二元合金的显微组织
实验6-实验六 二元合金显微组织分析

序号: 1200134000101组别: 5深圳大学实验报告课程名称:材料科学基础实验实验项目名称:二元合金显微组织分析学院:材料学院专业:材料科学与工程指导教师:钱海霞报告人:叶淳懿学号:2016200084 班级:实验时间:2018.12.19实验报告提交时间:教务部制数据处理分析纯铁,退火态,4%硝酸酒精腐蚀,物镜10倍,铁素体(α相)由图可知,经过4%硝酸酒精腐蚀的退火态纯铁拥有大小较为明显和均匀的晶粒,且均为铁素体(α相)。
由熔融态纯铁随着温度下降,先析出δ相铁;随着温度继续下降,δ相铁发生转变变成γ相铁。
当温度降至912℃时,γ相铁开始转变为α相铁,即图中铁素体。
20钢,退火态,4%硝酸酒精腐蚀,物镜10倍,铁素体,珠光体经过4%硝酸酒精腐蚀的退火态20钢图中有浅色与黑色两种晶粒分散分布,其中浅色为铁素体,黑色为珠光体。
为亚共析钢。
20钢冷却时先匀晶转变析出δ相固溶体,之后发生包晶转变析出γ相,此时仍有δ相,但随着温度降低全部转变为奥氏体。
温度继续冷却,开始析出铁素体,并逐渐增多。
在770℃发生共析转变形成珠光体(α+FeC)。
345钢,退火态, 4%硝酸酒精腐蚀,物镜10倍,铁素体,珠光体45钢也是亚共析钢,由图可知,相比起20钢,黑色的珠光体含量更加多,且珠光体的晶粒更大。
45钢冷却时先匀晶转变析出δ相固溶体,之后发生包晶转变析出γ相,此时仍有液相,但随着温度降低全部转变为奥氏体。
其余过程与20钢相比并无太大差异,不再赘述。
60钢,退火态,4%硝酸酒精腐蚀,物镜10倍,铁素体,珠光体由图可知60钢仍是亚共析钢,但绝大部分已经是珠光体了,浅色的铁素体只占其中很小的一部分。
45钢冷却时直接匀晶转变析出γ相,无δ相析出。
其余过程与20钢相似,不再赘述。
T8钢,退火态,4%硝酸酒精腐蚀,物镜40倍,铁素体,渗碳体,珠光体T8钢为共析钢,从图中可看到黑绿色为渗碳体,浅色为铁素体。
他们共同构成了珠光体。
二元合金相图及其应用

以使原子充分扩散、成分均匀,消除枝晶偏析,这种热处
理工艺称作扩散退火。
Cu-Ni合金的平衡组织与枝晶偏析组织
➢ 随温度下降, 和 相的成分分别沿CF线和DG线变化, Ⅱ
的重量增加。
➢ 室温下α、Ⅱ的相对重量百分比为:
w
4G FG
➢
由于二次相析出温度较低,一般十分细小。w
F4 FG
Ⅰ合金室温组织为
➢ + Ⅱ 。
A C
F
B ➢ 成分大于 D点合金结晶过程
E
D
与Ⅰ合金相似,室温组织为
+ Ⅱ。
G
② 共晶合金(Ⅱ合金)的结晶过程 ➢ 液态合金冷却到E 点时同时被Pb和Sn饱和, 发生共晶反
二元合金相图及其应用
第三章 二元合金相图及其应用
3.1 合金的相结构 纯金属的局限 合金 3.1.1 基本概念 ➢ 合金:两种或两种以上的金属与金属,或金属与非金属经
一定方法合成的具有金属特性的物质。
➢ 组元:组成合金最基本、能够独立存在的物质。可以是元 素,也可以是稳定化合物。(如二元、三元合金〕
• 相图中,结晶开始点的连线叫液相线。结晶终了点的连线 叫固相线。
3.2.2 二元匀晶相图 • 两组元在液态和固态下均
无限互溶时所构成的相图
称二元匀晶相图, • 结晶时只结晶出单相固溶
体组织, • 以Cu-Ni合金为例进行分析。
(1)相图分析
• 相图由两条线构成,上 面是液相线,下面是固 相线。
二元合金的相图

+ Ⅱ
组织组成物
Ⅱ
冷却曲线
t
组织中,由一定的相构成 的,具有一定形态特征的 组成部分。
X2合金结晶过程分析 (共晶合金)
T,C
L
T,C
L
(+ )
183
L+
M
L
E
L
L+
N
L(+ ) 共晶体
(+ )
+
Pb Sn X2
冷却曲线
t
(+ )
铅锡共晶合金的显微组织
液固相线距离愈小, 结晶温度范围愈小,则流 动性好,不易形成分散缩 孔,铸造性能好。 共晶成分的合金铸造 性能最好。
锻造、轧制性能:
单相固溶体合金, 变形抗力小,变形均匀, 不易开裂,锻造、轧制性 能最好。
T,C
T,C L
1
L L+(+ )+
L+
183
L+
M
E
+
L+ N
2
(+ )+
(+ )+ + Ⅱ
Sn
Pb
X3
t
亚共晶合金的平衡结晶过程
(+ )+ + Ⅱ
β II
α
α+β
WSn50%的Pb-Sn合金的显微组织
(+ )+ + Ⅱ
L
T,C
3 F 4 X1
L+
M
c
LEL+ 来自L L+
e
N
第四章二元合金

⒍结构:
原子尺度的材料形貌(晶格类型、晶胞 尺寸等)用射线确定。
第一节 合金的相结构
一、 固溶体 合金在固态时,组元间会相互溶解, 形成一种在某种组元的晶格中包含有其它组元 的新相称为固溶体。
晶格与固溶体相同的组元-溶剂。 晶格与固溶体不同的组元-溶质。 固溶体又划分为:置换固溶体,间隙固溶体。
(一) 置换固溶体: 溶质的原子,对溶剂晶格上某些结点位置的 原子置换而形成的,见图4-1。 这种置换引起: ⒈ 固溶强化:“置换”,使溶剂晶格畸变,引 起 固溶体强度、硬度提高,物理性能变化。这是 提高合金机械性能的重要手段之一。 见图 4-2:
一、 化合物:
⒈ 定义: 合金中,当溶质含量超过溶解度时,将 析出新相,当新相的晶格与合金任一组元都不同, 则新相为化合物。 当新相的晶格与合金的另一组元(溶质)相同, 则为新固溶体。 ⒉化合物分类: 正常价化合物,电子价化合物,间隙化 合物,复杂结构间隙化合物见图4-6。
⒊ 化合物特点:
具有复杂晶格结构,熔点极高、高硬脆。 如能“弥散”于合金中是“强化相”。 是 很 多合金的重要组成相。
' 1
t ② 温度由t 1 降至 2 ,液态合金中继续生新核, 原有的核长大。固相量不断增多,液相量不断 减少,但总重量仍为1。 此时新 相核,含Ni为X X ,数量增多。 ' 原含Ni为 1 的核,其含Ni 量由于原子扩散作 X ‘ 用变为 X 2 。而剩余液相含Ni量变为 2 。 X 固相量进一步增多,液相量进一步减少, 但总量仍为1。 但:此时合金含镍量仍 为K 。
第二节 二元合金相图
⒈ 几个名词、术语: 合金系: 由给定组元配制成的一系列成分不同 的合金,即合金系。 例: 二个组元—二元合金系。 三个组元—三元合金系。 多个组元-多元合金系。 平衡(相平衡): 合金中参与结晶或相变过程的各相浓度 不再改变时的状态。
2 合金与相图

流动性好,缩孔集中, 偏析小, 铸造性能好。
铁碳合金相图
1 铁碳合金的组元和相 2 铁碳合金相图的分析 3 典型铁碳合金的平衡结晶过程 4 含碳量对铁碳合金组织和性能的影响
基本概念
铁碳合金 碳钢
碳钢和铸铁的统称,都是以铁和碳为基 本组元的合金
含碳量为0.0218%~2.11%的铁碳合金
Pb-Sn亚共晶组织
其他类型的二元合金相图
共析相图
共析反应(共析转变)是指在一定温度下,由一定成分的固 相同时析出两个成分和结构完全不同的新固相的过程。
共析转变也是固态相变。
最常见的共析转变是铁 碳合金中的珠光体转变:
S ⇄ P+ Fe3C
S
(—奥氏体,—铁素体,
P
Fe3C—渗碳体)
奥氏体
C溶于γ-Fe中所形成的间 隙固溶体,面心立方晶格
符号“A”或“γ”表示
奥氏体强度低、塑性好, 钢材的热加工都在奥氏体相 区进行
奥氏体在高温下可稳定存在
2. C与Fe形成金属化合物,即渗碳体Fe3C
Fe与C组成的金属化合物 渗碳体的含碳量为6.69%
具有复杂的晶体结构
渗碳体以“Fe3C”或“Cm”符号表 示
二元共晶相图
相图分析
A ① 相:相图中有L、、三种
相,
B
② 相区:相图中有三个单相区: L、、;三个两相区: L+、 L+、+ ;一个三相区:即 水平线CED。
二元共晶相图
③ 液固相线:液相线AEB,固相线ACEDB。A、B分别为Pb、Sn 的熔点。
④ 固溶线: 溶解度点的连
A
线称固溶线。相图中
低温莱氏体
第四篇__二元合金相图

固溶体合金在平衡结晶过程中,固相成分 沿固相线变化,液相成分沿液相线变化
α
匀晶转变的特点
➢合金在一定温度范围内结晶; ➢在合金结晶过程中,先结晶出的固相和剩余液
相的成分都与原来合金的成分不同,它们分别 沿着固相线和液相线变化。
➢结论:两相区中,相互处于平衡状态的两个
非常稳定。
它们的合理存在,可有效地提高钢的强度、 热强性、红硬性和耐磨性,是高合金钢和硬 质合金中的重要组成相。
间隙化合物
形成条件:非金属原子半径与金属原子半
径之比大于0.59时,具有复杂结构。如钢中的 Fe3C、Cr23C6、Fe4W2C、Cr7C3、Mn3C等。
特点:具有很高的熔点和硬度, 但比间隙相
第四章 二元合金
内容简介
本章介绍合金相结构和组织的基本概念、 二元合金相图的建立过程和分析相图的基本 方法,以及二元相图与合金性能之间带规律 性的一些关系。
重点掌握合金相结构,并学会分析二元 合金相图。
关于合金的基本概念
➢合金:一种金属元素同另一种或几种元素(k
可以是金属,也可以是非金属), 通过熔化或 其它方法结合在一起所形成的具有金属特性 的物质。
况,包括相的种类和相对量。
➢组织:在显微镜下所观察到的,具有一定大
小、形状和分布的金属内部的微观形貌。
➢在金属或合金中,由于形成的条件不同,各
种相将以不同的数量、形状、大小相互结合, 因此,在显微镜下,可以看到金属或合金具 有各种不同的组织。
➢合金的组织状态:合金在一定条件下,由哪
几个组织组成,以及它们的相对量。
2、间隙固溶体(interstitial solid solution) 溶质原子溶入溶剂晶格的间隙而形成的固溶体
材料科学基础实验Ⅰ---实验大纲

实验教学大纲:材料学基础实验Ⅰ教学大纲课程名称:材料学基础实验Ⅰ课程编码:050242021课程类别:专业基础课课程性质:必修适用专业:金属材料工程课程总学时:8实验(上机)计划学时:8开课单位:材料学院一、大纲编写依据本实验教学大纲依据:我校材料类本科生培养计划和培养目标,综合本专业的特点,制定本大纲,指导实践教学环节。
二、实验课程地位及相关课程的联系本实验课程是金属材料工程专业本科生必修的一门独立实验课,让学生熟悉和掌握金属材料的有关常用实验技术和方法;在学习本课程前应先学完《材料工程基础》、《材料科学基础》,《物理化学》《普通物理》等课程,可以为后期的专业课程实验、课程设计、毕业论文(设计)以及毕业后从事相关工作打下坚实的理论及实践基础。
三、实验目的、性质和任务实验目的:1、了解金相显微镜的构造与掌握基本使用方法;掌握教学互动系统操作,会利用图像分析软件对某些参数进行测定。
学会最基本的晶粒度的测定(二选一)2、掌握金相显微试样的一般制备方法,独立完成金相试样的基本操作,熟练操作抛光机。
3、结合理论教学,对典型的二元合金组织进行观察和分析;掌握铁碳合金的平衡组织观察和分析,了解含碳量对铁素体、珠光体和渗碳体对组织及相对量的影响。
实验性质:操作性、观察性、验证、综合性实验。
实验任务:完成实验项目中规定的各项实验要求。
通过验证、综合实验,培养学生观察问题、分析问题和运用综合知识独立解决问题的能力通过实验操作、观察、结果分析,培养正确处理实验数据和分析实验结果的能力,以及正确书写实验报告的能力。
四、实验基本要求1、实验项目和实验内容的选定及其选定原则说明材料学基础实验是材料研究的重要组成部分。
为了使学生能更好地把理论知识与实践知识结合起来,独立开设8学时实验。
通过实验让学生熟悉和掌握金属材料的有关常用实验技术和方法,为以后开展实验工作和研究打下基础。
2、每个实验项目应达到的教学要求和具体规定第一个实验:了解金相显微镜的构造与掌握基本使用方法,学会光学显微镜的维护,初步认识并绘出组织示意图;掌握教学互动系统操作,会利用图像分析软件对某些参数进行测定。
医用锌基合金制备、组织与性能研究

合金丝的再结晶温度随Mg含量的增加而升高。其中Zn-0.02Mg合金丝的再结晶温度为200℃,Zn-0.05Mg和Zn-0.2Mg合金丝的再结晶温度为250℃。
本文以纯Zn和五种成分的Zn-Mg二元合金(其中,Mg的含量为0.02、0.05、0.2、0.5和2 wt.%)为研究对象,通过挤压和多道次冷拉拔等塑性变形工艺,制备了直径为0.3 mm的Zn-Mg合金丝材,并系统研究了合金丝的显微组织、力学性能和在Hank’s溶液(模拟体液)中的降解行为,目的是为锌合金在生物医学领域中的应用提供有用的基础数据。研究表明,在纯Zn中加入少量的Mg可以显著细化铸态合金的组织。
这是因为塑性变形可以使显微组织显著细化,并在细丝表面生成了相对致密的钝化膜,因而在一定程度上提高了试样的耐腐蚀性能。在四种成分的丝材试样中,纯Zn丝的腐蚀速率最小,浸泡至第28天时,失重法测得的腐蚀速率为0.011 mm/year。
合金Zn-0.02Mg、Zn-0.05Mg和Zn-0.2Mg丝在浸泡至第28天时测得的腐蚀速率分别为0.021、0.029和0.095 mm/year。
添加微量Mg后,Zn-Mg二元合金的显微组织是单相α-Zn固溶体。随着Mg加入量的增加,显微组织中出现了分布在基体相α-Zn晶粒周围的α+Mg2Z 1共晶。
随着合金中的Mg含量的增加,显微组织中α+ Mg2Zn11共晶的体积分数增大,形成枝晶,合金的强度和硬度也随之升高,但塑性呈下降的趋势。本文中Mg含量最高的Zn-2Mg合金的抗拉强度和硬度分别达到了125 MPa和135 HV。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元合金的显微组织文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
实验三二元合金的显微组织
(Microstructures of Binary Alloys)
实验学时:1 实验类型:综合
前修课程名称:《材料科学导论》
适用专业:材料科学与工程
一、实验目的
运用二元共晶型相图,分析相图中典型组织的形成及特征。
二、概述
二组元在液态下互溶,而在固态下有限互溶,且具有共晶转变特征的相图叫二元共晶相图。
本次实验,以Pb—Sn系合金相图为例分析共晶、亚共晶、过共晶等不同成分合金的结晶过程及结晶后所形成组织的特征。
简略相图如下:
⒈共晶合金
含%的合金为共晶合金(图中合金Ⅰ)。
当从液态缓慢冷却时,在温度Te发生共晶转变,既Le→αc+βd。
这一过程在Te温度下一直到液相完全消失为止。
所得到的共晶组织由αc和βd两个固溶体组成。
它们的相对量可用杠杆定律计算:
继续冷却时,将从α和β中分别析出βⅡ和αⅡ。
由于从共晶体中析出的次生相常与共晶体中的同类相混在一起,很难分辨,这样,在结晶过程全部结束时合金获得非常细密的两相机械混合物。
样品制备中的腐蚀剂是4%的硝酸酒精,显微镜中,α相呈暗色,β相呈亮色。
参见图3-1。
(3-1)铅锡二元共晶(3-2)铅锡二元亚共晶
⒉亚共晶合金
凡成分位于共晶点e以左,c点以右的合金(如图中的合金Ⅱ)叫亚共晶合金。
合金Ⅱ熔化后在液相线与固相线之间缓慢冷却时,不断地从液相中结晶出α固溶体。
随着温度的下降,液相成分沿ac线变化,逐渐趋向于e 点;α相的成分沿固相线ac变化,并逐渐趋向于c点。
当温度降到共晶温度时,α相和剩余液相的成分将分别到达c点和e点。
这时,成分为e点的液相发生前述的共晶转变,直到剩余液相全部转变为共晶组织为止。
这时,亚共晶合金的组织是由先共晶α相和共晶体(α+β)所组成。
在共晶温度以下继续冷却的过程中,将分别从α和β相中析出βⅡ和αⅡ。
在显微镜下,除了从先共晶α相晶粒内或边界上析出的βⅡ有可能观察到外,共晶组织中析出的βⅡ和αⅡ一般不易辨认。
合金中组织组成物的相对量也可以用杠杆定律来计算。
亚共晶组织中的初晶α呈枝晶状分布。
参见图3-2。
⒊过共晶合金
凡成分位于共晶点e以右,d点以左的合金(如图中的合金Ⅲ)称为过共晶合金。
这类合金的结晶过程类似于亚共晶合金,所不同的是:先共晶相不是α,而是β固溶体。
结晶后的组织是由先共晶β相和共晶体(α+β)所组成。
初晶β也呈枝晶状分布。
参见图3-3、3-4。
(3-3)铅锡二元过共晶(100倍)(3-4)铅锡二元过共晶(25倍)
⒋离异共晶
靠近相图上的c点和d点成分的合金,由于初生相较多,发生共晶转变时,液相的量已所剩不多,且呈壳状分布在初生相的周围。
此时,共晶转变过程中的某一个相不再形核,而是在初生相上成长;同时析出的另一个相被排挤到晶界上,使得失去了共晶组织的形态特征,这种现象称为离异共晶。
参见图3-5。
(3-5)铅锡二元离异共晶(从左侧靠近d点,100倍)
一、实验材料和设备
金相显微镜,Pb-Sn合金的典型样品。
二、实验内容和步骤
⒈介绍Pb-Sn相图。
⒉参照相图分析典型合金的组织。
三、本次实验的总结报告
本实验仅作为观察演示性实验与实验二《非均匀形核的观察与应用》同时进行,作为实验四《铁碳平衡组织观察》的预备铺垫。
需要记录的显微组织如下,对于离异共晶的显微组织,请根据图(3-5)的参考作用,从理论上分析描绘出含21%Sn(从右侧靠近C点)的合金在结晶过程中发生的离异共晶现象(注意考虑二次相析出的情况,与图3-5共同的地方及区别点)。
共晶亚共晶过共晶离异共晶
简单说明一下,同学自己描绘的离异共晶显微组织的理论依据:。