3.1.2函数的表示法课件(2)

合集下载

中等教育数学(基础模块上)3.1.2 函数的表示方法 (二)(学案)

中等教育数学(基础模块上)3.1.2 函数的表示方法 (二)(学案)

(3) f(a)与 f(-a)相等吗?有怎样的关系?
(4) 函数图象是轴对称图形还是中心对称图形?
如果有问题,赶紧记下来,做为质疑的问题,你的问题越多,你的收获越多! 1
高 一
年级
数学
学科
导学案
使用时间:
2014 年
主编:
李晓霏
审核:
职高二备课组
【探究学习三】 例 3 作出函数 y=|x|+1 的图像。
【知识拓展】作出下列函数的图像 1、y=-x
3
2、y= x 1
思考:函数图象的图像特征?
1 3、y= 2 x +1
【探究学习四】 例 4
作出下列函数 f(x)=


1, x 1,0 的图象。 2, x 0,1
(三)、总结提升
(四)、课后作业 思考:函数的图像特征? 1、y=-3x+4 3、y=|x|
作出下列函数图像 2、y=2x -5 4、y= x
2
如果有问题,赶紧记下来,做为质疑的问题,你的问题越多,你的收获越多!
2
3 2
(2)函数值 y 随 x 的增大有怎样的变化?
(3)f(a)与 f(-a)相等吗?有怎样的关系?
(4)函数图象是轴对称图形还是中心对称图形?
1 【探究学习二】 例 2 作函数 y= 2 的图象. x
1 (1) 函数 y= 2 的定义域、值域是什么? x
(2) 在第一象限中, 函数值 y 随 x 的增大有怎样的变化?在第二象限中呢?
高 一
年级
数学
学科
导学案
使用时间:
2014 年
主编:
李晓霏
审核:
职高二备课组

人教版高中数学新教材必修第一册课件:3.1.2 函数表示法

人教版高中数学新教材必修第一册课件:3.1.2 函数表示法

即:f (x) 3 x 7

22




启 强
23
典型例题
解 : 设f (x) kx b,则f ( f (x)) f (kx b) k(kx b) b
k(kx b) b 4x 1,
k 2 (k
4 1)b
1
k b
2
1 3

k b
2 1
f (x) 2x 1 或f (x) 2x 1
因为 AD=x 所以 x2= 2 a 2 A 2
E
B
所以 DC=2-x2





启 强
27
典型例题
例5.已知函数f(x)在[-1,2]上的图象如图 所示,求f(x)的解析式.
【分析】由图象特点先确定函数类型,再求解析式.
【解析】当-1≤x≤0时,设y=ax+b,
∵过点(-1,0)和(0,1),∴
(1)求f{f[f(-2)]} (2) 当f (x)=-7时,求x ;
解: (1) f{f[f(-2)]} = f{f[-1]} = f{1} =0
(2)若x<-1 , 2x+3 <1,与f (x)=-7相符,
由2x+3 =-7得x=-5 易知其他二段均不符合f (x)=-7 。
故 x=-5


Hale Waihona Puke 人:(2)换元法:已知复合函数 f(g(x))的解析式, 可用换元法,此时要注意新元的取值范围;
(3)配凑法:由已知条件 f(g(x))=F(x),可将 F(x) 改写成关于 g(x)的表达式,然后以 x 替代 g(x),便 得 f(x)的解析式; (4)消去法:已知关于 f(x)与 f1x或 f(-x)的表达式, 可根据已知条件再构造出另外一个等式组成方程

高中数学必修一(人教版)《3.1.2 第二课时 分段函数》课件

高中数学必修一(人教版)《3.1.2 第二课时 分段函数》课件

题型一 分段函数求值问题
【学透用活】
[典例 1]
已知函数 f(x)=xx+ 2+12,x,x≤--2<2x,<2, 2x-1,x≥2.
(1)求 f(-5),f(- 3),ff-52的值; (2)若 f(a)=3,求实数 a 的值; (3)若 f(x)>2x,求 x 的取值范围.
[解] (1)由-5∈(-∞,-2],- 3∈(-2,2),-52∈(-∞,-2], 知 f(-5)=-5+1=-4,
【课堂思维激活】 一、综合性——强调融会贯通 1.下面是解“已知实数 a≠0,函数 f(x)=2-x+x-a,2ax,<x1≥,1. 若 f(1-a)=f(1+
a),求 a 的值”的过程:
解:由 f(1-a)=f(1+a),得 2(1-a)+a=-(1+a)-2a,即 2-a=-1- 3a,∴a=-32. 上述解题过程是否正确?请说明理由.
[解] 如图,过点 A,D 分别作 AG⊥BC,DH⊥BC, 垂足分别是 G,H.
因为四边形 ABCD 是等腰梯形,底角为 45°,AB= 2 2 cm,所以 BG=AG=DH=HC=2 cm.又 BC=7 cm,所以 AD=GH=3 cm.
①当点 F 在 BG 上,即 x∈[0,2]时,y=12x2; ②当点 F 在 GH 上,即 x∈(2,5]时,y=x+x2-2×2=2x-2;
(2)问:该企业选择哪家俱乐部比较合算?为什么?
解:(1)由题意得 f(x)=6x,x∈[12,30], g(x)=920x, +1520≤ ,x2≤ 0<20x, ≤30. (2)①当 12≤x≤20 时,令 6x=90,解得 x=15. 即当 12≤x<15 时,f(x)<g(x);当 x=15 时,f(x)=g(x);当 15<x≤20 时,f(x) >g(x). ②当 20<x≤30 时,f(x)>g(x). 综上,当 12≤x<15 时,选 A 俱乐部合算;当 x=15 时,两家俱乐部一样合算; 当 15<x≤30 时,选 B 俱乐部合算.

3.1.2函数的表示法-高一数学课件(人教A版2019必修第一册)

3.1.2函数的表示法-高一数学课件(人教A版2019必修第一册)

= 0.8 × 189600 − 117360 = 34320.
将t的值代入(1)中,得y = 0.03 × 34320 = 1029.6.
所以,小王应缴纳得综合所得税税额为1029.6元.
练习巩固
2x + 1,x < 1,
练习1:已知函数f(x) =
则f(9) =( )
f(x − 3),x ≥ 1,
(1)在同一直角坐标系中画出f(x),g(x)的图象;
解:在同一直角坐标系中画出函数f(x),g(x)的图象.
练习巩固
例6:给定函数f(x) = x + 1,g(x) = (x + 1)2 ,x ∈ R,
(2)∀x ∈ R,用M(x)表示f(x),g(x)中的最大者,记为M(x) = max{f(x),g(x)}.
解:由2 (−) + () = ,①
可得2 + − = −.②
联立①②,得:f x = −x.
小结
解析法
常用表示法
列表法
图像法
函数的表示法
定义
分段函数
图像
函数的实际应用
练习巩固
例8:依法纳税是每个公民应尽的义务,个人取得的所得应依照 《中华人民共和国
个人所得税法》向国家缴纳个人所得税(简称个税).2019年1月1日起,个税税
额根据应纳税所得额、税率和速算扣除数确定,计算公式为:个税税额=应纳税所
得额×税率-速算扣除数.应纳税所得额的计算公式为:应纳税所得额=综合所得收
复习导入
新知探究
问题1:我们初中已经接触过了函数常见的三种表示方法,你还记得是三种
方法吗?
解析法:用数学表达式表示两个变量之间的对应关系。

高中数学新教材必修一第三章 《函数的概念与性质》全套课件

高中数学新教材必修一第三章 《函数的概念与性质》全套课件

4、若函数的定义域只有一个元素,则值域也只有一
个元素 √
5、对于不同的x , y的值也不同
×
6、f (a)表示当x = a时,函数f (x)的值,是一个常量 √
巩固练习
判断下列对应能否表示y是x的函数
(1) y=|x|
(2)|y|=x
(3) y=x 2
(4)y2 =x
(5) y2+x2=1 (6)y2-x2=1
2x
0y 2
x
2
D
0
2x
学习新知
初中我们已知接触过函数的三种表示方法:解析法、列表法和图 象法
问题 2 某电气维修公司一个工人的工资关于天数 d 的函数 w=350d. ②定义域{1,2,3,4,5,6}
学习新知 这里的实数a与b都叫做相应区间的端点。
实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷 大”。满足x≥ a,x>a ,x ≤b, x<b的实数的集合分别表示 为[a, +∞)、(a, +∞)、(-∞,b]、(-∞,b).
集合表示 区间表示 数轴表示
{x a<x<b} (a , b)
我国某省城镇居民恩格尔系数变化情况
时间(年)y 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
恩格尔系数r(%) 36.69 36.81 38.17 35.69 35.15 33.53 33.87 29.89 29.35 28.57
请仿照前面的方法描述恩格尔系数r和时间(年)y的关系。
对于集合A中的任意一个数x,按照某种确定的对
应关系f,在集合B中都有唯一确定的数y和它对应, 那么就称f: A→B为从集合A到集合B的一个函数, 记作 y=f(x) , x∈A

3.1.2 函数的表示法课件新教材】人教A版(2019)高一数学必修第一册

3.1.2 函数的表示法课件新教材】人教A版(2019)高一数学必修第一册

解析:选 C.设 y=k,由题意得 1=k,
x
2
解得 k=2,所以 y=2x.
3.1 函 数 的 概 念
随堂练习
3、已知f(x+1)=x2+2x+2,求f(x)
解: 法一:配凑法 f(x+1)=x2+2x+2=(x+1)2+1, ∴f(x)=x2+1.
法二:换元法 令t=x+1 则x=t-1 f(t)=(t-1)²+2(t-1) =t²-2t+1+2t-2 =t²-1 ∴f(x)=x2+1
3.1 函 数 的 概 念
随堂练习
1、函数的基本表示法(列表法、图象法、解析法) 2、描点法画一些简单函数的图象。 3、求函数解析式 4、求函数解析式的配凑法、换元法
谢谢您的聆听
y
4

2
2 1 O 1 2
x
2
• 4
f(x)=2x,x∈R,且|x|≤2
3.1 函 数 的 概 念
典型例题
例2. 画出下列函数的图象: (2)f(x)=x+2,(x∈N,且|x|≤3)
f(x)=x+2,(x∈N,且|x|≤3)
3.1 函 数 的 概 念
变式训练
1、画出下列函数的图象:(1)y=x+1(x≤0);(2)y =x2-2x(x>1,或x<-1)
3
3.1 函 数 的 概 念
温故知新
知识点一 区间的概念及表示
1.一般区间的表示:设a,b是两个实数,而且a<b,我们规定:
定义 {x|a≤x≤b} {x|a<x<b} {x|a≤x<b} {x|a<x≤b}

3.1.2 函数的表示(第一课时)课件-高一上学期数学人教A版(2019)必修第一册

3.1.2 函数的表示(第一课时)课件-高一上学期数学人教A版(2019)必修第一册
只可能是 ( B )
03
拓展提升
Expansion And Promotion
函数的表示
解析式的求法 - 代入法
题型一. 由f(x)的解析式求f[g(x)]的解析式.
例1.已知f(x)=x2 +x -1,则f(x+1)=________.
【解析】因为f (x) x2 x 1, 所以f (x 1) (x 1)2 (x 1) 1
函数的表示
【分析】从图像中我们可以直观地看到:王伟同学的成绩一直稳定在班级的前茅, 张 城同学的成绩波动较大,赵磊同学的成绩整体有下降趋势,但三位同学的成绩基本上 都大幅领先于班级平均水平.
函数的表示
【练习1】已知f (x) x 1,则f ( f (2)) _______. x
【解析】因为f (2)
【解析】令t x 1 1, 则 x t 1, x (t 1)2 所以f (t) (t 1)2 2(t 1) t 2 1 所以f (t) t 2 1,t 1 所以f (x) x2 1,x 1
换元法:已知f(g(x))=h(x),求f(x)时,往往可设g(x)=t,从中解出x,代入h(x)
代入法:已知f (x)求f(g(x)),只需把f (x)中的x用g(x)代入即可; 配凑法:已知f (g(x))=h(x),求f (x)的问题,往往把右边的h(x)整理或配凑成只
含g(x)的式子, 再用x将g(x)替换即可得f(x); 换元法:已知f(g(x))=h(x),求f (x)时,往往可设g(x)=t,从中解出x,代入h(x) 进行
【解析法】y=5x,x∈{1,2,3,4,5} 【图像法】函数图像可以表示如图:
y
【列表法】函数可以表示如下表:
笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25

3.1.2 函数的表示法(课件)高一数学(人教A版2019必修第一册)

3.1.2 函数的表示法(课件)高一数学(人教A版2019必修第一册)
请分别用图象法和解析法表示函数().
解:由(1)中的函数取值情况,结合函数()的定义,可得函数
()的图象.
由( + 1)2 = + 1,得( + 1) = 0.解得 = −1,或 = 0.
结合上图,得出函数的解析式为() =
( + 1)2 , ≤ −1,
+ 1, − 1 < ≤ 0,
途径,是联系变量和的纽带.
由于在现实生活中,将变量数对应到的方法和途径是多样化的,这就导
致了函数的表示方法也是多样化的.本节课我们就来研究一下函数常见的几种表
示方法.
复习导入
我们在初中已经接触过函数的三种表示法:解析法、列表法和图象法.其实在
上一节课的学习中,我们也已经接触了这三种函数的表示法,请同学们结合上节课
图象(均为6个离散的点)表示出来,如图所示,那么就能直观地看到每位同学成
例析
绩变化的情况,这对我们的分析很有帮助.
从图中可以看到,王伟同学的数学学习成绩始终
高于班级平均水平,学习情况比较稳定而且优秀.
张城同学的数学学习成绩不稳定,总是在班级平
均水平上下波动,而且波动幅度较大.赵磊同学
的数学学习成绩低于班级平均水平,但表示他成
回顾2:函数的三要素是什么?
定义域、对应关系和值域是函数的三要素.其中, 叫做自变量,的取值范
围叫做函数的定义域;与值相对应的值叫做函数值,函数值的集合{()| ∈
}叫做函数的值域.值域是集合的子集.
复习导入
回顾3:函数的对应关系有什么作用?
对应关系“”是将中的任意一个数,对应到中唯一确定的数的方法和
解:(2)设 = + 1,则 < 1, = − 1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档