是等腰三角形.原因:∵一个三角形各极点的坐标分别为A(0,6), B(-3,2), C(3,2),∴ AB=5,BC=6, AC=5,∴ AB= AC,∴三角形ABC是等腰三角形.21. 已知三角形 ABC的三个极点的坐标分别是A(-2 , 3) ,B(0 , 1) ,C(2 , 2).(1) 在所给的平面直角坐标系中画出三角形ABC.(2)直接写出点 A 到 x 轴, y 轴的距离分别是多少?(3)求出三角形 ABC的面积 .解: (1) 略.(2)点 A(-2 , 3) 到 x 轴的距离为 3,到 y 轴的距离为 2.(3)三角形 ABC的面积为 3.。

七年级数学《平面直角坐标系》练习题及答案

七年级数学《平面直角坐标系》练习题A 卷•基础知识班级 姓名 得分一、选择题(4分×6=24分) 1.点A (4,3-)所在象限为( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限 2.点B (0,3-)在()上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上3.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为() A 、(3,2) B 、 (3,2--) C 、 (2,3-) D 、(2,3-) 4. 若点P (x,y )的坐标满足xy =0,则点P 的位置是()A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上 5.某同学的座位号为(4,2),那么该同学的所座位置是()A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定6.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为()A 、 A 1(0,5-),B 1(3,8--) B 、 A 1(7,3), B 1(0,5)C 、 A 1(4,5-) B 1(-8,1)D 、 A 1(4,3) B 1(1,0) 二、填空题( 1分×50=50分 ) 7.分别写出数轴上点的坐标:A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-FA-19. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点 是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。

【提高练习】《平面直角坐标系》(数学北师大八上)【含答案】

《平面直角坐标系》提高练习1.已知点P的坐标为(2,﹣6),那么该点P到x轴的距离为,到y轴的距离为.2.在平面直角坐标系中,已知线段AB=3,且AB∥x轴,且点A的坐标是(1,2),则点B的坐标是.3.已知点P(x+1,3)在第一、三象限的角平分线上,则x=;若Q(﹣2,1+y)在第二、四象限的角平分线上,则y=.4.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.5.下面四种说法:①如果一个点的横、纵坐标都为零,则这个点是原点;②若一个点在x轴上,那它一定不属于任何象限;③纵轴上的点的横坐标均相等,且都等于零;④纵坐标相同的点,分布在平行于y轴的某条直线上.其中你认为正确的有.(填序号)6.在直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.①(4,5),(0,3),(1,3),(7,3),(8,3),(4,5);②(1,3),(1,0),(7,0),(7,3).(1)观察所得的图形,你觉得它像什么?(2)求出这个图形的面积.7.在平面直角坐标系中,将坐标是(0,4),(1,0),(2,4),(3,0),(4,4)的点用线段依次连接起来形成一个图案.(1)在坐标系中画出这个图案;(2)图形中哪些点在坐标轴上,它们的坐标有什么特点?(3)图中有与坐标轴平行的线段吗?线段上的点的纵坐标有什么特点?8.已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?9.在平面直角坐标系中,点A(﹣2,4),B(3,4),连接AB,若点C为直线AB上的任何一点.(1)点C的纵坐标有什么特点?(2)如果一些点在平行于y轴的直线上,那么这些点的横坐标有什么特点?10.先阅读下列一段文字,再回答后面的问题.已知在平面内两点P1(x1,y1),P2(x2,y2),这两点间的距离P1P2=,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;(2)已知A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点间的距离.答案和解析【解析】1. 解:【考点】点的坐标.【分析】求得﹣6的绝对值即为点P到x轴的距离,求得2的绝对值即为点P到Y轴的距离.【解答】解:∵|﹣6|=6,|2|=2,∴点P到x轴的距离为6,到y轴的距离为2.故答案分别为:6、2.【点评】本题考查的是点的坐标的几何意义:点到x轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.2. 解:【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的坐标特点解答即可.【解答】解:∵AB∥x轴,∴点B的纵坐标为2.∵AB=3,∴点B的横坐标为1+3=4或1﹣3=﹣2.∴点B的坐标为(﹣2,2)或(4,2).故答案为:(﹣2,2)或(4,2).【点评】本题主要考查的是坐标与图象的性质,掌握平行于x轴的直线上的点的纵坐标相同是解题的关键.3. 解:【考点】坐标与图形性质.【分析】根据一、三象限的角平分线上各点的横纵坐标相;第二、四象限的角平分线上个点的横纵坐标互为相反数求解即可.【解答】解:∵点P(x+1,3)在第一、三象限的角平分线上,∴x+1=3.解得:x=2.∵点Q(﹣2,1+y)在第二、四象限的角平分线上,∴1+y=2.解得:y=1.故答案为:2;1.【点评】本题主要考查的是坐标与图象的性质,明确一、三象限的角平分线上各点的横纵坐标相;第二、四象限的角平分线上个点的横纵坐标互为相反数是解题的关键.4. 解:【考点】坐标与图形变化-旋转.【专题】几何变换.【分析】画出旋转后的图形位置,根据图形求解.【解答】解:AB旋转后位置如图所示.B′(4,2).【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A,旋转方向逆时针,旋转角度90°,通过画图得B′坐标.5. 解:【考点】点的坐标.【分析】分别利用坐标轴以及象限的区别与联系以及坐标系中点的坐标性质分析得出即可.【解答】解:①如果一个点的横、纵坐标都为零,则这个点是原点,正确;②若一个点在x轴上,那它一定不属于任何象限,正确;③纵轴上的点的横坐标均相等,且都等于零,正确;④纵坐标相同的点,分布在平行于y轴的某条直线上,错误.故答案为:①②③.【点评】此题主要考查了点的坐标,正确把握坐标系中点的坐标性质是解题关键.6. 解:【考点】坐标与图形性质;三角形的面积.【分析】(1)先描点、再连线从而可得出图形的形状;(2)依据三角形、长方形的面积公式计算即可.【解答】解:如图所示:(1)图形像一座小房子;(2)图形的面积=矩形的面积+三角形的面积=3×6+=18+8=26.【点评】本题主要考查的是坐标与图形的性质,根据题意画出图形是解题的关键.7. 解:【考点】坐标与图形性质.【分析】(1)先从坐标上描出五点,再依次连接即可.(2)然后找出坐标轴上的点,然后说出其特点即可;(3)观察图形即可得出结论.【解答】解:(1)如图所示:(2)点(0,4)在y轴上,点(1,0),(3,0)在x轴上,y轴上点的横坐标都是0,x轴上个点纵坐标是0.(3)没有.【点评】本题主要考查的是点的坐标的定义、坐标轴上点的特点、平行坐标轴的直线上的点的坐标特点,掌握相关知识是解题的关键.8. 解:【考点】点的坐标.【专题】计算题.【分析】(1)让纵坐标的绝对值为1列式求值即可;(2)让横坐标的绝对值为2列式求值即可.【解答】解:(1)∵|2m+3|=12m+3=1或2m+3=﹣1∴m=﹣1或m=﹣2;(2)∵|m﹣1|=2m﹣1=2或m﹣1=﹣2∴m=3或m=﹣1.【点评】考查点的坐标的相关知识;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值;点到y轴的距离为点的横坐标的绝对值.9. 解:【考点】坐标与图形性质.【分析】(1)先根据点A、B的纵坐标相等可得AB∥x轴,再根据平行线间的距离相等解答即可;(2)根据平行线间的距离相等,所以,横坐标都相等解答.【解答】解:(1)∵A(﹣2,4),B(3,4),∴AB∥x轴,∵点C是AB上任意一点,∴点C的纵坐标都为4;(2)如果一些点在平行于y轴的直线上,那么这些点的横坐标都相同.【点评】本题考查了坐标与图形的性质,主要利用了平行于坐标轴的直线上点的坐标特征,是需要熟记的内容.10. 解:【考点】两点间的距离公式.【专题】阅读型.【分析】(1)将点A、B的坐标代入两点间的距离公式进行解答即可;(2)点A、B两点间的距|y2﹣y1|.【解答】解:(1)A,B两点间的距离==13;(3)A,B两点间的距离=|5﹣(﹣1)|=6.【点评】本题考查了两点间的距离公式.根据材料得到这两点间的距离P1P2=,或这两点间的距离P1P2=|x2﹣x1|或|y2﹣y1|是解题的关键.。

人教版七年级数学下册平面直角坐标系提高版

人教版七年级数学下册平面直角坐标系提高版七年级下平面直角坐标系单元检测试题一、选择题(每小题3分,共30分,把正确答案的代号填在括号内) 1、在平面直角坐标系中,点(-3,4)在()A、第一象限B、第二象限C、第三象限D、第四象限 2、若a?5,b?4,且点M(a,b)在第二象限,则点M的坐标是() A、(5,4) B、(-5,4) C、(-5,-4) D、(5,-4) 3、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4) B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)4、过A(4,-2)和B(-2,-2)两点的直线一定()A、垂直于x轴B、与y轴相交但不平于x轴C、平行于x轴D、与x轴、y轴平行5、已知点A(4,-3)到y轴的距离为()炮A、4 B、-4 C、3 D、-36、如右图所示的象棋盘上,若帅○位于点(1,-2)上,帅相图3相○位于点(3,-2)上,则○炮位于点() A、(-1,1) B、(-1,2) C、(-2,1) D、(-2,2)7、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3) 8、若x轴上的点P到y轴的距离为3,则点P的坐标为() A、(3,0) B、(3,0)或(–3,0) C、(0,3) D、(0,3)或(0,–3) 9、已知三角形的三个顶点坐标分别是(-1,4),(1,1),(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A、(-2,2),(3,4),(1,7)B、(-2,2),(4,3),(1,7)C、(2,2),(3,4),(1,7)D、(2,-2),(3,3),(1,7)10、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位 D、向下平移了3个单位二、填空题(每空2分,共40分)1、原点O的坐标是,点M(a,0)在轴上2、在平面直角坐标系内,点A(-2,3)的横坐标是,纵坐标是,所在象限是3、点A(-1,2)关于y轴的对称点坐标是;点A关于原点的对称点的坐标是。

人教版七年级数学下册 平面直角坐标系规律试题 专项训练 无答案

平面直角坐标系规律题一.选择题(共32小题)1.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7……,都是斜边在x 轴上,斜边长分别为2,4,6,……的等腰直角三角形,若A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2020的坐标为()A.(1010,0)B.(1012,0)C.(2,1012)D.(2,1010)2.如图:在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…则点P2020的坐标是()A.(673,﹣1)B.(673,1)C.(336,﹣1)D.(336,1)3.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正东方向走10m到达点A5,按如此规律走下去,当机器人走到点A时,点A2019在第()象限.A.一B.二C.三D.四4.如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)5.如图,在平面直角坐标系中,点A1.A2.A3.A4.A5.A6的坐标依次为A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…按此规律排列,则点A2019的坐标是()A.(1009,1)B.(1009,0)C.(1010,1)D.(1010.0)6.如图,在平面直角坐标系中,正方形ABCD的边长是2,点A的坐标是(﹣1,1),动点P从点A出发,以每秒2个单位长度的速度沿A→B→C→D→A→.…路线运动,当运动到2019秒时,点P的坐标为()A.(1,1)B.(1,3)C.(﹣1,3)D.(﹣1,1)7.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA2A3B2,…,依此规律,则点A7的坐标是()A.(﹣8,0)B.(8,﹣8)C.(﹣8,8)D.(0,16)8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2019个点的坐标为()A.(45,6)B.(45,13)C.(45,22)D.(45,0)9.如图,在平面直角坐标系中,AB∥EG∥x轴,BC∥DE∥HG∥AP∥y轴,点D、C、P、H在x轴上,A(1,2),B(﹣1,2),D(﹣3,0),E(﹣3,﹣2),G(3,﹣2),把一条长为2018个单位长度且没有弹性的细线线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣E﹣F﹣G﹣H﹣﹣P﹣A…的规律紧绕在图形“凸”的边上,则细线另一端所在位置的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,0)D.(1,0)10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是()A.(2018,1)B.(2018,0)C.(2018,2)D.(2019,0)11.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2017的坐标为()A.(﹣504,﹣504)B.(﹣505,﹣504)C.(504,﹣504)D.(﹣504,505)12.如图,一个质点在第一象限及x轴,y轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第24秒时质点所在位置的坐标是()A.(0,5)B.(5,0)C.(0,4)D.(4,0)13.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…依此规律跳动下去,则点P第2017次跳动至P2017的坐标是()A.(504,1007)B.(505,1009)C.(1008,1007)D.(1009,1009)14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…根据这个规律探索可得,第100个点的坐标()A.(14,0 )B.(14,﹣1)C.(14,1 )D.(14,2 )15.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A1,A2,A3,A4表示,则顶点A2018的坐标是()A.(504,﹣504)B.(﹣504,504)C.(505,﹣505)D.(﹣505,505)16.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)…根据这个规律,第2016个点的坐标为()A.(45,9)B.(45,13)C.(45,22)D.(45,0)17.如图,第一个正方形的顶点A1(﹣1,1),B1(1,1);第二个正方形的顶点A2(﹣3,3),B2(3,3);第三个正方形的顶点A3(﹣6,6),B3(6,6)按顺序取点A1,B2,A3,B4,A5,B6…,则第12个点应取点B12,其坐标为()A.(12,12)B.(78,78)C.(66,66)D.(55,55)18.如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→)(0,1)→(0,2)→……,且每秒移动一个单位,那么第2018秒时,点所在位置的坐标是()A.(6,44)B.(38,44)C.(44,38)D.(44,6)19.在平面直角坐标系中,一动点从原点出发按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动的路线如图所示,则该动点移动到点A100时的坐标是()A.(49,0)B.(49,1)C.(50,0)D.(50,1)20.如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),……依次扩展下去,则P2018的坐标为()A.(﹣503,503)B.(504,504)C.(﹣506,﹣506)D.(﹣505,﹣505)21.如图,动点P从点(3,0)出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(0,3)……第2018次碰到长方形边上的坐标为()A.(1,4)B.(5,0)C.(8,3)D.(7,4)22.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2017的坐标是()A.(671,﹣1)B.(672,0)C.(672,1)D.(672,﹣1)23.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是()A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)24.如图,在直角坐标系中,设一动点自P0(1,0)处向上运动1个单位长度至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处,…如此继续运动下去,设P n(x n,y n),n=1,2,3,…则x1+x2+…+x99+x100=()A.0B.﹣49C.50D.﹣5025.如图,一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第24秒时跳蚤所在位置的坐标是()A.(0,3)B.(4,0)C.(0,4)D.(4,4)26.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳运1个单位至点P1(1,1)紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位,第4次向右跳运3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,…,依此规律跳动下去,点P第2016次跳动至点P2016的坐标是()A.(505,1008)B.(﹣505,1008)C.(504,1007)D.(﹣504.1007)27.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0).根据这个规律探索可得,第50个点的坐标为()A.(10,5)B.(9,3)C.(10,4)D.(50,0)28.如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x 轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A2017的横坐标为()A.1010B.2C.1D.﹣100629.如图,一个粒子在第一象限内及x、y轴上运动,在第一分钟内它从原点O运动到(1,0),而后它接着按图所示在与x轴、y轴平行的方向上来回运动,且每分钟移动1个长度单位,那么2017分钟后这个粒子所处的位置是()A.(7,45)B.(8,44)C.(44,7)D.(45,8)30.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是()A.(672,0)B.(673,1)C.(672,﹣1)D.(673,0)31.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(﹣2,2),第四次点A3跳动至点A4(3,2),……依此规律跳动下去,则点A2017与点A2018之间的距离是()A.2017B.2018C.2019D.202032.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)→(1,0)→(1,1)→(1,2)→(2,1)→(3,0)→……,则2018分钟时粒子所在点的横坐标为()A.886B.903C.946D.990评卷人得分二.填空题(共10小题)33.如图,在平面直角坐标内有点A0(1,0),点A0第一次跳动到点A1(﹣1,1),第二次点A1跳动到A2(2,1),第三次点A2跳动到A3(﹣2,2),第四次点A3跳动到A4(3,2),……依此规律动下去,则点A2018的坐标是.34.如图,所有正三角形的一边平行于x轴,一顶点在y轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4、…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则A2017的坐标是.35.如图,所有正方形的中心均在坐标原点O,且各边均与x轴成y轴平行,从内到外,它们的边长依次是2,4,6,8,…,每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4,A5,A6,A7,A8;…,则顶点A10的坐标为.36.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的横坐标为.37.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0)、(2,0)、(2,1)、(3,1)、(3,0)、(3,﹣1)、…,根据这个规律探索可得,第220个点的坐标为.38.如图,在平面直角坐标系中,点A的坐标为(1,0),点A第1次跳动至点A1(﹣1,1),第2次向右跳动3个单位长度至点A2(2,1),第3次跳动至点A3(﹣2,2),第4次向右跳动5个单位长度至点A4(3,2),…,依此规律跳动下去,第100次跳动至点A100的坐标是.39.如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2018的坐标为.40.如图,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1换成三角形OA2B2,第三次将三角形OA2B2换成三角形OA3B3,……,若A (﹣3,1),A1(﹣3,2),A2(﹣3,4),A3(﹣3,8),点B(0,2),B1(0,4),B2(0,6),B3(0,8),按这样的规律,将三角形OAB进行2018次变换,得到三角形OA2018B2018,则A2018的坐标是.41.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第100次运动后,动点P的坐标是.42.正六边形ABCDE在平面直角坐标系内的位置如图所示,点A的坐标为(﹣2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2017次翻转之后,点B的坐标是.评卷人得分三.解答题(共8小题)43.在平面直角坐标系中,一只蚂蚁从原点O出发,按向上,向右,向下,向右…的方向依次不断移动,每次移动1个单位,其行走路线如图所求.(1)填写下列各点的坐标A4(,)A8(,)A12(,)(2)直接写出A4n的坐标(n是正整数)(,)(3)说明从点A2016到点A2018的移动方向.44.(1)如图,在x轴上,点A的坐标为3,点B的坐标为5,则AB的中点C的坐标为(2)在图中描出点A(2,1)和B(4,3),连结AB,找出AB的中点D并写出D的坐标.(3)已知点M(a,b),N(c,d),根据以上规律直接写出MN的中点P的坐标.45.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…,如果(1,0)是第一个点,探究规律如下:(1)坐标为(3,0)的是第个点,坐标为(5,0)的是第个点;( 2 )坐标为(7,0)的是第个点;(3)第74个点的坐标为.46.如图,在平面直角坐标系中,第一将△OAB变成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形,找出规律,按此变化规律再将△OA3B3变换成△OA4B4,则A4的坐标是,B4的坐标是;(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是,B n的坐标是.(3)在前面一系列三角形变化中,你还发现了什么?47.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变成△OA2B2,第三次将△OA2B2变成△OA3B3,已知A(1,5),A1(2,5),A2(4,5),A3(8,5);B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后三角形有何变化,找出规律.按此规律将△OA3B3变成△OA4B4,则A4的坐标是,B4的坐标是.(2)若按第(1)题中找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点的坐标有何变化,找出规律,推测A n的坐标是,,B n的坐标是.(3)判断△OA n B n的形状,并说明理由.48.小明在学习了平面直角坐标系后,突发奇想,画出了这样的图形(如图),他把图形与x轴正半轴的交点依次记作A1(1,0),A2(5,0),…A n,图形与y轴正半轴的交点依次记作B1(0,2),B2(0,6),…B n,图形与x轴负半轴的交点依次记作C1(﹣3,0),C2(﹣7,0),…∁n,图形与y轴负半轴的交点依次记作D1(0,﹣4),D2(0,﹣8),…D n,发现其中包含了一定的数学规律.请根据你发现的规律完成下列题目:(1)请分别写出下列点的坐标:A3,B3,C3,D3;(2)请分别写出下列点的坐标:A n,B n,∁n,D n;(3)请求出四边形A5B5C5D5的面积.49.如图,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1,变换成三角形OA2B2,第三次将三角形OA2B2变换成三角形OA3B3,已知A(﹣3,1),A1(﹣3,2),A2(﹣3,4),A3(﹣3,8);B(0,2),B1(0,4),B2(0,6),B3(0,8).(1)观察每次变换前后三角形有何变化,找出规律,按此变换规律再将三角形OA3B3变换成OA4B4,则点A4的坐标为,点B4的坐标为.(2)若按(1)题找到的规律,将三角形OAB进行n次变换,得到三角形OA n B n,则点A n的坐标是,B n的坐标是.50.如图,在直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.已知A(1,3),A1(﹣2,﹣3),A2(4,3),A3(﹣8,﹣3),B(2,0),B1(﹣4,0),B2(8,0),B3(﹣16,0).(1)观察每次变换前后的三角形有何变化,找出其中的规律,按此变化规律再将△OA3B3变换成△OA4B4,则A4点的坐标为,B4点的坐标为.(2)若按第(1)题找到的规律将△OAB进行了n次变换,得到△OA n B n,推测点A n的坐标为,B n的坐标为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提高练习 《平面直角坐标系》
【知识链接】
1.特殊位置的点的坐标特点
2. 平行于坐标轴的直线上的点的坐标特点
3. 各象限的角平分线上的点的坐标特点
4.与坐标轴、原点对称的点的坐标特点
【例题精讲】
例1. 如果点A 的坐标为(a ²+1,-1-b ²),那么点A 在第几象限?为什么?
例2. 如果点A (t -3s ,2t +2s ),B (14-2t +s ,3t +2s -2)关于x 轴对称,求s ,t 的值.
横坐标 纵坐标
第一象限 第二象限 第三象限 第四象限
x正半轴 x负半轴 y正半轴 y负半轴
坐标原点
1.平行于x 轴(或横轴)的直线上的点 相同;
y
1. 第一、三象限角平分线上的点 ;
1.关于x 轴对称的点 ;
2.关于y 轴对称的
例3. 如果│3x -13y +16│+│x +3y -2│=0,那么点P (x ,y )在第几象限?点Q (x +1,y -1)在坐标平面内的什么位置?
例4. 已知点A (—5,0),B (3,0),在y 轴上找一点C ,使ΔABC 的面积为16,建立适当的平面直角坐标系并求出符合条件的点C 的坐标。

例5. 如图为风筝的图案.
(1)若原点用字母O 表示,写出图中点A ,B ,C 的坐标. (2)试求(1)中风筝所覆盖的平面的面积.
O
y
F
E
D
C
B
A
x
例6.已知点A(-2,0)B(4,0)C(-2,-3)。

(1)求A、B两点之间的距离。

(2)求点C到X轴的距离。

(3)求△ABC的面积。

例7.根据如图所示的图形,求封闭区域的面积.
例8.如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线. 实验与探究:
(1) 由图观察易知A (0,2)关于直线l 的对称点A '的坐标为(2,0),请在图中分别标明B (5,3) 、
C (-2,5) 关于直线l 的对称点B '、C '的位置,并写出他们的坐标: B ' 、
C ' ; 归纳与发现:
(2) 结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a ,b )关于第一、三象限的角平分
线l 的对称点P '的坐标为 (不必证明); 运用与拓广:
(3) 已知两点D (1,-3)、E (-1,-4),试在直线l 上确 定一点Q ,使点Q 到D 、E 两点的距离之和最小, 并求出Q 点坐标.
1
2
3456
-1
-2-3-4-5-6-1-2-3-4-5-6
1
23456
7O x
y
l
A
B
A
'
D
'
E
'
C
(第22题图)
【跟踪练习】 一. 选择题
1. 如果点M (a -1,a +1)在x 轴上,则a 的值为( )
A .a =1
B . a =-1
C . a >0
D . a 的值不能确定 2.若点M 在第一、三象限的角平分线上,且点M 到x 轴的距离为2,则点M 的坐标是( )
A .(2,2)
B .(-2,-2)
C .(2,2)或(-2,-2)
D .(2,-2)或(-2,2) 3.已知点P (0,a )在y 轴的负半轴上,则点Q (-2
a -1,-a +1)在第 象限. 4.已知点M (2m +1,3m -5)到x 轴的距离是它到y 轴距离的2倍,则m = 5.对任意实数x ,点2
(2)P x x x -,一定不在..( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
6. 到x 轴的距离等于2的点组成的图形是( )
A . 过点(0,2)且与x 轴平行的直线
B . 过点(2,0)且与y 轴平行的直线
C . 过点(0,-2且与x 轴平行的直线
D . 分别过(0,2)和(0,-2)且与x 轴平行的两条直
线
二. 填空题
7. 直线a 平行于x 轴,且过点(-2,3)和(5,y ),则y = 8. 若点M (a -2,2a +3)是x 轴上的点,则a 的值是
9. 已知点P 的坐标(2-a ,3a +6),且点P 到两坐标轴的距离相等,则点P 的坐标是 10. 若P (x ,y )是第四象限内的点,且2,3x y ==,则点P 的坐标是 三. 解答题
11. 在平面直角坐标系内,已知点(1-2a ,a -2)在第三象限的角平分线上,求a 的值及点的坐标?
12.已知点P (a +1,2a -1)关于x 轴的对称点在第一象限,求a 的取值范围.
13.已知三点A (0,4),B (—3,0),C (3,0),现以A 、B 、C 为顶点画平行四边形,请根据
A 、
B 、
C 三点的坐标,写出第四个顶点
D 的坐标。

14. 如图所示,C ,D 两点的横坐标分别为2,3,线段CD =1;B ,D 两点的横坐标分别为-2,3,线段
BD =5;A ,B 两点的横坐标分别为-3,-2,线段AB =1.
(1)如果x 轴上有两点M (x 1,0),N (x 2,0)(x 1<x 2),那么线段MN 的长为多少? (2)如果y 轴上有两点P (0,y 1),Q (0,y 2)(y 1<y 2),那么线段PQ 的长为多少?
-2x
y
23
4
1-1-3
-40-3-2-1
2
143D
C B
A。

相关文档
最新文档