2019-2020学年广东省惠州市惠城区九年级(上)期末数学试卷解析版

合集下载

广东省惠州市惠城区九年级上学期期末教学质量模拟考试数学试题(含答案)

广东省惠州市惠城区九年级上学期期末教学质量模拟考试数学试题(含答案)

广东省惠州市惠城区2019届九年级上学期期末教学质量模拟考试数学试题一.选择题(共10小题,满分30分)1.下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中是中心对称图形的是()A.B.C.D.2.设方程x2﹣3x﹣1=0的两根分别为x1,x2,则x1+x2=()A.﹣3B.3C.﹣1D.13.函数y=ax2+ax+a(a≠0)的图象可能是下列图象中的()A.B.C.D.4.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习5.半径为10的⊙O和直线l上一点A,且OA=10,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.相切或相交6.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,把△AB C绕AB边上的点D 顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是()A.3B.5C.11D.67.一个圆锥的底面半径是5cm,其侧面展开图是圆心角是150°的扇形,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm8.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣50×20=10890D.(x+180)(50﹣)﹣50×20=108909.如图,点A在双曲线y=﹣上,过点A作AB∥x轴交双曲线y=﹣于点B,点C、D都在x轴上,连接AD、BC,若四边形ABCD是平行四边形,则▱ABCD 的面积为()A.1B.2C.3D.410.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.c<0C.当﹣1<x<2时,y>0D.当x<时,y随x的增大而减小二.填空题(共6小题,满分24分,每小题4分)11.一元二次方程x2﹣4x+2=0的两根为x1,x2,则x12﹣4x1+2x1x2的值为.12.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=.13.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.14.如图,四边形ABCD内接于⊙O,OC∥AD,∠DAB=60°,∠ADC=106°,则∠OCB=°.15.有一人感染流感,经过两轮传播后共有121人患病,则第三轮感染后共有患病.16.如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C(2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y=的图象上,则k的值为.三.解答题(共3小题,满分18分,每小题6分)17.(6分)已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.18.(6分)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C (0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)求出抛物线的顶点坐标,对称轴及二次函数的最大值.19.(6分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.=S1+S2+S3=2,S4=,S5=,S6=+ ,S阴证明:S矩形ABCDS6=S1+S2+S3=.影=S1+20.(7分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地(阴影部分)上种植草坪,使草坪的面积为570m2.求每条道路的宽.21.(7分)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣4,1),B(﹣1,1),C(﹣1,3)请解答下列问题:(1)画出△ABC关于原点O的中心对称图形△A1B1C1,并写出点C的对应点C1的坐标;(2)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2,并直接写出点A旋转至A2经过的路径长.22.(7分)在一个不透明的布袋里装有三个标号分别为1,2,3的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,然后将小球放回布袋,小敏再从布袋中随机取出一个小球,记下数字为y,这样确定了点A的坐标为(x,y).请用列表或画树形图的方法,求点A在函数图象上的概率.23.(9分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.24.(9分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.25.(9分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.参考答案一.选择题1.解:A、不是中心对称图形;B、不是中心对称图形;C、是中心对称图形;D、不是中心对称图形.故选:C.2.解:∵方程x2﹣3x﹣1=0的两根分别为x1,x2,∴x1+x2=3.故选:B.3.解:在函数y=ax2+ax+a(a≠0)中,当a<0时,则该函数开口向下,顶点在y轴左侧,抛物线与y轴的负半轴相交,故选项D错误;当a>0时,则该函数开口向上,顶点在y轴左侧,抛物线与y轴的正半轴相交,故选项A、B错误;故选项C正确;故选:C.4.解:由图形可知,与“前”字相对的字是“真”.故选:B.5.解:若OA⊥l,则圆心O到直线l的距离就是OA的长,等于半径,所以直线l与⊙O相切;若OA与直线l不垂直,根据垂线段最短,圆心O到直线l的距离小于5,即小于半径,所以直线l与⊙O相交.故选:D.6.解:Rt△ABC中,AB==10,由旋转的性质,设AD=A′D=BE=x,则DE=10﹣2x,∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,∴∠A′=∠A,∠A′DE=∠C=90°,∴△A′DE∽△ACB,∴=,即=,解得x=3,=DE×A′D=×(10﹣2×3)×3=6,∴S△A′DE故选:D.7.解:设圆锥的母线长为R,根据题意得2π•5=,解得R=12.即圆锥的母线长为12cm.故选:B.8.解:设房价定为x元,根据题意,得(x﹣20)(50﹣)=10890.故选:B.9.解:∵点A在双曲线y=﹣上,点B在双曲线y=﹣上,且AB∥x轴,∴设A(﹣,b),B(﹣,b),则AB=﹣+,▱ABCD的CD边上高为b,∴S▱ABCD=(﹣+)×b=﹣4+6=2.故选:B.10.解:A、由图象可知函数有最小值,故正确;B、由抛物线与y轴的交点在y的负半轴,可判断c<0,故正确;C、由抛物线可知当﹣1<x<2时,y<0,故错误;D、由图象可知在对称轴的左侧y随x的增大而减小,故正确;故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:∵一元二次方程x2﹣4x+2=0的两根为x1、x2,∴x12﹣4x1=﹣2,x1x2=2,∴x12﹣4x1+2x1x2=﹣2+2×2=2.故答案为:2.12.解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12.故答案为:12.13.解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为:y=x2+2.14.解:∵OC∥AD,∴∠OCD=180°﹣∠ADC=74°,∵四边形ABCD内接于⊙O,∴∠BCD=180°﹣∠DAB=120°,∴∠OCB=∠BCD﹣∠OCD=46°,故答案为:46.15.解:设每轮传染中平均一个人传染了x个人则有:1+x+x(1+x)=121解这个方程,得x1=10,x2=﹣12(不合题意,舍去)所以平均一人传染了10个人第三轮后共有121+121×10=1331(人)即第三轮后共有1331人患病故答案为:1331人16.解:∵A(﹣3,5),B(﹣3,0),C(2,0),∴AB=5,BC=2﹣(﹣3)=2+3=5,AB⊥x轴,∴△ABC是等腰直角三角形,过点A′作A′E⊥AB于E,过点C′作C′F⊥x轴于F,则A′E=3,BE==4,∵△A′BC′是△ABC旋转得到,∴∠A′BE=∠C′BF,在△A′BE和△C′BF中,,∴△A′BE≌△C′BF(AAS),∴BF=BE=4,C′F=A′E=3,∴OF=BF﹣OB=4﹣3=1,∴点C′的坐标为(1,﹣3),把(1,﹣3)代入y=得,=﹣3,解得k=﹣3.故答案为:﹣3.三.解答题(共3小题,满分18分,每小题6分)17.(1)证明:原方程可化为x2﹣(2m+2)x+m2+2m=0,∵a=1,b=﹣(2m+2),c=m2+2m,∴△=b2﹣4ac=[﹣(2m+2)]2﹣4(m2+2m)=4>0,∴不论m为何值,该方程总有两个不相等的实数根.(2)解:将x=3代入原方程,得:(3﹣m)2﹣2(3﹣m)=0,解得:m1=3,m2=1.∴m的值为3或1.18.解:(1)设抛物线解析式为y=a(x+1)(x﹣3),把C(0,3)代入得a•1•(﹣3)=3,解得a=﹣1,所以抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,所以抛物线的顶点坐标为(1,4),对称轴为:直线x=1,二次函数的最大值是4.19.证明:由题意:S矩形ABCD=S1+S2+S3=2,S4=S2,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S2+S3=2.故答案为:S2,S3,S4,S5,2.四.解答题(共3小题,满分21分,每小题7分)20.解:设道路的宽为xm,则草坪的长为(32﹣2x)m,宽为(20﹣x)m,根据题意得:(32﹣2x)(20﹣x)=570整理得:x2﹣36x+35=0,解得:x1=1,x2=35(不合题意,舍去).答:每条道路的宽为1米.21.解:(1)△ABC关于原点O的中心对称图形△A1B1C1如图所示:点C1的坐标为(1,﹣3).(2)△ABC绕原点O逆时针旋转90°后得到的△A2B2C2如图所示:∵OA==,∴点A经过的路径长为=π.22.解:由表格可知,共有9种等可能出现的结果,其中点A在函数图象上(记为事件A)的结果有两种,即(2,3),(3,2)所以,.五.解答题(共3小题,满分27分,每小题9分)23.解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=x y=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)=S△CDA+S△EDA=∴S△CDE(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不高于反比例函数图象∴由图象得,x≥10,或﹣4≤x<024.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°,∴△AEC∽△ACB,∴=,∴AE==.25.解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣=∵S△AMN=AM•MN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).。

惠州市惠城区2020年新人教版九年级上期末数学试卷含答案解析

惠州市惠城区2020年新人教版九年级上期末数学试卷含答案解析

2020-2021学年广东省惠州市惠城区九年级(上)期末数学试卷一.选择题(本大题共10个小题,每小题3分,共30分)1.下列图案是几种名车标志,其中属于中心对称图形的是()A.1个B.2个C.3个D.4个2.方程x(x﹣1)=0的根是()A.0 B.1 C.0或1 D.无解3.抛物线y=﹣(x+2)2﹣1顶点坐标是()A.(2,﹣1) B.(2,1) C.(﹣2,﹣1) D.(﹣2,1)4.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.5.某果园第1年水果产量为100吨,第3年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为() A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=1446.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac<0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中正确的是()A.①②③ B.①③④ C.②③④ D.①②④7.已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,使不等式ax+b >成立的自变量x的取值范围是()A.x<﹣1或x>4 B.﹣1<x<4 C.x<﹣1或0<x<4 D.﹣1<x<0或x>48.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30°B.45°C.60°D.40°9.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5 B.1.5 C.D.110.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A.1.5 B.2 C.2.5 D.3二.填空题(本大题共6个小题,每小题4分,共24分)11.已知反比例函数y=的图象经过点(2,﹣3),则此函数的关系式是.12.把抛物线y=﹣x2先向上平移2个单位,再向左平移3个单位,所得的抛物线是.13.一次聚会中每两人都握了一次手,所有人共握手15次,共有人参加聚会.14.在拼图游戏中,从图(1)的四张纸片中,任取两张纸片,能拼成“房子”如图(2)的概率为.15.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.16.如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r=.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.已知关于x的一元二次方程x2+kx﹣1=0一个根为﹣2,求另一个根和k的值.18.如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)将Rt△ABC绕点O顺时针旋转90°后得到Rt△A′B′C′,试在图中画出图形Rt△Rt△A′B′C′,并写出C′的坐标;(2)求弧的长.19.如图,一座抛物线型拱桥,当水面宽AB为12m时,桥洞顶部离水面4m.若桥洞顶部离水面1m是警戒水位.求警戒水位时的水面宽度.三.解答题(二)(本大题共3个小题,每小题7分,共21分)2020大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)试求取出的两张卡片数字之和为奇数的概率;(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O的半径.22.景泰特产专卖店销售杏脯,其进价为每千克40元,按每千克60元销售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加2020.若该专卖店销售这种杏脯要想平均每天获利2240元,请回答:(1)每千克杏脯应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.已知反比例函数y=的图象的一支位于第二象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点M在该反比例函数位于第二象限的图象上,点N与点M关于x 轴对称,若△OMN的面积为6,求m的值;(3)在(2)的条件下,当2<MN<4时,求线段OA的取值范围(直接写出结果)24.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=12020(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.25.如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.(1)求抛物线的解析式;(2)当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S 的最大值?(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M的坐标.2020-2021学年广东省惠州市惠城区九年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共10个小题,每小题3分,共30分)1.下列图案是几种名车标志,其中属于中心对称图形的是()A.1个B.2个C.3个D.4个【考点】中心对称图形.【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【解答】解:第二、三个图形是中心对称图形的图案,故选B.【点评】此题主要考查了中心对称图形,关键是找出对称中心.2.方程x(x﹣1)=0的根是()A.0 B.1 C.0或1 D.无解【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】解一元二次方程时,需要把二次方程化为两个一元一次方程,此题可化为:x=0或x ﹣1=0,解此两个一次方程即可.【解答】解:∵x(x﹣1)=0∴x=0或x﹣1=0∴x1=0,x2=1.故选C.【点评】此题虽不难,但是告诉了学生求解的一个方法,高次的要化为低次的,多元得要化为一元的.3.抛物线y=﹣(x+2)2﹣1顶点坐标是()A.(2,﹣1) B.(2,1) C.(﹣2,﹣1) D.(﹣2,1)【考点】二次函数的性质.【分析】根据抛物线的性质,即可得出结论.【解答】解:∵抛物线的解析式为y=﹣(x+2)2﹣1,∴抛物线的顶点为(﹣2,﹣1).故选C.【点评】本题考查了二次函数的性质中的抛物线的顶点式,解题的关键是牢记抛物线的性质.本题属于基础题型,解决此类题型最好的办法是熟悉二次函数的性质.4.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】投掷这个正方体会出现1到6共6个数字,每个数字出现的机会相同,即有6个可能结果,而这6个数中有2,4,6三个偶数,则有3种可能.【解答】解:根据概率公式:P(出现向上一面的数字为偶数)=.故选C.【点评】用到的知识点为:概率等于所求情况数与总情况数之比.5.某果园第1年水果产量为100吨,第3年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】第3年的产量=第1年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:第2年的产量为100(1+x),第3年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选:D.【点评】考查列一元二次方程;得到第3年产量的等量关系是解决本题的关键.6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac<0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中正确的是()A.①②③ B.①③④ C.②③④ D.①②④【考点】二次函数图象与系数的关系.【分析】①由二次函数y=ax2+bx+c(a≠0)的图象开口方向知道a<0,与y轴交点知道c>0,由此即可确定ac的符号;②由于当x=﹣1时,y=a﹣b+c,而根据图象知道当x=﹣1时y<0,由此即可判定a﹣b+c 的符号;③根据图象知道当x<0时,y<c,由此即可判定此结论是否正确;④根据图象与x轴交点的情况即可判定是否正确.【解答】解:∵图象开口向下,∴a<0,∵图象与y轴交于正半轴,则c>0,∴ac<0,故选项①正确;∵当x=﹣1时,对应y值小于0,即a﹣b+c<0,故选项②正确;③当x<0时,y<c,故选项③错误;④利用图象与x轴交点都大于﹣1,故方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根,故选项④正确;故选;D.【点评】此题主要考查了利用图象求出a,b,c的范围,以及特殊值的代入能得到特殊的式子,如:当x=1时,y>0,a+b+c>0;x=﹣1时,y<0,a﹣b+c<0.7.已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,使不等式ax+b >成立的自变量x的取值范围是()A.x<﹣1或x>4 B.﹣1<x<4 C.x<﹣1或0<x<4 D.﹣1<x<0或x>4 【考点】反比例函数与一次函数的交点问题.【分析】当一次函数的值>反比例函数的值时,直线在双曲线的上方,由此直接根据图象可以写出一次函数的值>反比例函数的值x的取值范围.【解答】解:由图象得出,一次函数y=ax+b和反比例函数y=的图象的交点A、B两点的横坐标分别为﹣1,4,∵等式ax+b>的解集为一次函数的值>反比例函数的值x的取值范围,∴不等式ax+b>kx的解集为x<﹣1或0<x<4,故选C.【点评】本题考查一次函数的解析式y=kx+b和反比例函数y=中图象问题,这里体现了数形结合的思想,做此类题一定要找到关键的点A、B.8.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30°B.45°C.60°D.40°【考点】切线的性质.【专题】计算题.【分析】根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=AOB=30°.【解答】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=AOB=30°.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.9.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5 B.1.5 C.D.1【考点】旋转的性质.【分析】解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC ﹣BD计算即可得解.【解答】解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=AC•tan30°=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故选:D.【点评】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.10.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A.1.5 B.2 C.2.5 D.3【考点】圆锥的计算.【专题】计算题.【分析】半径为6的半圆的弧长是6π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6π,然后利用弧长公式计算.【解答】解:设圆锥的底面半径是r,半径为6的半圆的弧长是6π,则得到2πr=6π,解得:r=3,这个圆锥的底面半径是3.故选:D.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.二.填空题(本大题共6个小题,每小题4分,共24分)11.已知反比例函数y=的图象经过点(2,﹣3),则此函数的关系式是y=﹣.【考点】待定系数法求反比例函数解析式.【分析】反比例函数的图象经过一定点,将此点坐标代入函数解析式y=(k≠0)即可求得k 的值.【解答】解:∵反比例函数y=的图象经过点(2,﹣3),∴﹣3=,解得k=﹣6,∴反比例函数解析式为y=﹣.故答案为:y=﹣.【点评】此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.12.把抛物线y=﹣x2先向上平移2个单位,再向左平移3个单位,所得的抛物线是y=﹣(x+3)2+2..【考点】二次函数图象与几何变换.【专题】几何变换.【分析】抛物线y=﹣x2的顶点坐标为(0,0),则把它向上平移2个单位,再向左平移3个单位,所得的抛物线的顶点坐标为(﹣3,2),然后写出顶点式即可.【解答】解:把抛物线y=﹣x2先向上平移2个单位,再向左平移3个单位,所得的抛物线解析式为y=﹣(x+3)2+2.故答案为y=﹣(x+3)2+2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.一次聚会中每两人都握了一次手,所有人共握手15次,共有6人参加聚会.【考点】一元二次方程的应用.【分析】设有x人参加聚会,每个人都与另外的人握手一次,则每个人握手x﹣1次,且其中任何两人的握手只有一次,因而共有x(x﹣1)次,设出未知数列方程解答即可.【解答】解:设有x人参加聚会,根据题意列方程得,x(x﹣1)=15,解得x1=6,x2=﹣5(不合题意,舍去);故答案为:6;【点评】此题主要考查列方程解应用题,理解:设有x人参加聚会,每个人都与另外的人握手一次,则每个人握手x﹣1次是关键.14.在拼图游戏中,从图(1)的四张纸片中,任取两张纸片,能拼成“房子”如图(2)的概率为.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有12种等可能的结果数,再找出能拼成“房子”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中能拼成“房子”的结果数为8,所以能拼成“房子”的概率==.故答案为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.15.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.【考点】旋转的性质.【分析】根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.【解答】解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.【点评】此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.16.如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r=1.【考点】三角形的内切圆与内心.【分析】首先求出AB的长,再连圆心和各切点,利用切线长定理用半径表示AF和BF,而它们的和等于AB,得到关于r的方程,即可求出.【解答】解:如图,设△ABC的内切圆与各边相切于D,E,F,连接OD,OE,OF,则OE⊥BC,OF⊥AB,OD⊥AC,设半径为r,CD=r,∵∠C=90°,AC=4,BC=3,∴AB=5,∴BE=BF=4﹣r,AF=AD=3﹣r,∴4﹣r+3﹣r=5,∴r=1.∴△ABC的内切圆的半径为1.故答案为;1.【点评】此题主要考查了勾股定理以及直角三角形内切圆半径求法等知识,熟练掌握切线长定理和勾股定理是解题的关键.三.解答题(一)(本大题共3个小题,每小题6分,共18分)17.已知关于x的一元二次方程x2+kx﹣1=0一个根为﹣2,求另一个根和k的值.【考点】根与系数的关系.【专题】计算题.【分析】设方程的另一根为t,根据根与系数的关系得到2+t=﹣k,﹣2t=﹣1,然后求出t,再计算出k即可.【解答】解:设方程的另一根为t,根据题意得﹣2+t=﹣k,﹣2t=﹣1,所以t=,k=,即另一个根和k的值分别为,.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.18.如图,方格纸中的每个小方格都是边长为1个单位的正方形.Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).(1)将Rt△ABC绕点O顺时针旋转90°后得到Rt△A′B′C′,试在图中画出图形Rt△Rt△A′B′C′,并写出C′的坐标;(2)求弧的长.【考点】作图-旋转变换;弧长的计算.【分析】(1)根据旋转的定义分别作出A、B、C的对应点A′、B′、C′即可,点C′的坐标由图象即可知道.(2)根据弧长公式代入计算即可.【解答】解:(1)如图所示,C′(3,1).(2)弧的长==π.【点评】本题考查旋转的变换、弧长的计算,理解旋转的定义是解决问题的关键,记住弧长公式L=,本题属于中考常考题型.19.如图,一座抛物线型拱桥,当水面宽AB为12m时,桥洞顶部离水面4m.若桥洞顶部离水面1m是警戒水位.求警戒水位时的水面宽度.【考点】二次函数的应用.【分析】以线段AB所在直线为x轴、AB的中垂线为y轴建立平面直角坐标系求出函数解析式,根据题意求出y=3时x的值即可的警戒水位时水面宽度.【解答】解:如图,以线段AB所在直线为x轴,AB的中垂线为y轴建立坐标系,抛物线顶点(0,4)且经过(6,0),设y=ax2+4,将点B(6,0)代入,得:36a+4=0,∴,∴当y=3时,,解得:x=±3故警戒水位时的水面宽度3﹣(﹣3)=6m.【点评】本题主要考查二次函数的实际应用能力,解决此问题首先建立合适的平面直角坐标系是解题的前提,熟练准确求出函数关系式是基本技能和关键.三.解答题(二)(本大题共3个小题,每小题7分,共21分)2020大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)试求取出的两张卡片数字之和为奇数的概率;(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)依据题意画树状图法分析所有等可能和出现所有结果的可能,然后根据概率公式求出该事件的概率;(2)根据(1)中所求,进而求出两人获胜的概率,即可得出答案.【解答】解:(1)画树状图得:,由上图可知,所有等可能结果共有9种,其中两张卡片数字之和为奇数的结果有4种.∴P=.(2)不公平;理由:由(1)可得出:取出的两张卡片数字之和为偶数的概率为:.∵<,∴这个游戏不公平.【点评】此题主要考查了游戏公平性,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.21.如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F.(1)求证:CF=BF;(2)若CD=6,AC=8,求⊙O的半径.【考点】圆周角定理;勾股定理;圆心角、弧、弦的关系.【分析】(1)首先延长CE交⊙O于点P,由垂径定理可证得∠BCP=∠BDC,又由C是的中点,易证得∠BDC=∠CBD,继而可证得CF=BF;(2)由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠ACB=90°,然后由勾股定理求得AB的长,继而求得答案.【解答】(1)证明:延长CE交⊙O于点P,∵CE⊥AB,∴=,∴∠BCP=∠BDC,∵C是的中点,∴CD=CB,∴∠BDC=∠CBD,∴∠CBD=∠BCP,∴CF=BF;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∵CD=6,AC=8,∴BC=6,在Rt△ABC中,AB==10,∴⊙O的半径为5.【点评】此题考查了圆周角定理、垂径定理、等腰三角形的判定以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.22.景泰特产专卖店销售杏脯,其进价为每千克40元,按每千克60元销售,平均每天可售出100千克.后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加2020.若该专卖店销售这种杏脯要想平均每天获利2240元,请回答:(1)每千克杏脯应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)设每千克杏脯应降价x元,则每天销售可增加10x千克,根据每天获利2240元,列方程求解;(2)根据题意,为尽可能让利于顾客,应该降价6元,求出此时的折扣.【解答】解:(1)设每千克杏脯应降价x元,则每天销售可增加10x千克,由题意得,(60﹣x﹣40)═2240,解得:x1=4,x2=6.答:每千克杏脯应降价4元或6元;(2)每千克杏脯降价6元,此时每千克54元,54÷60=0.9.答:该店应按原售价的9折出售.【点评】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.三.解答题(三)(本大题共3个小题,每小题9分,共27分)23.已知反比例函数y=的图象的一支位于第二象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点M在该反比例函数位于第二象限的图象上,点N与点M关于x 轴对称,若△OMN的面积为6,求m的值;(3)在(2)的条件下,当2<MN<4时,求线段OA的取值范围(直接写出结果)【考点】反比例函数的性质;反比例函数图象上点的坐标特征.【分析】(1)根据反比例函数的性质可得:双曲线的两支分别位于第一、第三象限时,m﹣5<0,再解即可;(2)设M,根据点N与点M关于x轴对称,可得N.然后表示出MN的长,再根据三角形的面积公式可得,再解即可;(3)首先计算出当MN=2时AO的值,再计算出当MN=4时AO的值,然后可得答案.【解答】解:(1)∵反比例函数的图象的一支位于第二象限,∴该函数图象的另一支位于第四象限.∴m﹣5<0,解得m<5.∴m的取值范围为m<5.(2)设M,∵点N与点M关于x轴对称,∴N.∴MN=﹣(﹣)=,OA=|a|=﹣a,∴×(﹣a)×=6,解得:m=﹣1;(3)当MN=2时,×MN×AO=6,则AO=6,当MN=4时,×MN×AO=6,则AO=3,∴当2<MN<4时,则3<OA<6.【点评】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是掌握(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.正确表示出M、N的坐标,MN的长.24.如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠ACD=12020(1)求证:CD是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.【考点】扇形面积的计算;等腰三角形的性质;切线的判定;特殊角的三角函数值.【专题】几何图形问题.【分析】(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.【解答】(1)证明:连接OC.∵AC=CD,∠ACD=12020∴∠A=∠D=30°.∵OA=OC,∴∠2=∠A=30°.∴∠OCD=180°﹣∠A﹣∠D﹣∠2=90°.即OC⊥CD,∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠1=2∠A=60°.∴S=.扇形BOC在Rt△OCD中,∵,∴.∴.∴图中阴影部分的面积为:.【点评】此题综合考查了等腰三角形的性质、切线的判定方法、扇形的面积计算方法.25.如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.(1)求抛物线的解析式;(2)当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S 的最大值?(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M的坐标.【考点】二次函数综合题.【分析】(1)设出解析式,由待定系数法可得出结论;(2)点E在抛物线上,用x去表示y,结合三角形面积公式即可得出三角形OEB的面积S与x之间的函数关系式,再由E点在x轴下方,得出1≤x≤5,将三角形OEB的面积S与x之间的函数关系式配方,即可得出最值;(3)找出D点关于y轴对称的对称点D′,结合三角形内两边之和大于第三边,即可确定当MD+MB最小时M点的坐标.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,则,解得:.故抛物线解析式为y=x2﹣4x+.(2)过点E作EF⊥x轴,垂足为点F,如图1所示.E点坐标为(x,x2﹣4x+),F点的坐标为(x,0),∴EF=0﹣(x2﹣4x+)=﹣x2+4x﹣.∵点E(x,y)是抛物线上一动点,且在x轴下方,∴1≤x≤5.三角形OEB的面积S=OB•EF=×5×(﹣x2+4x﹣)=﹣(x﹣3)2+(1≤x≤5).当x=3时,S有最大值.(3)作点D关于y轴的对称点D′,连接BD′,如图2所示.∵抛物线解析式为y=x2﹣4x+=(x﹣3)2﹣,∴D点的坐标为(3,﹣),∴D′点的坐标为(﹣3,﹣).由对称的特性可知,MD=MD′,∴MB+MD=MB+MD′,当B、M、D′三点共线时,MB+MD′最小.设直线BD′的解析式为y=kx+b,则,解得:,∴直线BD′的解析式为y=x﹣.当x=0时,y=﹣,∴点M的坐标为(0,﹣).【点评】本题考查了二次函数的运用、待定系数法求二次函数解析式、点的对称以及三角形边的关系,解题的关键是:(1)能够熟练运用待定系数法求解析式;(2)利用三角形面积公式找出三角形面积的解析式,再去配方求最值;(3)先找对称点,再结合三角形内两边之和大于第三边确定点M的位置.本题属于中档题,难度不大,失分点在于(2)中部分同学会忘记求x的取值范围;(3)中不会用找对称点借助三角形边的关系确定M点的位置.2020年4月4日。

广东省惠州市惠城区九年级(上)期末数学试卷

广东省惠州市惠城区九年级(上)期末数学试卷

九年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.一元二次方程4x2+1=4x的根的情况是()A. 没有实数根B. 只有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根2.在正方形、矩形、菱形、平行四边形中,其中是中心对称图形的个数为()A. 1B. 2C. 3D. 43.如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数是()A. 100∘B. 110∘C. 120∘D. 130∘4.在同一平面内,⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A. 点A在圆内B. 点A在圆上C. 点A在圆外D. 无法确定5.关于反比例函数y=-2x,下列说法正确的是()A. 图象过(1,2)点B. 图象在第一、三象限C. 当x>0时,y随x的增大而减小D. 当x<0时,y随x的增大而增大6.对于二次函数y=-x2+2x-4,下列说法正确的是()A. 图象开口向上B. 对称轴是x=2C. 当x>1时,y随x的增大而减小D. 图象与x轴有两个交点7.已知二次函数y=ax2+bx+c的图象如图所示,那么下列判断不正确的是()A. b2−4ac>0B. a−b+c>0C. b=−4aD. 关于x的方程ax2+bx+c=0的根是x1=−1,x2=58.在平面直角坐标系中,将A(-1,5)绕原点逆时针旋转90°得到A′,则点A′的坐标是()A. (−1,5)B. (5,−1)C. (−1,−5)D. (−5,−1)9.如图,幼儿园计划用30m的围栏靠墙围成一个面积为100m2的矩形小花园(墙长为15m),则与墙垂直的边x为()A. 10m或5mB. 5m或8mC. 10mD. 5m10.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=kx(k>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q分别作x轴、y轴的垂线,垂足为点C、D,QD交PA于点E,随着m的增大,四边形ACQE的面积()A. 增大B. 减小C. 先减小后增大 D. 先增大后减小二、填空题(本大题共6小题,共24.0分)11.已知关于x的方程x2+3x+a=0有一个根为-2,则另一个根为______.12.抛物线y=-x2+1向右平移2个单位长度,再向下平移3个长度单位得到的抛物线解析式是______.13.如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为______.14.转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701转动转盘一次,落在“铅笔”的概率约是(结果保留小数点后一位).15.若圆锥底面圆的周长为8π,侧面展开图的圆心角为90°,则该圆锥的母线长为______.16.如图,在平面内2条直线相交最多形成1个交点,3条直线相交最多形成3个交点,4条直线相交最多形成6个交点,现有10条直线相交最多形成______个交点.三、计算题(本大题共1小题,共6.0分)17.如图如示,王强在一次高尔夫球的练习中,在O点处击球,球的飞行路线满足抛物线y=−15x2+85x,其中y(米)是球的飞行高度,x(米)是球飞出的水平距离,球落地时离洞的水平距离为2米.(1)求此次击球中球飞行的最大水平距离;(2)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球的飞行路线应满足怎样的抛物线?求出其解析式.四、解答题(本大题共8小题,共60.0分)18.解方程:3x2-2x-3=0.19.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,CD=23,求阴影部分的面积.20.某钢铁厂计划今年第一季度一月份的总产量为500t,三月份的总产量为720t,若平均每月的增长率相同.(1)第一季度平均每月的增长率;(2)如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000t?21.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.(1)求证:EF=ED;(2)若AB=22,CD=1,求FE的长.22.小明、小刚和小红各自打算随机选择元旦的上午或下午去红花湖景区游玩画树状图解答下列问题:(1)小明和小刚都在元旦上午去游玩的概率为______;(2)求他们三人在同一个半天去游玩的概率.23.如图,直线y=-x+1与反比例函数y=kx的图象相交于点A、B,过点A作AC⊥x轴,垂足为点C(-2,0),连接AC、BC.(1)求反比例函数的解析式;(2)求S△ABC;(3)利用函数图象直接写出关于x的不等式-x+1<kx的解集.24.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.25.如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒:(1)填空:当点M在AC上时,BN=______(用含t的代数式表示);(2)当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;(3)过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.答案和解析1.【答案】C【解析】解:原方程可化为:4x2-4x+1=0,∵△=42-4×4×1=0,∴方程有两个相等的实数根.故选:C.先求出△的值,再判断出其符号即可.本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△的关系是解答此题的关键.2.【答案】D【解析】解:在正方形、矩形、菱形、平行四边形中,其中都是中心对称图形,故共有4个中心对称图形.故选:D.根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可直接选出答案.此题主要考查了中心对称图形,正确掌握中心对称图形的性质是解题关键.3.【答案】B【解析】解:∵四边形ABCD是⊙O的内接四边形,∴∠C+∠A=180°,∴∠A=180°-70°=110°.故选:B.直接根据圆内接四边形的性质求解.本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.4.【答案】A【解析】解:∵⊙O的半径为5cm,点A到圆心O的距离为3cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:A.根据点与圆的位置关系的判定方法进行判断.本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.5.【答案】D【解析】解:∵k=-2<0,所以函数图象位于二四象限,在每一象限内y随x的增大而增大,图象是轴对称图象,故A、B、C错误.故选:D.反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大,根据这个性质选择则可.本题考查了反比例函数图象的性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.注意反比例函数的图象应分在同一象限和不在同一象限两种情况分析.6.【答案】C【解析】解:A、a=-1<0,故抛物线开口向下,故错误;B、函数对称轴x=-=1,故错误;C、当x>1时,y随x的增大而减小,正确;D、△=b2-4ac=4-4×4=-4<0,图象与x轴无交点,故错误;故选:C.A、用a=-1<0来确定;B、用对称轴x=-来确定;C、当x>1时,y随x的增大而减小,正确;D、用△=b2-4ac来确定.本题考查的是二次函数图象的基本性质,是一道基本题,难度不大.7.【答案】B【解析】解:(A)抛物线与x轴交于两点,所以△>0,故A错误;(B)当x=-1,y=a-b+c=0,故B错误;(C)由图象可知对称轴为:x=2,∴=2,∴b=-4a,故C正确;(D)由图可知关于x的方程ax2+bx+c=0的根是x1=-1,x2=5,故D正确;故选:B.根据二次函数的图象与性质即可求出答案.本题考查二次函数的图象,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.8.【答案】D【解析】解:由图知A点的坐标为(-1,5),根据旋转中心O,旋转方向逆时针,旋转角度90°,画图,从而得A′点坐标为(-5,-1).故选:D.根据旋转的性质结合坐标系内点的坐标特征解答.考查了坐标与图形变化-旋转,本题涉及图形的旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心,旋转方向,旋转角度,通过画图求解.9.【答案】C【解析】解:设与墙垂直的边长x米,则与墙平行的边长为(30-2x)米,根据题意得:(30-2x)x=100,整理得:x2-15x+50=0,解得:x1=5,x2=10.当x=5时,30-2x=20>15,∴x=5舍去.故选:C.设与墙垂直的边长x米,则与墙平行的边长为(30-2x)米,根据矩形的面积公式结合矩形小花园的面积为100m2,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.【答案】A【解析】解:AC=m-1,CQ=n,则S四边形ACQE=AC•CQ=(m-1)n=mn-n.∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).∴S四边形ACQE=AC•CQ=4-n,∵当m>1时,n随m的增大而减小,∴S四边形ACQE=4-n随m的增大而增大.故选:A.首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.11.【答案】-1【解析】解:设方程的两个根为a、b,∴a+b=-3,∵方程的一根a=-2,∴b=-1.故答案为:-1.设方程的两个根为a、b,由根与系数的关系找出a+b=-3,代入a=-2即可得出b 值.本题考查了跟与系数的关系,根据方程的系数找出a+b=-3时解题的关键.12.【答案】y=-(x-2)2-2【解析】解:由“左加右减”的原则可知,将抛物线y=-x2+1向右平移2个单位长度所得的抛物线的解析式为:y=-(x-2)2+1.再向下平移3个单位长度所得抛物线的解析式为:y=-(x-2)2-2.故答案是:y=-(x-2)2-2.根据“上加下减,左加右减”的原则进行解答即可.本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.13.【答案】17°【解析】解:∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,∴∠B'AC'=33°,∠BAB'=50°,∴∠B′AC的度数=50°-33°=17°.故答案为:17°.先利用旋转的性质得到∠B'AC'=33°,∠BAB'=50°,从而得到∠B′AC的度数.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.14.【答案】0.7【解析】。

惠州市九年级上册期末测试数学试题(含答案)

惠州市九年级上册期末测试数学试题(含答案)

惠州市九年级上册期末测试数学试题(含答案)一、选择题1.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)2.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .193.二次函数y =3(x -2)2-1的图像顶点坐标是( ) A .(-2,1) B .(-2,-1)C .(2,1)D .(2,-1) 4.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( )A .⊙O 上B .⊙O 外C .⊙O 内5.若x=2y ,则xy的值为( ) A .2B .1C .12D .136.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .197.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .48.函数y=(x+1)2-2的最小值是( )A .1B .-1C .2D .-2 9.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内 B .P 在圆上 C .P 在圆外 D .无法确定 10.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .18011.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤12.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( ) A .方差 B .众数 C .平均数 D .中位数 13.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( )A .-2B .2C .-3D .314.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③15.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题16.正方形ABCD 的边长为4,圆C 半径为1,E 为圆C 上一点,连接DE ,将DE 绕D 顺时针旋转90°到DE’,F 在CD 上,且CF=3,连接FE’,当点E 在圆C 上运动,FE’长的最大值为____.17.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.18.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________. 19.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.20.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.21.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm . 22.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 23.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.24.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 25.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.26..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______. 27.抛物线()2322y x =+-的顶点坐标是______.28.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.29.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.30.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.三、解答题31.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______; ②若3BE BQ ==,求BP 的长; (2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径:②若O 与矩形ABCD 的一边相切,求O 的半径.32.如图,已知二次函数2223(0)y x mx m m =-++>的图象与x 轴交于,A B 两点(点A在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)点B 的坐标为 ,点D 的坐标为 ;(用含有m 的代数式表示) (2)连接,CD BC .①若CB 平分OCD ∠,求二次函数的表达式; ②连接AC ,若CB 平分ACD ∠,求二次函数的表达式.33.先化简,再求值:221a a -÷(1﹣11a +),其中a 是方程x 2+x ﹣2=0的解. 34.在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点及点O 都在格点上(每个小方格的顶点叫做格点).(1)以点O 为位似中心,在网格区域内画出△A ′B ′C ′,使△A ′B ′C ′与△ABC 位似(A ′、B ′、C ′分别为A 、B 、C 的对应点),且位似比为2:1; (2)△A ′B ′C ′的面积为 个平方单位;(3)若网格中有一格点D ′(异于点C ′),且△A ′B ′D ′的面积等于△A ′B ′C ′的面积,请在图中标出所有符合条件的点D ′.(如果这样的点D ′不止一个,请用D 1′、D 2′、…、D n ′标出)35.如图示,AB 是O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.四、压轴题36.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.37.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.38.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切?39.如图, AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得DAC AED∠=∠.(1)求证: AC是⊙O的切线;(2)若点E是BC的中点, AE与BC交于点F,①求证: CA CF=;②若⊙O的半径为3,BF=2,求AC的长.40.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .2.D解析:D 【解析】 【分析】由DE ∥BC 知△ADE ∽△ABC ,然后根据相似比求解. 【详解】 解:∵DE ∥BC ∴△ADE ∽△ABC.又因为DE =2,BC =6,可得相似比为1:3. 即ADE ABC 的面积的面积=2213:=19.故选D. 【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.3.D解析:D 【解析】 【分析】由二次函数的顶点式,即可得出顶点坐标. 【详解】解:∵二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ), ∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1). 故选:D . 【点睛】此题考查了二次函数的性质,二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ).4.B解析:B 【解析】 【分析】根据圆周角定理可知当∠C=90°时,点C 在圆上,由由题意∠C =88°,根据三角形外角的性质可知点C 在圆外.解:∵以AB 为直径作⊙O , 当点C 在圆上时,则∠C=90°而由题意∠C =88°,根据三角形外角的性质 ∴点C 在圆外.故选:B . 【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.5.A解析:A 【解析】 【分析】 将x=2y 代入xy中化简后即可得到答案. 【详解】 将x=2y 代入x y得: 22x yy y ==, 故选:A. 【点睛】此题考查代数式代入求值,正确计算即可.6.B解析:B 【解析】试题分析:∵DE ∥BC ,∴AD DE AB BC =,∵13AD AB =,∴31DE BC =.故选B . 考点:平行线分线段成比例.7.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长.【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=, 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 8.D解析:D【解析】【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.9.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P 到圆心O 的距离为4.5,⊙O 的半径为4,∴点P 在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.10.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π, ∴42180n ππ⨯=解得:90n =,即其圆心角度数是90︒故选C .【点睛】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.11.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴x = ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.12.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D .【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m ,则1•m=2,解得m=2.故选B .【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a.要求熟练运用此公式解题. 14.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1, ∴﹣2b a=﹣1, ∴2a =b ,即:2a ﹣b =0,故②错误.∵二次函数y =ax 2+bx+c 图象的一部分,图象过点A (﹣3,0),对称轴为直线x =﹣1, ∴二次函数与x 轴的另一个交点的坐标为(1,0),∴当x =1时,有a+b+c =0,故结论③错误;④∵抛物线的开口向下,对称轴x =﹣1,∴当x <﹣1时,函数值y 随着x 的增大而增大,∵﹣5<﹣1则y 1<y 2,则结论④正确故选:C .【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△=b2-4ac决定:△>0时,抛物线与x轴有2个交点;△= 0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.15.B解析:B【解析】【分析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系二、填空题16.【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=解析:171+【解析】【分析】先作出FE’最大时的图形,再利用勾股定理即可求解.【详解】解:如下图,过点F作FP⊥AB于P,延长DP到点E’,使PE’=1,此时FE’长最大,由题可知,PF=4,DF=1,∴DP=2241+=17,∴FE’=171+,+故答案是:171【点睛】本题考查了图形的旋转,圆的基本性质,勾股定理的应用,中等难度,准确找到点P的位置是解题关键.17.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.18.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=-3,x1x2=-5,则 x1+x2-x1x2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x2=-3,x1x2=-5是解题的关键.19.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.20.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.21.2-2【解析】【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入运算即可.【详解】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=cm,故答案为解析:2【解析】【分析】根据黄金分割点的定义,知AP 是较长线段;则AP=12AB ,代入运算即可. 【详解】解:由于P 为线段AB=4的黄金分割点,且AP 是较长线段;则=)21cm ,故答案为:(2)cm.【点睛】此题考查了黄金分割的定义,应该识记黄金分割的公式:较短的线段=原线段的12,难度一般. 22.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 23.【解析】【分析】在OA 上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB 时,CP 最小,由相似求出的最小值即可.【详解】解:如图,在OA上取使,∵,∴,在△和△QOC中,,解析:455【解析】【分析】在OA上取'C使'OC OC=,得'OPC OQC≅,则CQ=C'P,根据点到直线的距离垂线段最短可知当'PC⊥AB时,CP最小,由相似求出C'P的最小值即可.【详解】解:如图,在OA上取'C使'OC OC=,∵90AOC POQ∠=∠=︒,∴'POC QOC∠=∠,在△'POC和△QOC中,''OP OQPOC QOCOC OC=⎧⎪∠=∠⎨⎪=⎩,∴△'POC≌△QOC(SAS),∴'PC QC=∴当'PC最小时,QC最小,过'C点作''C P⊥AB,∵直线l:28y x=+与坐标轴分别交于A,B两点,∴A坐标为:(0,8);B点(-4,0),∵'4OC OC OB===,∴22228445AB OA OB++=''4AC OA OC=-=.∵'''OB C P sin BAO AB AC ∠==, ''4C P =,∴''C P =∴线段CQ【点睛】 本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.24.6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.25.(,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=解析:(32,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.26.甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断. 【详解】∵2.3<3.8<5.2<6.2,∴,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差解析:甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴2222甲乙丁丙<<<S S S S ,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.27.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .28.2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数的对称轴为直线x=m ,且开口向下,解析:2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下,①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4, 解得74m =-, 724->-, ∴不符合题意,②-2≤m≤1时,x=m 取得最大值,m 2+1=4,解得m =所以m =,③m >1时,x=1取得最大值,-(1-m )2+m 2+1=4,解得m=2,综上所述,m=2或时,二次函数有最大值.故答案为:2或【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键. 29.120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC 以O 为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC 旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.30.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】 本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 三、解答题31.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、2553,35630、5. 【解析】【分析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分O 与矩形ABCD 的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ 是直径,E 在圆上,∴∠PEQ=90°,∴PE ⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP,∵∠QPB=2∠AQP.\②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴BP BQ BQ BA,∴3 36 BP,∴BP=1.5;(2)①如图, BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=5 3 ,∴O半径为5 3 .如图2,当O与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,2222223331x x yx x y,解得125 2x(舍去),225 2x,∴ON=25 5,∴O半径为25 5.如图3,当O与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH ⊥BC 于H ,设OH=BR=x ,设HQ=y, 则OM=OP=OQ=4-1-y=3-y ,由勾股定理得,2222223331y x y y x y , 解得163032x (舍去),263032x ,∴OM=35630,∴O 半径为35630. 如图4,当O 与矩形ABCD 边AB 相切于点P ,过O 作OG ⊥BC 于G,则四边形AFCG 为矩形,设OF=CG=x ,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴O 半径为 5.综上所述,若O 与矩形ABCD 的一边相切,为O 的半径53,2553,35630,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.32.(1)(3,0)m ,2(,4)m m ;(2)①213y x x =-++,②2955y x x =-++ 【解析】【分析】(1)令y =0,解关于x 的方程,解方程即可求出x 的值,进而可得点B 的坐标;把抛物线的解析式转化为顶点式,即可得出点D 的坐标;(2)①如图1,过点D 作DH AB ⊥,交BC 于点E ,作DF ⊥y 轴于点F ,则易得点C 的坐标与CF 的长,利用BH 的长和∠B 的正切可求出HE 的长,进而可得DE 的长,由题意和平行线的性质易推得CD DE =,然后可得关于m 的方程,解方程即可求出m 的值,进而可得答案;(3)如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,利用锐角三角函数、抛物线的对称性和等腰三角形的性质可推出1234∠=∠=∠=∠,进而可得AC AE =,然后利用勾股定理可得关于m 的方程,解方程即可求出m ,问题即得解决.【详解】解:(1)令y =0,则22302x mx m -+=+,解得:123,x m x m ==-,∴点B 的坐标为(3,0)m ;∵()2222243y x mx m x m m =-+-++=-,∴点D 的坐标为2(,4)m m ;故答案为:(3,0)m ,2(,4)m m ;(2)①如图1,过点D 作DH AB ⊥于点H ,交BC 于点E ,作DF ⊥y 轴于点F ,则2(0,3)C m ,(,0)A m -,DF=m ,CF =22243m m m -=,∵BC 平分OCD ∠,∴∠BCO =∠BCD ,∵DH ∥OC ,∴∠BCO =∠DEC ,∴∠BCD =∠DEC ,∴CD DE =,∵23tan 3OC m ABC m OB m∠===,BH =2m , ∴22HE m =,∴222422DE DH HE m m m =-=-=,∵CD DE =,∴22CD DE =,∴2444m m m +=,解得:33m =(33m =-舍去), ∴二次函数的关系式为:2231y x x =-++;②如图2,过点B 作BK ∥y 轴,过点C 作CK ∥x 轴交BK 于点K ,交DH 于点G ,连接AE ,∵223tan 1,tan 23DG m BK m m m CG m CK m∠===∠===, ∴tan 1tan 2∠=∠,∴12∠=∠,∵EA=EB ,∴∠3=∠4,又∵23∠∠=,∴1234∠=∠=∠=∠,∵12DCB ∠=∠+∠,34AEC ∠=∠+∠,∴DCB AEC ACE ∠=∠=∠,∴AC AE =,∴2222AC AE EH AH ==+,即2442944m m m m +=+,解得:15m =(15m =-舍去), ∴二次函数的关系式为:221595y x x =-++.【点睛】本题考查了二次函数的图象与性质、抛物线图象上点的坐标特征、角平分线的性质、等腰三角形的判定和性质、三角形的外角性质、勾股定理、锐角三角函数和一元二次方程的解法等知识,综合性强、难度较大,正确作出辅助线、利用勾股定理构建方程、熟练掌握上述知识是解答的关键.33.2a 1-, -23. 【解析】【分析】 先求出程x 2+x ﹣2=0的解,再将所给分式化简,然后把使分式有意义的解代入计算即可.【详解】解:∴x 2+x ﹣2=0,∴(x-1)(x+2)=0,∴x 1=1,x 2=-2,原式=()()211a a a +-•1a a +=2a 1-,∵a是方程x2+x﹣2=0的解,∴a=1(没有意义舍去)或a=﹣2,则原式=﹣23.【点睛】本题考查了分式的化简求值,一元二次方程的解法,熟练掌握分式的运算法则和一元二次方程的解法是解答本题的关键.34.(1)详见解析;(2)10;(3)详见解析【解析】【分析】(1)依据点O为位似中心,且位似比为2:1,即可得到△A′B′C′;(2)依据割补法进行计算,即可得出△A′B′C′的面积;(3)依据△A′B′D′的面积等于△A′B′C′的面积,即可得到所有符合条件的点D′.【详解】解:(1)如图所示,△A′B′C′即为所求;(2)△A′B′C′的面积为4×6﹣12×2×4﹣12×2×4﹣12×2×6=24﹣4﹣4﹣6=10;故答案为:10;(3)如图所示,所有符合条件的点D′有5个.【点睛】此题主要考查位似图形的作图,解题的关键是熟知位似图形的性质及网格的特点.35.(1)详见解析;(2)4;(3)25 2【解析】【分析】(1)首先连接OD ,通过半径和角平分线的性质进行等角转换,得出OD AE ∥,进而得出OD DE ⊥,即可得证;(2)首先连接BD ,得出AED ADB ∆∆∽,进而得出2A D A A E B =⋅,再根据勾股定理得出DE ;(3)首先连接DF ,过点D 作DG AB ⊥,得出AED AGD ∆∆≌,再得EDF GDB ∆∆≌,进而得出2AB AF EF =+,然后构建二次函数,即可得出其最大值.【详解】(1)证明:连接OD∵OD OA =∴12∠=∠∵AD 平分BAE ∠∴13∠=∠∴32∠=∠∴OD AE ∥∵DE AF ⊥∴OD DE ⊥又∵OD 是O 的半径∴DE 与O 相切(2)解:连接BD∵AB 为直径∴∠ADB=90°∵13∠=∠∴AED ADB ∆∆∽∴2A D A A E B =⋅∴280AD =∴Rt ADE ∆中2228084DE AD AE =-=-=。

九年级上册惠州数学期末试卷(Word版 含解析)

九年级上册惠州数学期末试卷(Word版 含解析)

九年级上册惠州数学期末试卷(Word 版 含解析) 一、选择题 1.已知34a b =(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b = C .43b a = D .43a b =2.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )A .32或42B .3或4C .22或42D .2或43.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50° 4.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 5.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( )A .80°B .40°C .50°D .20° 6.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°7.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .8.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )A .43B .23C .334D .3229.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .410.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数 11.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒12.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A .平均分不变,方差变大B .平均分不变,方差变小C .平均分和方差都不变D .平均分和方差都改变二、填空题13.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.14.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.15.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21⎡⎤=⎣⎦,…,则123420192020⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(其中“+”“-”依次相间)的值为______.16.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)17.某校五个绿化小组一天的植树的棵数如下:9,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是_____.18.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________.19.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.20.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______.21.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.22.已知234x y z x z y+===,则_______ 23.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.24.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.三、解答题25.如图,AC 为圆O 的直径,弦AD 的延长线与过点C 的切线交于点B ,E 为BC 中点,AC= 43,BC=4.(1)求证:DE 为圆O 的切线;(2)求阴影部分面积.26.在平面直角坐标系中,二次函数y=ax 2+bx+c(a≠0)的顶点A (-3,0),与y 轴交于点B(0,4),在第一象限内有一点P (m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P 为圆心的圆与直线AB 、x 轴相切,求点P 的坐标.(3)若点A 关于y 轴的对称点为点A′,点C 在对称轴上,且2∠CBA+∠PA′O=90◦.求点C 的坐标.27.如图,在矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取一点O,以点O 为圆心,OF 为半径作⊙O 与AD 相切于点P .AB=6,BC=33(1)求证:F 是DC 的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.28.如图,在△ABC 中,AB =AC =13,BC =10,求tan B 的值.29.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.30.(1)如图①,AB 为⊙O 的直径,点P 在⊙O 上,过点P 作PQ ⊥AB ,垂足为点Q .说明△APQ ∽△ABP ;(2)如图②,⊙O 的半径为7,点P 在⊙O 上,点Q 在⊙O 内,且PQ =4,过点Q 作PQ 的垂线交⊙O 于点A 、B .设PA =x ,PB =y ,求y 与x 的函数表达式.31.如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为6.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.cm,那么这个三角形的32.如果一个直角三角形的两条直角边的长相差2cm,面积是242两条直角边分别是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【详解】解:由34a b =,得出,3b=4a, A.由等式性质可得:3b=4a ,正确;B.由等式性质可得:4a=3b ,错误;C. 由等式性质可得:3b=4a ,正确;D. 由等式性质可得:4a=3b ,正确.故答案为:B.【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键. 2.A解析:A【解析】【分析】利用A 、B 、C 、D 四点共圆,根据同弧所对的圆周角相等,得出ADC ABC ∠∠=,再作AE CD ⊥,设AE=DE=x ,最后利用勾股定理求解即可.【详解】解:如图所示,∵△ABC 、△ABD 都是直角三角形,∴A,B,C,D 四点共圆,∵AC=BC ,∴BAC ABC 45∠∠==︒,∴ADC ABC 45∠∠==︒,作AE CD ⊥于点E,∴△AED 是等腰直角三角形,设AE=DE=x,则AD 2x =,∵CD=7,CE=7-x,∵AB 52=∴AC=BC=5,在Rt△AEC 中,222AC AE EC =+,∴()22257x x =+-解得,x=3或x=4,∴AD ==. 故答案为:A.【点睛】本题考查的知识点是勾股定理的综合应用,解题的关键是根据题目得出四点共圆,作出合理辅助线,在圆内利用勾股定理求解. 3.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC ,然后根据圆周角定理计算∠ADC 的度数.【详解】∵BC 的度数为50°,∴∠BOC=50°,∵半径OC ⊥AB ,∴=AC BC ,∴∠ADC=12∠BOC=25°. 故选B .【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理. 4.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 5.C解析:C【解析】∵∠BOC=2∠BAC ,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.6.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.8.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=∴1333322ABCS=⨯=.故选:C.【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.9.B解析:B【解析】【分析】将x=2代入方程即可求得k的值,从而得到正确选项.【详解】解:∵一元二次方程x2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B.【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.10.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D .【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.A解析:A【解析】【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.【详解】连接AC ,如图,∵BC 是O 的直径,∴90BAC ︒∠=,∵70ACB ADB ︒∠=∠=,∴907020ABC ︒︒︒∠=-=.故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.12.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.二、填空题13.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG 为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.14.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.15.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数解析:-22【解析】【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4……2020中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22 【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.16.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】根据黄金比值为12计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴AP 2AB ==故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.17.2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+8解析:2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],计算方差即可.【详解】∵组数据的平均数是10,∴15(9+10+12+x+8)=10,解得:x=11,∴S2=15[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(8﹣10)2],=15×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.6【解析】【分析】将方程的根-2代入原方程求出m的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.19.【解析】【分析】圆C 过点P 、Q ,且与相切于点M ,连接CM ,CP ,过点C 作CN⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再解析:4223-【解析】【分析】圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再根据等腰直角三角形的性质即可用r 表示出CD 、NC ,最后根据勾股定理列方程即可求出r .【详解】解:如图所示,圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D∵2OP =,6OQ =,∴PQ=OQ -OP=4根据垂径定理,PN=122PQ = ∴ON=PN +OP=4在Rt △OND 中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,=设圆C 的半径为r ,即CM=CP=r∵圆C 与OB 相切于点M ,∴∠CMD=90°∴△CMD 为等腰直角三角形∴CM=DM=r ,=∴NC=ND -CD=4根据勾股定理可得:NC 2+PN 2=CP 2即()22242r -+=解得:12r r +==DM >OD ,点M 不在射线OB 上,故舍去)故答案为:.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.20.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m 是关于x 的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m 2-2m-3=0,变形得m 2-2m=3,再将要求的代数式提取公因式-2,然后将m 2-2m=3代入,计算即可.【详解】解:∵m 是关于x 的方程x 2-2x-3=0的解,∴m 2-2m-3=0,∴m 2-2m=3,∴4m-2m 2+2= -2(m 2-2m )+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.21.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.22.2【解析】【分析】设,分别用k表示x、y、z,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z. 23.16【解析】【分析】【详解】延长EF 交BC 的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD ∥BC∴△DEF ∽△CHF, △DEM ∽△BHM∴ ,∵F 是CD 的中点∴DF解析:16【解析】【分析】【详解】延长EF 交BC 的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD ∥BC∴△DEF ∽△CHF, △DEM ∽△BHM ∴DE DF CH CF = ,2()DEM BMHS DE S BH ∆∆= ∵F 是CD 的中点∴DF=CF∴DE=CH∵E 是AD 中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEM S ∆= ∴211()3BMH S ∆= ∴9BMH S ∆=∴9CFH BCFM S S ∆+=四边形∴9DEF BCFM S S ∆+=四边形∴9DME DFM BCFM S S S ∆∆++=四边形∴19BCD S ∆+=∴8BCD S ∆=∵四边形ABCD 是平行四边形∴2816ABCD S =⨯=四边形故答案为:16.24.或【解析】【分析】如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H ,连接FH ,则HF ⊥AC ,解直角三角形得到AC =4,AB =5,根据旋转的性质得到∠DCE =∠ACB =90°,DE =AB =5解析:209或145【解析】【分析】 如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H ,连接FH ,则HF ⊥AC ,解直角三角形得到AC =4,AB =5,根据旋转的性质得到∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,根据相似三角形的性质得到DF =209;如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,推出点H 为切点,DH 为⊙F 的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H , 连接FH ,则HF ⊥AC ,∴DF =HF , ∵Rt △ABC 中,∠ACB =90°,BC =3,tan A =BC AC =34, ∴AC =4,AB =5,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,∴∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,∵FH ⊥AC ,CD ⊥AC ,∴FH ∥CD ,∴△EFH ∽△EDC ,∴FH CD =EF DE , ∴4DF =55DF , 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A=∠D,∠AEH=∠DEC∴∠AHE=90°,∴点H为切点,DH为⊙F的直径,∴△DEC∽△DBH,∴DEBD=CDDH,∴57=4DH,∴DH=285,∴DF=145,综上所述,当FD=209或145时,⊙F与Rt△ABC的边相切,故答案为:209或145.【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.三、解答题25.(1)证明见解析;(2)S阴影32π【解析】【分析】(1)根据斜边中线等于斜边一半得到DE=CE,再利用切线的性质得到∠BCO=90°,最后利用等量代换即可证明,(2)根据S阴影=2S△ECO-S扇形COD即可求解.【详解】(1)连接DC、DO.因为AC 为圆O 直径,所以∠ADC=90°,则∠BDC=90°,因为E 为Rt △BDC 斜边BC 中点, 所以DE=CE=BE=12BC , 所以∠DCE=∠EDC,因为OD=OC ,所以∠DCO=∠CDO.因为BC 为圆O 切线,所以BC ⊥AC ,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED ⊥OD ,所以DE 为圆O 的切线.(2)S 阴影=2S △ECO -S扇形COD =3-2π 【点睛】本题主要考查切线的性质和判定及扇形面积的计算,掌握切线的判定定理及扇形的面积公式是解题的关键.26.(1)24(3)9y x =+;(2)P(1511,2411);(3)C(-3,-5)或 (-3,2513) 【解析】【分析】(1)设顶点式,将B 点代入即可求;(2)根据4m+3n=12确定点P 所在直线的解析式,再根据内切线的性质可知P 点在∠BAO 的角平分线上,求两线交点坐标即为P 点坐标;(3)根据角之间的关系确定C 在∠DBA 的角平分线与对称轴的交点或∠ABO 的角平分线与对称轴的交点,通过求角平分线的解析式即可求.【详解】(1)∵抛物线的顶点坐标为A(-3,0),设二次函数解析式为y=a(x+3)2,将B (0,4)代入得,4=9a∴a=49 ∴24(3)9y x =+ (2)如图 ∵P (m,n),且满足4m+3n=12∴443n m =-+ ∴点P 在第一象限的443y x =-+上, ∵以点P 为圆心的圆与直线AB 、x 轴相切,∴点P 在∠BAO 的角平分线上,∠BAO 的角平分线:y=1322x +, ∴134=4223x x +-+, ∴x=1511,∴y=2411∴P(1511,2411)(3)C(-3,-5)或 (-3,2513)理由如下: 如图,A ´(3,0),可得直线L A ´B 的表达式为443y x =-+ , ∴P 点在直线A ´B 上,∵∠PA ´O=∠ABO=∠BAG, 2∠CBA+∠PA′O=90°,∴2∠CBA=90°-∠PA′O=∠GAB,在对称轴上取点D,使∠DBA=∠DAB,作BE ⊥AG 于G 点,设D点坐标为(-3,t)则有(4-t)2+32=t2t=25 8,∴D(-3,25 8),作∠DBA的角平分线交AG于点C即为所求点,设为C1∠DBA的角平分线BC1的解析式为y=913x+4,∴C1的坐标为 (-3, 25 13);同理作∠ABO的角平分线交AG于点C即为所求,设为C2,∠ABO的角平分线BC2的解析式为y=3x+4,∴C2的坐标为(-3,-5).综上所述,点C的坐标为(-3, 2513)或(-3,-5).【点睛】本题考查了二次函数与图形的结合,涉及的知识点角平分线的解析式的确定,切线的性质,勾股定理及图象的交点问题,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.27.(1)见解析;(2)见解析;(3)2【解析】【分析】(1)易求DF长度即可判断;(2)通过30°角所对的直角边等于斜边一半证得AE=2EF,EF=2CE即可得;(3)先证明△OFG为等边三角形,△OPG为等边三角形,即可确定扇形圆心角∠POG和∠GOF的大小均为60°,所以两扇形面积相等,通过割补法得出最后阴影面积只与矩形OPDH和△OGF有关,根据面积公式求出两图形面积即可.【详解】(1)∵AF=AB=6,AD=BC=∴DF=3,∴CF=DF=3,∴F是CD的中点(2)∵AF=6, DF=3,∴∠DAF=30°,∴∠EAF=30◦ ,∴AE=2EF;∴∠EFC=30◦ ,EF=2CE,∴AE=4CE(3)如图,连接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边三角形,同理△OPG为等边三角形,∴∠POG=∠FOG=60°,OH=32OG ,∴S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-32S△OFG=313 2323222,即图中阴影部分的面积2.【点睛】本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.28.12 5【解析】【分析】过A点作AD⊥BC,将等腰三角形转化为直角三角形,利用勾股定理求AD,利用锐角三角函数的定义求∠B的正切值.【详解】过点A作AD⊥BC,垂足为D,∵AB=AC=13,BC=10,∴BD=DC=12BC=5,∴AD222213512AB BD-=-=,在Rt△ABD中,∴tan B125 ADBD==.【点睛】本题考查了勾股定理,等腰三角形的性质和三角函数的应用,关键是将问题转化到直角三角形中求解,并且要熟练掌握好边角之间的关系.29.8+83【解析】【分析】过点A作AD⊥BC,垂足为点D,构造直角三角形,利用三角函数值分别求出AD、BD、CD 的值即可求三角形面积.【详解】解:过点A 作AD ⊥BC ,垂足为点D ,在Rt △ADB 中,∵sin AD ABC AB ∠=, ∴sin AD AB ABC =⋅∠= 1842⨯= ∵cos BD ABC AB∠=, ∴3cos 8432BD AB ABC =⋅∠=⨯= 在Rt △ADC 中,∵45ACB ︒∠=,∴45CAD ︒∠=,∴AD =DC =4∴ 111()(443)4883222ABC S BC AD BD CD AD ∆=⋅=+⋅=⨯+⨯=+【点睛】本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.30.(1)见解析;(2)56y x=【解析】【分析】(1)根据圆周角定理可证∠APB =90°,再根据相似三角形的判定方法:两角对应相等,两个三角形相似即可求证结论;(2)连接PO ,并延长PO 交⊙O 于点C ,连接AC ,根据圆周角定理可得∠PAC =90°,∠C =∠B ,求得∠PAC =∠PQB ,根据相似三角形的性质即可得到结论.【详解】(1)如图①所示:∵AB 为⊙O 的直径∴∠APB =90°又∵PQ ⊥AB∴∠AQP =90°∴∠AQP =∠APB又∵∠PAQ =∠BAP∴△APQ ∽△ABP .(2)如图②,连接PO ,并延长PO 交⊙O 于点C ,连接AC .∵PC 为⊙O 的直径∴∠PAC =90°又∵PQ ⊥AB∴∠PQB =90°∴∠PAC =∠PQB又∵∠C =∠B (同弧所对的圆周角相等) ∴△PAC ∽△PQB∴=PA PC PQ PB又∵⊙O 的半径为7,即PC =14,且PQ =4,PA =x ,PB =y∴144x y = ∴56y x =. 【点睛】 本题考查相似三角形的判定及其性质,圆周角定理及其推论,解题的关键是综合运用所学知识.31.(1)y =x 2+2x ﹣3;(2)存在,点P 坐标为113331322⎛+ ⎝⎭或53715337-+-⎝⎭;(3)点N 的坐标为(﹣4,1) 【解析】【分析】(1)分别令y =0 ,x =0,可表示出A 、B 、C 的坐标,从而表示△ABC 的面积,求出a 的值继而即可得二次函数解析式;(2)如图①,当点P 在x 轴上方抛物线上时,平移BC 所在的直线过点O 交x 轴上方抛物线于点P ,则有BC ∥OP ,此时∠POB =∠CBO ,联立抛物线得解析式和OP 所在直线的解析式解方程组即可求解;当点P 在x 轴下方时,取BC 的中点D ,易知D 点坐标为(12,32-),连接OD 并延长交x 轴下方的抛物线于点P ,由直角三角形斜边中线定理可知,OD =BD ,∠DOB =∠CBO 即∠POB =∠CBO ,联立抛物线的解析式和OP 所在直线的解析式解方程组即可求解.(3)如图②,通过点M 到x 轴的距离可表示△ABM 的面积,由S △ABM =S △BNM ,可证明点A 、点N 到直线BM 的距离相等,即AN ∥BM ,通过角的转化得到AM =BN ,设点N 的坐标,表示出BN 的距离可求出点N .【详解】(1)当y =0时,x 2﹣(a +1)x +a =0,解得x 1=1,x 2=a ,当x =0,y =a∴点C 坐标为(0,a ),∵C (0,a )在x 轴下方∴a <0∵点A 位于点B 的左侧,∴点A 坐标为(a ,0),点B 坐标为(1,0),∴AB =1﹣a ,OC =﹣a ,∵△ABC 的面积为6, ∴()()1162a a --=, ∴a 1=﹣3,a 2=4(因为a <0,故舍去),∴a =﹣3,∴y =x 2+2x ﹣3;(2)设直线BC :y =kx ﹣3,则0=k ﹣3,∴k =3;①当点P 在x 轴上方时,直线OP 的函数表达式为y =3x ,则2323y x y x x =⎧⎨=+-⎩,∴11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点P坐标为⎝⎭; ②当点P 在x 轴下方时,直线OP 的函数表达式为y =﹣3x ,则2323y x y x x =-⎧⎨=+-⎩ ∴1153715337y x ⎧-+=⎪⎪⎨-⎪=⎪⎩,2253715337y x ⎧--=⎪⎪⎨+⎪=⎪⎩,∴点P 坐标为53715337,22⎛⎫-+- ⎪ ⎪⎝⎭, 综上可得,点P 坐标为1133313,22⎛⎫++ ⎪ ⎪⎝⎭或53715337,22⎛⎫-+- ⎪ ⎪⎝⎭;(3)如图,过点A 作AE ⊥BM 于点E ,过点N 作NF ⊥BM 于点F ,设AM 与BN 交于点G ,延长MN 与x 轴交于点H ;∵AB =4,点M 到x 轴的距离为d ,∴S △AMB =114222AB d d d ⨯⨯⨯== ∵S △MNB =2d ,∴S △AMB =S △MNB ,∴1122BM AE BM NF ⨯=⨯, ∴AE =NF ,∵AE ⊥BM ,NF ⊥BM ,∴四边形AEFN 是矩形,∴AN ∥BM ,∵∠MAN =∠ANB ,∴GN =GA ,∵AN ∥BM , ∴∠MAN =∠AMB ,∠ANB =∠NBM ,∴∠AMB =∠NBM ,∴GB =GM ,∴GN +GB =GA +GM 即BN =MA ,在△AMB 和△NBM 中AMB NB AM NB MB BM M =⎧=∠∠⎪⎨⎪⎩=∴△AMB ≌△NBM (SAS ),∴∠ABM =∠NMB ,∵OA =OC =3,∠AOC =90°,∴∠OAC =∠OCA =45°,又∵AN ∥BM ,∴∠ABM =∠OAC =45°,∴∠NMB =45°,∴∠ABM +∠NMB =90°,∴∠BHM =90°,∴M 、N 、H 三点的横坐标相同,且BH =MH ,∵M 是抛物线上一点,∴可设点M 的坐标为(t ,t 2+2t ﹣3),∴1﹣t =t 2+2t ﹣3,∴t 1=﹣4,t 2=1(舍去),∴点N 的横坐标为﹣4,可设直线AC :y =kx ﹣3,则0=﹣3k ﹣3,∴k =﹣1,∴y =﹣x ﹣3,当x =﹣4时,y =﹣(﹣4)﹣3=1,∴点N 的坐标为(﹣4,1).【点睛】本题主要考查二次函数的图象与性质,还涉及到全等三角形的判定及其性质、三角形面积公式等知识点,综合性较强,解题的关键是熟练掌握二次函数的图象与性质.32.一条直角边的长为 6cm ,则另一条直角边的长为8cm .【解析】【分析】可设较短的直角边为未知数x ,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【详解】解:设一条直角边的长为xcm ,则另一条直角边的长为(x+2)cm .根据题意列方程,得1(2)242x x •+=. 解方程,得:x 1=6,x 2=8-(不合题意,舍去).∴一条直角边的长为 6cm ,则另一条直角边的长为8cm .【点睛】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.。

九年级上册惠州数学期末试卷(Word版 含解析)

九年级上册惠州数学期末试卷(Word版 含解析)

九年级上册惠州数学期末试卷(Word 版 含解析)一、选择题1.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)2.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:3 3.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( )A .⊙O 上B .⊙O 外C .⊙O 内4.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90B .90,90C .88,95D .90,955.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .3mC .150mD .3 6.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( )A .a =±1B .a =1C .a =﹣1D .无法确定7.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A .62B .32C .6D .128.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④512BC AC -=.A .1个B .2个C .3个D .4个9.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D .210.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40 B .60 C .80 D .100 11.二次函数y =x 2﹣2x +1与x 轴的交点个数是( )A .0B .1C .2D .312.将抛物线23y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )A .23(1)2y x =++B .23(1)2y x =+-C .23(1)2y x =-+D .23(1)2=--y x二、填空题13.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.14.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.15.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________; 16.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.17.如图,平行四边形ABCD 中,60A ∠=︒,32AD AB =.以A 为圆心,AB 为半径画弧,交AD 于点E ,以D 为圆心,DE 为半径画弧,交CD 于点F .若用扇形ABE 围成一个圆维的侧面,记这个圆锥的底面半径为1r ;若用扇形DEF 围成另一个圆锥的侧面,记这个圆锥的底面半径为2r ,则12r r 的值为______.18.已知线段a 、b 、c ,其中c 是a 、b 的比例中项,若a =2cm ,b =8cm ,则线段c =_____cm .19.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.20.若点 M (-1, y 1 ),N (1, y 2 ),P (72, y 3 )都在抛物线 y =-mx 2 +4mx+m 2 +1(m >0)上,则y 1、y 2、y 3 大小关系为_____(用“>”连接).21.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.22.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.23.已知234x y z x z y+===,则_______ 24.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.三、解答题25.已知二次函数22y =x mx --.(1)求证:不论m 取何值,该函数图像与x 轴一定有两个交点;(2)若该函数图像与x 轴的两个交点为A 、B ,与y 轴交于点C ,且点A 坐标(2,0),求△ABC 面积.26.习总书记在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题: (1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品? 27.已知二次函数y =x 2-2mx +m 2+m -1(m 为常数). (1)求证:不论m 为何值,该二次函数的图像与x 轴总有两个公共点;(2)将该二次函数的图像向下平移k (k >0)个单位长度,使得平移后的图像经过点(0,-2),则k 的取值范围是 . 28.解方程: (1)x 2+4x ﹣21=0 (2)x 2﹣7x ﹣2=029.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的a ,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的b ,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y 轴右侧的概率. 30.计算(1)02020318(1)2⎛⎫-+- ⎪⎝⎭(2)2430x x -+= 31.如图,四边形 ABCD 为矩形.(1)如图1,E 为CD 上一定点,在AD 上找一点F ,使得矩形沿着EF 折叠后,点D 落在 BC 边上(尺规作图,保留作图痕迹);(2)如图2,在AD 和CD 边上分别找点M ,N ,使得矩形沿着MN 折叠后BC 的对应边B' C'恰好经过点D ,且满足B' C' ⊥BD(尺规作图,保留作图痕迹); (3)在(2)的条件下,若AB =2,BC =4,则CN = .32.如图,点P 是二次函数21(1)14y x =--+图像上的任意一点,点()10B ,在x 轴上.(1)以点P 为圆心,BP 长为半径作P .①直线l 经过点()0,2C 且与x 轴平行,判断P 与直线l 的位置关系,并说明理由.②若P 与y 轴相切,求出点P 坐标;(2)1P 、2P 、3P 是这条抛物线上的三点,若线段1BP 、2BP 、3BP的长满足12323BP BP BP BP ++=,则称2P 是1P 、3P 的和谐点,记做()13,T P P .已知1P 、3P 的横坐标分别是2,6,直接写出()13,T P P 的坐标_______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .2.D解析:D 【解析】 【分析】根据两角对应相等证明△CAD ∽△CBA ,由对应边成比例得出线段之间的倍数关系即可求解. 【详解】解:∵∠CAD=∠B ,∠C=∠C, ∴△CAD ∽△CBA,∴12CD CA CA CB, ∴CA=2CD,CB=2CA, ∴CB=4CD, ∴BD=3CD,∴13CD BD. 故选:D. 【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键.3.B解析:B 【解析】 【分析】根据圆周角定理可知当∠C=90°时,点C 在圆上,由由题意∠C =88°,根据三角形外角的性质可知点C 在圆外. 【详解】解:∵以AB 为直径作⊙O ,当点C在圆上时,则∠C=90°而由题意∠C=88°,根据三角形外角的性质∴点C在圆外.故选:B.【点睛】本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.4.B解析:B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90.故选B.5.A解析:A【解析】∵堤坝横断面迎水坡AB的坡比是13,∴BC,AC3∵BC=50,∴3,∴()2222==(m).故选AAC+BC503+501006.C解析:C【解析】【分析】将(0,0)代入y=(a﹣1)x2﹣x+a2﹣1 即可得出a的值.【详解】解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1, ∴a 的值为﹣1. 故选:C . 【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.7.A解析:A 【解析】 【分析】先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以2CE ==CD 的长. 【详解】∵CD AB ⊥,AB 为直径, ∴CE DE =,∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°, ∴2222.545BOC A ∠=∠=⨯=, ∴OCE ∆为等腰直角三角形, ∵OC=6,∴622CE ===∴2CD CE == 故选A . 【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.8.C解析:C 【解析】 【分析】①③,根据已知把∠ABD ,∠CBD ,∠A 角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC ∽△BCD ,从而确定②是否正确,根据AD =BD =BC ,即 BC AC BCAC BC-=解得AC ,故④正确. 【详解】①BC 是⊙A 的内接正十边形的一边, 因为AB =AC ,∠A =36°, 所以∠ABC =∠C =72°,又因为BD 平分∠ABC 交AC 于点D , ∴∠ABD =∠CBD =12∠ABC =36°=∠A , ∴AD =BD ,∠BDC =∠ABD +∠A =72°=∠C , ∴BC =BD ,∴BC =BD =AD ,正确; 又∵△ABD 中,AD+BD >AB ∴2AD >AB, 故③错误.②根据两角对应相等的两个三角形相似易证△ABC ∽△BCD ,∴BC CDAB BC =,又AB =AC , 故②正确,根据AD =BD =BC ,即 BC AC BCAC BC-=,解得AC ,故④正确, 故选C . 【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质.9.B解析:B 【解析】 【分析】连接OA 、OB ,如图1,由2OA OB AB ===可判断OAB 为等边三角形,则60AOB ∠=︒,根据圆周角定理得1302APB AOB ∠=∠=︒,由于60PAC ∠=︒,所以90C ∠=︒,因为2AB =,则要使ABC 的最大面积,点C 到AB 的距离要最大;由90ACB ∠=︒,可根据圆周角定理判断点C 在D 上,如图2,于是当点C 在半圆的中点时,点C 到AB 的距离最大,此时ABC 为等腰直角三角形,从而得到ABC 的最大面积. 【详解】解:连接OA 、OB ,如图1,2OA OB ==,2AB =, OAB ∴为等边三角形, 60AOB ∴∠=︒,1302APB AOB ∴∠=∠=︒,60PAC ∠=︒ 90ACP ∴∠=︒2AB =,要使ABC 的最大面积,则点C 到AB 的距离最大, 作ABC 的外接圆D ,如图2,连接CD ,90ACB ∠=︒,点C 在D 上,AB 是D 的直径,当点C 半圆的中点时,点C 到AB 的距离最大,此时ABC 等腰直角三角形,CD AB ∴⊥,1CD =,12ABC S ∴=⋅AB ⋅CD 12112=⨯⨯=,ABC ∴的最大面积为1. 故选B . 【点睛】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的判断与性质;记住等腰直角三角形的面积公式.10.C解析:C 【解析】 【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案. 【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.11.B解析:B【解析】由△=b 2-4ac=(-2)2-4×1×1=0,可得二次函数y=x 2-2x+1的图象与x 轴有一个交点.故选B .12.A解析:A【解析】【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【详解】抛物线23y x =先向左平移1个单位得到解析式:()231y x =+,再向上平移2个单位得到抛物线的解析式为:()2312y x =++.故选:A .【点睛】此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减. 二、填空题13.1, ,【解析】【分析】分别利用当DP∥AB 时,当DP∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.【详解】BC =6,CD=2,∴BD=4,①如图解析:1,83 ,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。

2019-2020学年广东省惠州市惠城区九年级(上)期末数学试卷解析版

2019-2020学年广东省惠州市惠城区九年级(上)期末数学试卷解析版

2019-2020学年广东省惠州市惠城区九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)在下列图形中,不是中心对称图形的是()A.B.C.D.2.(3分)抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)3.(3分)若关于x的方程x2+mx+6=0的一个根是x=﹣2,则m的值是()A.5B.﹣6C.2D.﹣54.(3分)在单词probability(概率)中任意选择一个字母,选中字母“i”的概率是()A.B.C.D.5.(3分)抛物线y=3x2向右平移一个单位得到的抛物线是()A.y=3x2+1B.y=3x2﹣1C.y=3(x+1)2D.y=3(x﹣1)26.(3分)有n支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是()A.n(n﹣1)=15B.n(n+1)=15C.n(n﹣1)=30D.n(n+1)=307.(3分)已知点P(﹣1,4)在反比例函数y=(k≠0)的图象上,则k的值是()A.4B.﹣4C.D.﹣8.(3分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()A.30°B.45°C.60°D.67.5°9.(3分)函数y=与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.10.(3分)如图,AB是半圆O的直径,且AB=4cm,动点P从点O出发,沿OA→→BO的路径以每秒1cm的速度运动一周.设运动时间为t,s=OP2,则下列图象能大致刻画s与t的关系的是()A.B.C.D.二、填空题(本大题共7个小题,每小题4分,共28分)11.(4分)方程2x2﹣x=0的根是.12.(4分)点M(3,a﹣1)与点N(b,4)关于原点对称,则a+b=.13.(4分)将△ABC绕着点C顺时针方向旋转50°后得到△A′B′C′.若∠A=40°,∠B′=110°,则∠BCA′的度数是.14.(4分)做任意抛掷一只纸杯的重复实验,部分数据如表抛掷次数50100500800150030005000杯口朝上的0.10.150.20.210.220.220.22频率根据表,可估计任意抛掷一只纸杯,杯口朝上的概率约为.15.(4分)圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为cm2.16.(4分)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为.17.(4分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣4,0),对称轴为直线x=﹣1,下列结论:①abc>0;②2a﹣b=0;③一元二次方程ax2+bx+c=0的解是x1=﹣4,x2=1;④当y>0时,﹣4<x<2,其中正确的结论有.三、解答题(一)(本大题共3个小题,每小题6分,共18分)18.(6分)解方程x2﹣3x﹣1=0.19.(6分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC绕点O顺时针旋转90°后的△A′B′C′.(2)求点B绕点O旋转到点B′的路径长(结果保留π).20.(6分)某学校自主开发了A书法、B阅读,C绘画,D器乐四门选修课程供学生选择,每门课程被选到的机会均等.(1)若学生小玲计划选修两门课程,请写出她所有可能的选法;(2)若学生小强和小明各计划选修一门课程,则他们两人恰好选修同一门课程的概率为多少?四、解答题(二)(本大题共3个小题,每小题8分,共24分)21.(8分)若关于x的一元二次方程(1﹣m)x2﹣4x+1=0方有两个不相等的实数根.(1)求m的取值范围.(2)若m为小于10的整数,且该方程的根都是有理数,求m的值.22.(8分)如图,点A(5,2),B(m,n)(m<5)在反比例函数y=的图象上,作AC⊥y轴于点C.(1)求反比例函数的表达式;(2)若△ABC的面积为10,求点B的坐标.23.(8分)工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?五、解答题(三)(本大题共2个小题,每小题10分,共20分)24.(10分)如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE 的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,DF=,求⊙O的半径;(3)若∠ADB=60°,BD=1,求阴影部分的面积.(结果保留根号)25.(10分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,4),点C的坐标为(4,0),抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.求S关于m的函数表达式;(3)抛物线y=﹣x2+bx+c的顶点为F,对称轴为直线l,当S最大时,在直线l上,是否存在点M,使以M、Q、D、F为顶点的四边形是平行四边形,若存在,请写出符合条件的点M的坐标;若不存在,请说明理由.2019-2020学年广东省惠州市惠城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.【解答】解:A、是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项符合题意;D、是中心对称图形,故本选项不符合题意.故选:C.2.【解答】解:∵y=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选:A.3.【解答】解:把x=﹣2代入x2+mx+6=0得4﹣2m+6=0,解得m=5.故选:A.4.【解答】解:字母i出现两次,其概率为.故选:A.5.【解答】解:y=3x2的顶点坐标为(0,0),把点(0,0)右平移一个单位所得对应点的坐标为(1,0),所以平移后的抛物线解析式为y=3(x﹣1)2.故选:D.6.【解答】解:设有n支球队参加篮球比赛,则此次比赛的总场数为n(n﹣1)场,根据题意列出方程得:n(n﹣1)=15,整理,得:即n(n﹣1)=30,故选:C.7.【解答】解:∵点P(﹣1,4)在反比例函数y=(k≠0)的图象上,∴4=,解得,k=﹣4.故选:B.8.【解答】解:如图,∵PD切⊙O于点C,∴OC⊥PD,又∵OC=CD,∴∠COD=45°,∵AO=CO,∴∠ACO=22.5°,∴∠PCA=90°﹣22.5°=67.5°.故选:D.9.【解答】解:分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2﹣k开口向下,故A、B、C、D都不符合题意;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2﹣k开口向上,与y轴交点在原点下方,故选项D正确,故选:D.10.【解答】解:利用图象可得出:当点P在半径AO上运动时,s=OP2=t2;在弧AB上运动时,s=OP2=4;在OB上运动时,s=OP2=(2π+4﹣t)2.故选:C.二、填空题(本大题共7个小题,每小题4分,共28分)11.【解答】解:左边因式分解,得:x(2x﹣1)=0,∴x=0或2x﹣1=0,解得:x1=0,x2=,故答案为:x1=0,x2=.12.【解答】解:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴b+3=0,4+a﹣1=0,即:b=﹣3且a=﹣3,∴a+b=﹣6.故答案为:﹣6.13.【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故答案是:80°.14.【解答】解:依题意得杯口朝上频率逐渐稳定在0.22左右,估计任意抛掷一只纸杯,杯口朝上的概率约为0.22.故答案为:0.22.15.【解答】解:圆锥的侧面积=π×6×10=60πcm2.16.【解答】解:∵菱形的两条对角线的长分别是6和4,∴C(﹣3,2),∵点C在反比例函数y=的图象上,∴2=,解得k=﹣6.故答案为:﹣6.17.【解答】解:二次函数y=ax2+bx+c(a≠0)开口向下,a<0,对称轴为直线x=﹣1,即﹣=﹣1,b=2a,b<0,与y轴交在正半轴,c>0,∴abc>0,因此①正确;∵b=2a,即2a﹣b=0,因此②正确;图象过点(﹣4,0),对称轴为直线x=﹣1,因此与x轴另一个交点(2,0),因此一元二次方程ax2+bx+c=0的解是x1=﹣4,x2=2;故③不正确;由图象可得,图象位于x轴上方时,即y>0时,相应的自变量的取值范围为﹣4<x<2,因此④正确;综上所述,正确的结论有:①②④,故答案为:①②④.三、解答题(一)(本大题共3个小题,每小题6分,共18分)18.【解答】解:x2﹣3x﹣1=0,这里a=1,b=﹣3,c=﹣1,∵△=9+4=13,∴x=,∴x1=,x2=.19.【解答】解:(1)如图,△A′B′C′为所作;(2)OB==3,点B绕点O旋转到点B′的路径长==π.20.【解答】解:(1)共有6种等可能的结果数,它们是:AB、AC、AD、BC、BD、CD;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率==.四、解答题(二)(本大题共3个小题,每小题8分,共24分)21.【解答】解:(1)由题意可知:△=12+4m>0,∴m>﹣3∵1﹣m≠0,∴m≠1,∴m的取值范围为:m>3且m≠1.(2)∵m为小于10的整数,又m>﹣3且m≠1.∴m可以取﹣2,﹣1,0,2,3,4,5,6,7,8,9,当m=﹣2或6时,△=4或36,为平方数,此时该方程的根都是有理数.22.【解答】解:(1)∵点A(5,2)在反比例函数y=图象上,∴k=10,∴反比例函数的解析式为y=.(2)由题意:×5×(n﹣2)=10,∴n=6,∴B(,6).23.【解答】解:(1)设该工艺品每件的进价是x元,标价是y元.依题意得方程组:解得:.故该工艺品每件的进价是155元,标价是200元.(2)设每件应降价a元出售,每天获得的利润为W元.依题意可得W与a的函数关系式:W=(45﹣a)(100+4a),W=﹣4a2+80a+4500,配方得:W=﹣4(a﹣10)2+4900,当a=10时,W最大=4900.故每件应降价10元出售,每天获得的利润最大,最大利润是4900元.五、解答题(三)(本大题共2个小题,每小题10分,共20分)24.【解答】(1)证明:连接OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠ODF+∠OFD=90°,∵CA=CF,∴∠CAF=∠CF A,而∠CF A=∠OFD,∴∠ODF+∠CAF=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:设⊙O的半径为r,则OF=8﹣r,在Rt△ODF中,(8﹣r)2+r2=()2,解得r1=6,r2=2(舍去),即⊙O的半径为6;(3)解:∵∠BOD=90°,OB=OD,∴△BOD为等腰直角三角形,∴OB=BD=,∴OA=,∵∠AOB=2∠ADB=120°,∴∠AOE=60°,在Rt△OAC中,AC=OA=,∴阴影部分的面积=••﹣=.25.【解答】解:(1)将点A(0,4),C(4,0)代入y=﹣x2+bx+c,得,,解得,b=,c=4,∴抛物线的解析式为:y=﹣x2+x+4;(2)∵OA=4,OC=4,∴AC===8,在Rt△AOC中,sin∠OAC===,∴∠OAC=∠ACB=30°,过点Q作QE⊥BC于点E,则QE=CQ=(8﹣m),∴S=CP•QE=×m(8﹣m)=﹣m2+2m;(3)存在符合条件的M,理由如下:由(2)得S=﹣m2+2m=﹣(m﹣2)2+2,当m=2时,S取最大值,此时,QE=2,∴Q(2,2),又∵点D在抛物线y=﹣x2+x+4=﹣(x﹣1)2+上,∴当y=4时,x=2,∴D(2,4),顶点F(1,),设点M的坐标为(1,y),则MF∥DQ,∴当MF=DQ时,以M、Q、D、F为顶点的四边形是平行四边形,∴y﹣=4﹣2或﹣y=4﹣2,解得,y=或y=,∴符合条件的点M的坐标为(1,),(1,).。

广东省惠州市九年级上学期数学期末试卷含答案

广东省惠州市九年级上学期数学期末试卷含答案

九年级上学期数学期末试卷一、单选题(共10题;共20分)1.如图图形中,是中心对称图形的是()A. B. C. D.2.方程x(x﹣1)=0的根是()A. 0B. 1C. 0或1D. 无解3.如图,四边形ABCD是⊙O的内接四边形,若∠A=70°,则∠C的度数是( )A. 100°B. 110°C. 120°D. 130°4.下列事件中是不可能事件的是()A. 三角形内角和小于180°B. 两实数之和为正C. 买体育彩票中奖D. 抛一枚硬币2次都正面朝上5.关于反比例函数,下列说法正确的是()A. 图象过(1,2)点B. 图象在第一、三象限C. 当x>0时,y随x的增大而减小D. 当x<0时,y随x的增大而增大6.抛物线y=﹣x2+1向右平移2个单位长度,再向下平移3个长度单位得到的抛物线解析式是()A. y=﹣(x﹣2)2+4B. y=﹣(x﹣2)2﹣2C. y=﹣(x+2)2+4D. y=﹣(x+2)2﹣27.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A. 30°B. 45°C. 60°D. 40°8.如图,将绕点A按顺时针方向旋转一定角度得到,点B的对应点D恰好落在边上.若,则的长为()A. 0.5B. 1.5C.D. 19.关于的一元二次方程有实数根,则的取值范围是()A. B. C. D.10.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A. ﹣1<x<4B. ﹣1<x<3C. x<﹣1或x>4D. x<﹣1或x>3二、填空题(共7题;共10分)11.在一个有15万人的小镇,随机调查了1000人,其中200人会在日常生活中进行垃圾分类,那么在该镇随机挑一个人,会在日常生活中进行垃圾分类的概率是________.12.已知反比例函数的图象经过点(2,﹣3),则此函数的关系式是________.13.已知关于x的方程x2+3x+m=0有一个根为﹣2,则m=________,另一个根为________.14.如图,已知圆锥的底面半径为3,高为4,则该圆锥的侧面积为________.15.如图,抛物线y=﹣x2+2x+k与x轴交于A,B两点,交y轴于点C,则点B的坐标是________;点C的坐标是________.16.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A=________°.17.如图,是的直径,弦则阴影部分图形的面积为________.三、解答题(共8题;共56分)18.解方程:5x(x+1)=2(x+1)19.如图,在正方形网格中,每个小正方形的边长均为1个单位.(1)△ABC绕着点C顺时针旋转90°,画出旋转后对应的△A1B1C1;(2)求△ABC旋转到△A1B1C时,的长.20.如图,甲分为三等分数字转盘,乙为四等分数字转盘,自由转动转盘.(1)转动甲转盘,指针指向的数字小于3的概率是________;(2)同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.21.某钢铁厂计划今年第一季度一月份的总产量为500t,三月份的总产量为720t,若平均每月的增长率相同.(1)第一季度平均每月的增长率;(2)如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000t?22.如图,直线y=k1x+b与双曲线y=交于点A(1,4),点B(3,m).(1)求k1与k2的值;(2)求△AOB的面积.23.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.(1)求证:EF=ED;(2)若AB=2 ,CD=1,求FE的长.24.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作直线BF,交AC的延长线于点F.(1)求证:BE=CE;(2)若AB=6,求弧DE的长;(3)当∠F的度数是多少时,BF与⊙O相切,证明你的结论.25.如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方.(1)求抛物线的解析式;(2)当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S的最大值?(3)在y轴上确定一点M,使点M到D、B两点距离之和d=MD+MB最小,求点M的坐标.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】D9.【答案】D10.【答案】B二、填空题11.【答案】12.【答案】13.【答案】2;x=﹣114.【答案】15π15.【答案】(﹣1,0);(0,3)16.【答案】5517.【答案】三、解答题18.【答案】解:∵5x(x+1)﹣2(x+1)=0,∴(x+1)(5x﹣2)=0,则x+1=0或5x﹣2=0,解得x=﹣1或x=0.4.19.【答案】(1)解:如图所示,△A1B1C1即为所求;(2)解:弧BB1的长为:=.20.【答案】(1)(2)解:树状图如下:由树状图知,共有12种等可能情况,其中两个转盘指针指向的数字为奇数的有4种情况,所以两个转盘指针指向的数字均为奇数的概率P= = .21.【答案】(1)解:设第一季度平均每月的增长率为x,根据题意得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第一季度平均每月的增长率为20%.(2)解:720×(1+20%)2=1036.8(t),∵1036.8>1000,∴该厂今年5月份总产量能突破1000t.22.【答案】(1)解:把A(1,4)代入y=得k2=1×4=4,∴反比例函数解析式为y=,把B(3,m)代入y=得3m=4,解得m=,则B(3,),把A(1,4),B(3,)代入y=k1x+b得,解得,∴一次函数解析式为y=﹣x+ ,∴k1与k2的值分别为﹣,4;(2)解:设直线AB与x轴交于C点,如图,当y=0时,﹣x+ =0,解得x=4,则C(4,0),∴S△AOB=S△AOC﹣S△BOC=×4×4﹣×4× =.23.【答案】(1)证明:∵∠BAC=90°,∠EAD=45°,∴∠BAE+∠DAC=45°,∵将△ADC绕点A顺时针旋转90°,得到△AFB,∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,∴∠BAF+∠BAE=45°=∠FAE,∴∠FAE=∠DAE,AD=AF,AE=AE,∴△AEF≌△AED(SAS),∴DE=EF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年广东省惠州市惠城区九年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)在下列图形中,不是中心对称图形的是()A.B.C.D.2.(3分)抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)3.(3分)若关于x的方程x2+mx+6=0的一个根是x=﹣2,则m的值是()A.5B.﹣6C.2D.﹣54.(3分)在单词probability(概率)中任意选择一个字母,选中字母“i”的概率是()A.B.C.D.5.(3分)抛物线y=3x2向右平移一个单位得到的抛物线是()A.y=3x2+1B.y=3x2﹣1C.y=3(x+1)2D.y=3(x﹣1)26.(3分)有n支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是()A.n(n﹣1)=15B.n(n+1)=15C.n(n﹣1)=30D.n(n+1)=307.(3分)已知点P(﹣1,4)在反比例函数y=(k≠0)的图象上,则k的值是()A.4B.﹣4C.D.﹣8.(3分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()A.30°B.45°C.60°D.67.5°9.(3分)函数y=与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.10.(3分)如图,AB是半圆O的直径,且AB=4cm,动点P从点O出发,沿OA→→BO的路径以每秒1cm的速度运动一周.设运动时间为t,s=OP2,则下列图象能大致刻画s与t的关系的是()A.B.C.D.二、填空题(本大题共7个小题,每小题4分,共28分)11.(4分)方程2x2﹣x=0的根是.12.(4分)点M(3,a﹣1)与点N(b,4)关于原点对称,则a+b=.13.(4分)将△ABC绕着点C顺时针方向旋转50°后得到△A′B′C′.若∠A=40°,∠B′=110°,则∠BCA′的度数是.14.(4分)做任意抛掷一只纸杯的重复实验,部分数据如表抛掷次数50100500800150030005000杯口朝上的0.10.150.20.210.220.220.22频率根据表,可估计任意抛掷一只纸杯,杯口朝上的概率约为.15.(4分)圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为cm2.16.(4分)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=(x<0)的图象经过点C,则k的值为.17.(4分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣4,0),对称轴为直线x=﹣1,下列结论:①abc>0;②2a﹣b=0;③一元二次方程ax2+bx+c=0的解是x1=﹣4,x2=1;④当y>0时,﹣4<x<2,其中正确的结论有.三、解答题(一)(本大题共3个小题,每小题6分,共18分)18.(6分)解方程x2﹣3x﹣1=0.19.(6分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC绕点O顺时针旋转90°后的△A′B′C′.(2)求点B绕点O旋转到点B′的路径长(结果保留π).20.(6分)某学校自主开发了A书法、B阅读,C绘画,D器乐四门选修课程供学生选择,每门课程被选到的机会均等.(1)若学生小玲计划选修两门课程,请写出她所有可能的选法;(2)若学生小强和小明各计划选修一门课程,则他们两人恰好选修同一门课程的概率为多少?四、解答题(二)(本大题共3个小题,每小题8分,共24分)21.(8分)若关于x的一元二次方程(1﹣m)x2﹣4x+1=0方有两个不相等的实数根.(1)求m的取值范围.(2)若m为小于10的整数,且该方程的根都是有理数,求m的值.22.(8分)如图,点A(5,2),B(m,n)(m<5)在反比例函数y=的图象上,作AC⊥y轴于点C.(1)求反比例函数的表达式;(2)若△ABC的面积为10,求点B的坐标.23.(8分)工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件.若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?五、解答题(三)(本大题共2个小题,每小题10分,共20分)24.(10分)如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE 的下半圆弧的中点,连接AD交BC于F,若AC=FC.(1)求证:AC是⊙O的切线:(2)若BF=8,DF=,求⊙O的半径;(3)若∠ADB=60°,BD=1,求阴影部分的面积.(结果保留根号)25.(10分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,4),点C的坐标为(4,0),抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.求S关于m的函数表达式;(3)抛物线y=﹣x2+bx+c的顶点为F,对称轴为直线l,当S最大时,在直线l上,是否存在点M,使以M、Q、D、F为顶点的四边形是平行四边形,若存在,请写出符合条件的点M的坐标;若不存在,请说明理由.2019-2020学年广东省惠州市惠城区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.【解答】解:A、是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项符合题意;D、是中心对称图形,故本选项不符合题意.故选:C.2.【解答】解:∵y=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选:A.3.【解答】解:把x=﹣2代入x2+mx+6=0得4﹣2m+6=0,解得m=5.故选:A.4.【解答】解:字母i出现两次,其概率为.故选:A.5.【解答】解:y=3x2的顶点坐标为(0,0),把点(0,0)右平移一个单位所得对应点的坐标为(1,0),所以平移后的抛物线解析式为y=3(x﹣1)2.故选:D.6.【解答】解:设有n支球队参加篮球比赛,则此次比赛的总场数为n(n﹣1)场,根据题意列出方程得:n(n﹣1)=15,整理,得:即n(n﹣1)=30,故选:C.7.【解答】解:∵点P(﹣1,4)在反比例函数y=(k≠0)的图象上,∴4=,解得,k=﹣4.故选:B.8.【解答】解:如图,∵PD切⊙O于点C,∴OC⊥PD,又∵OC=CD,∴∠COD=45°,∵AO=CO,∴∠ACO=22.5°,∴∠PCA=90°﹣22.5°=67.5°.故选:D.9.【解答】解:分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2﹣k开口向下,故A、B、C、D都不符合题意;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2﹣k开口向上,与y轴交点在原点下方,故选项D正确,故选:D.10.【解答】解:利用图象可得出:当点P在半径AO上运动时,s=OP2=t2;在弧AB上运动时,s=OP2=4;在OB上运动时,s=OP2=(2π+4﹣t)2.故选:C.二、填空题(本大题共7个小题,每小题4分,共28分)11.【解答】解:左边因式分解,得:x(2x﹣1)=0,∴x=0或2x﹣1=0,解得:x1=0,x2=,故答案为:x1=0,x2=.12.【解答】解:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴b+3=0,4+a﹣1=0,即:b=﹣3且a=﹣3,∴a+b=﹣6.故答案为:﹣6.13.【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故答案是:80°.14.【解答】解:依题意得杯口朝上频率逐渐稳定在0.22左右,估计任意抛掷一只纸杯,杯口朝上的概率约为0.22.故答案为:0.22.15.【解答】解:圆锥的侧面积=π×6×10=60πcm2.16.【解答】解:∵菱形的两条对角线的长分别是6和4,∴C(﹣3,2),∵点C在反比例函数y=的图象上,∴2=,解得k=﹣6.故答案为:﹣6.17.【解答】解:二次函数y=ax2+bx+c(a≠0)开口向下,a<0,对称轴为直线x=﹣1,即﹣=﹣1,b=2a,b<0,与y轴交在正半轴,c>0,∴abc>0,因此①正确;∵b=2a,即2a﹣b=0,因此②正确;图象过点(﹣4,0),对称轴为直线x=﹣1,因此与x轴另一个交点(2,0),因此一元二次方程ax2+bx+c=0的解是x1=﹣4,x2=2;故③不正确;由图象可得,图象位于x轴上方时,即y>0时,相应的自变量的取值范围为﹣4<x<2,因此④正确;综上所述,正确的结论有:①②④,故答案为:①②④.三、解答题(一)(本大题共3个小题,每小题6分,共18分)18.【解答】解:x2﹣3x﹣1=0,这里a=1,b=﹣3,c=﹣1,∵△=9+4=13,∴x=,∴x1=,x2=.19.【解答】解:(1)如图,△A′B′C′为所作;(2)OB==3,点B绕点O旋转到点B′的路径长==π.20.【解答】解:(1)共有6种等可能的结果数,它们是:AB、AC、AD、BC、BD、CD;(2)画树状图为:共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,所以他们两人恰好选修同一门课程的概率==.四、解答题(二)(本大题共3个小题,每小题8分,共24分)21.【解答】解:(1)由题意可知:△=12+4m>0,∴m>﹣3∵1﹣m≠0,∴m≠1,∴m的取值范围为:m>3且m≠1.(2)∵m为小于10的整数,又m>﹣3且m≠1.∴m可以取﹣2,﹣1,0,2,3,4,5,6,7,8,9,当m=﹣2或6时,△=4或36,为平方数,此时该方程的根都是有理数.22.【解答】解:(1)∵点A(5,2)在反比例函数y=图象上,∴k=10,∴反比例函数的解析式为y=.(2)由题意:×5×(n﹣2)=10,∴n=6,∴B(,6).23.【解答】解:(1)设该工艺品每件的进价是x元,标价是y元.依题意得方程组:解得:.故该工艺品每件的进价是155元,标价是200元.(2)设每件应降价a元出售,每天获得的利润为W元.依题意可得W与a的函数关系式:W=(45﹣a)(100+4a),W=﹣4a2+80a+4500,配方得:W=﹣4(a﹣10)2+4900,当a=10时,W最大=4900.故每件应降价10元出售,每天获得的利润最大,最大利润是4900元.五、解答题(三)(本大题共2个小题,每小题10分,共20分)24.【解答】(1)证明:连接OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠ODF+∠OFD=90°,∵CA=CF,∴∠CAF=∠CF A,而∠CF A=∠OFD,∴∠ODF+∠CAF=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:设⊙O的半径为r,则OF=8﹣r,在Rt△ODF中,(8﹣r)2+r2=()2,解得r1=6,r2=2(舍去),即⊙O的半径为6;(3)解:∵∠BOD=90°,OB=OD,∴△BOD为等腰直角三角形,∴OB=BD=,∴OA=,∵∠AOB=2∠ADB=120°,∴∠AOE=60°,在Rt△OAC中,AC=OA=,∴阴影部分的面积=••﹣=.25.【解答】解:(1)将点A(0,4),C(4,0)代入y=﹣x2+bx+c,得,,解得,b=,c=4,∴抛物线的解析式为:y=﹣x2+x+4;(2)∵OA=4,OC=4,∴AC===8,在Rt△AOC中,sin∠OAC===,∴∠OAC=∠ACB=30°,过点Q作QE⊥BC于点E,则QE=CQ=(8﹣m),∴S=CP•QE=×m(8﹣m)=﹣m2+2m;(3)存在符合条件的M,理由如下:由(2)得S=﹣m2+2m=﹣(m﹣2)2+2,当m=2时,S取最大值,此时,QE=2,∴Q(2,2),又∵点D在抛物线y=﹣x2+x+4=﹣(x﹣1)2+上,∴当y=4时,x=2,∴D(2,4),顶点F(1,),设点M的坐标为(1,y),则MF∥DQ,∴当MF=DQ时,以M、Q、D、F为顶点的四边形是平行四边形,∴y﹣=4﹣2或﹣y=4﹣2,解得,y=或y=,∴符合条件的点M的坐标为(1,),(1,).。

相关文档
最新文档