多元统计分析报告完整版

合集下载

多元统计分析实验报告

多元统计分析实验报告

第二部分:实验过程记录(可加页) (包括实验原始数据记录,实验现象记录,实验过程发现的问题
等) 操作步骤: 1、 执行“分析”—“比较均值”—“单因素方差分析” ; 2、 在弹出的单因素方差分析对话框中,将时期选为因子,将 X1、X2、X3、X4 选为因变量; 3、 单击“对比” ,选择“多项式” ,在后面的下拉菜单中选择“线性” ,然后继续; 4、 单击“两两比较” ,选择“LSD”和“S-N-K” ,显著性水平默认为 0.05,然后继续; 5、 单击“选项” ,选择“方差同质性检验”和“均值图” ,然后继续,点击“确定”后即可输出结果。
12
题目:研究者提出,随着时间的推移头骨尺寸会发生变化,这是外来移民与原住民人口民族融合的证据。表 6.13 是古埃及三个时期的男性头骨的四个观测值得观测数据,这是个观测变量是: X1=头骨最大的最大宽度 X2=头骨高度 X3=头骨底穴至齿槽的长度 X4=头骨鼻梁高度 对古埃及头骨数据构造单因子 MANOVA 表, a=0.05.并构造 95%联合置信区间来判断在三个时期中哪个分 令 量的均值发生了改变。同常的 MANOVA 假设对这些数据是不是合理的?请解释。 部分数据如下:
实验课程名称:多元统计分析-均值向量检验
实验项目名称 实 验 者 同 组 者
均值向量检验习题 均值向量检验习题 6.24
专业班级
实验成绩 实验成绩 组 别 年 月 日
实验日期
一部分:实验预习报告(包括实验目的、意义,实验基本原理与方法,主要仪器设备及耗材,实验
方案与技术路线等) 实验目的:深入了解方差分析及方差分析的概念,掌握方差分析的基本原理;掌握方差分析的过程;增强实 践能力,能够动手用统计软件解决实际问题,熟练掌握方差分析的基本操作。 实验原理:多个正态总体均值向量检验(多元方差分析) 设 有 k 个 p 元 正 态 总 体 N p ( µ1 , Σ), L , N p ( µ k , Σ) , 从 每 个 总 体 抽 取 独 立 样 品 个 数 分 别 为

多元统计数据分析报告(3篇)

多元统计数据分析报告(3篇)

第1篇一、引言随着大数据时代的到来,数据量急剧增加,传统的统计分析方法已无法满足复杂数据关系的挖掘需求。

多元统计分析作为一种处理多个变量之间关系的方法,在社会科学、自然科学、工程技术等领域得到了广泛应用。

本报告旨在通过对某研究项目的多元统计分析,揭示变量之间的关系,为决策提供科学依据。

二、研究背景与目的本研究以某企业员工绩效评估数据为研究对象,旨在通过多元统计分析方法,探究员工绩效与个人特质、工作环境等因素之间的关系,为企业人力资源管理部门提供决策支持。

三、数据与方法1. 数据来源本研究数据来源于某企业员工绩效评估系统,包括员工的基本信息、个人特质、工作环境、绩效评分等。

2. 研究方法本研究采用以下多元统计分析方法:(1)描述性统计分析:对员工绩效、个人特质、工作环境等变量进行描述性统计分析,了解数据的分布情况。

(2)相关分析:分析变量之间的线性关系,找出相关系数较大的变量对。

(3)因子分析:将多个变量归纳为少数几个因子,揭示变量之间的内在关系。

(4)聚类分析:将员工根据绩效、个人特质、工作环境等因素进行分类,分析不同类别员工的特点。

(5)回归分析:建立员工绩效与个人特质、工作环境等因素之间的回归模型,分析各因素对绩效的影响程度。

四、数据分析结果1. 描述性统计分析通过对员工绩效、个人特质、工作环境等变量的描述性统计分析,得出以下结论:(1)员工绩效评分呈正态分布,平均绩效评分为75分。

(2)个人特质得分集中在中等水平,其中创新能力得分最高,稳定性得分最低。

(3)工作环境得分普遍较高,其中工作压力得分最低。

2. 相关分析通过对员工绩效、个人特质、工作环境等变量进行相关分析,得出以下结论:(1)绩效与创新能力、稳定性、工作环境等因素呈正相关。

(2)创新能力与稳定性呈负相关。

3. 因子分析通过对员工绩效、个人特质、工作环境等变量进行因子分析,得出以下结论:(1)提取了3个因子,分别对应创新能力、稳定性、工作环境。

多元统计分析实验报告_聚类分析

多元统计分析实验报告_聚类分析

武汉理工大学
实验(实训)报告项目名称实验2―聚类分析
实验报告2
聚类分析(设计性实验)
实验原理:聚类分析的目的是将分类对象按一定规则分为若干类,这些类不是事先给定的,而是根据数据的特征确定的。

在同一类里的这些对象在某种意义上倾向于彼此相似,而在不同的类里的对象倾向于不相似。

系统聚类法是聚类分析中用的最多的一种,其基本思想是:开始将n个对象各自作为一类,并规定对象之间的距离和类与类之间的距离,然后将距离最近的两类合并成一个新类,
E0
N20
(1
(2
(3
(4)用最大距离法将11种语言聚为3类,并将聚类结果存储在一个SPSS数据文件中。

实验题目二:
下表给出了2010年湖北省省各地区的人均各项消费支出情况。

表-1:2010年湖北省各地区人均各项消费支出
(1((2(3
(4
实验题目一分析报告:1.实验(实训)过程(步骤、记录、数据、程序等)
2.结论(结果、分析)
实验题目二分析报告:1.实验(实训)过程(步骤、记录、数据、程序等)
2.结论(结果、分析)。

多元统计分析 实验报告

多元统计分析 实验报告

多元统计分析实验报告1. 引言多元统计分析是一种用于研究多个变量之间关系的统计方法。

在实验中,我们使用了多元统计分析方法来探索一组数据中的变量之间的关系。

本报告将介绍我们的实验设计、数据收集和分析方法以及结果和讨论。

2. 实验设计为了进行多元统计分析,我们设计了一个实验,收集了一组相关变量的数据。

我们选择了X、Y和Z这三个变量作为我们的研究对象。

为了获得准确的结果,我们采用了以下实验设计:1.确定研究目的:我们的目标是探索X、Y和Z之间的关系,并确定它们之间是否存在任何相关性。

2.数据收集:我们通过调查问卷的方式收集了一组数据。

我们请参与者回答与X、Y和Z相关的问题,以获得关于这些变量的定量数据。

3.数据整理:在收集完数据后,我们将数据进行整理,将其转化为适合多元统计分析的格式。

我们使用Excel等工具进行数据整理和清洗。

4.数据验证:为了确保数据的准确性,我们对数据进行验证。

我们检查数据的有效性,比较数据之间的一致性,并排除任何异常值。

3. 数据分析在数据收集和整理完毕后,我们使用了一些常见的多元统计分析方法来分析我们的数据。

以下是我们使用的方法和步骤:1.描述统计分析:我们首先对数据进行了描述性统计分析。

我们计算了X、Y和Z的均值、标准差、最大值和最小值等。

这些统计量帮助我们了解数据的基本特征。

2.相关性分析:接下来,我们进行了相关性分析,以确定X、Y和Z之间是否存在相关关系。

我们计算了变量之间的相关系数,并绘制了相关系数矩阵。

这帮助我们确定变量之间的线性关系。

3.回归分析:为了更进一步地研究X、Y和Z之间的关系,我们进行了回归分析。

我们建立了一个多元回归模型,通过回归方程来预测因变量。

同时,我们还计算了回归系数和R方值,以评估模型的拟合度和预测能力。

4. 结果和讨论根据我们的实验设计和数据分析,我们得出了以下结果和讨论:1.描述统计分析结果显示,X的平均值为x,标准差为s;Y的平均值为y,标准差为s;Z的平均值为z,标准差为s。

多元统计分析实验报告计算协方差矩阵相关矩阵SAS

多元统计分析实验报告计算协方差矩阵相关矩阵SAS

多元统计分析实验报告计算协方差矩阵相关矩阵SAS实验目的:通过对多元统计分析中的协方差矩阵和相关矩阵的计算,探究变量之间的相关性,并使用SAS进行实际操作。

实验步骤:1.数据准备:选择一个数据集,例如学生的成绩数据,包括数学成绩、语文成绩和英语成绩。

2.数据整理:将数据转化为矩阵形式,每一行代表一个学生,每一列代表一个变量(即成绩),记为X。

3. 计算协方差矩阵:根据公式计算协方差矩阵C,其中元素Cij表示变量Xi和Xj之间的协方差。

计算公式为Cij = cov(Xi, Xj) = E((Xi - u_i)(Xj - u_j)),其中E为期望值,u_i和u_j分别是变量Xi和Xj的均值。

4. 计算相关矩阵:根据协方差矩阵计算相关矩阵R,其中元素Rij表示变量Xi和Xj之间的相关性。

计算公式为Rij = cov(Xi, Xj) / (sigma_i * sigma_j),其中sigma_i和sigma_j分别是变量Xi和Xj的标准差。

5.使用SAS进行实际操作:使用SAS软件导入数据集,并使用PROCCORR和PROCPRINT命令进行协方差矩阵和相关矩阵的计算和输出。

实验结果:通过计算协方差矩阵和相关矩阵,可以得到变量之间的相关性信息。

协方差矩阵的对角线上的元素表示每个变量的方差,非对角线上的元素表示不同变量之间的协方差。

相关矩阵的对角线上的元素都是1,表示每个变量与自身的相关性为1,非对角线上的元素表示不同变量之间的相关性。

使用SAS进行实际操作后,我们可以得到一个包含协方差矩阵和相关矩阵的输出表格。

该表格可以帮助我们更直观地理解变量之间的相关性情况,从而为后续的统计分析提供参考。

实验总结:通过本次多元统计分析实验,我们了解了协方差矩阵和相关矩阵的计算方法,并使用SAS软件进行实际操作。

这些矩阵可以帮助我们评估变量之间的相关性,为后续的统计分析提供重要的基础信息。

在实际应用中,我们可以根据协方差矩阵和相关矩阵的结果,选择合适的统计方法和模型,并做出恰当的推断和决策。

多元统计分析报告整理版.doc

多元统计分析报告整理版.doc

1、主成分分析的目的是什么?主成分分析是考虑各指标间的相互关系,利用降维的思想把多个指标转换成较少的几个相互独立的、能够解释原始变量绝大局部信息的综合指标,从而使进一步研究变得简单的一种统计方法。

它的目的是希望用较少的变量去解释原始资料的大局部变异,即数据压缩,数据的解释。

常被用来寻找判断事物或现象的综合指标,并对综合指标所包含的信息进展适当的解释。

2、主成分分析根本思想?主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标来代替原来指标。

同时根据实际需要从中选取几个较少的综合指标尽可能多地反映原来的指标的信息。

● 设p 个原始变量为 ,新的变量(即主成分)为 , 主成分和原始变量之间的关系表示为?3、在进展主成分分析时是否要对原来的p 个指标进展标准化?SPSS 软件是否能对数据自动进展标准化?标准化的目的是什么?需要进展标准化,因为因素之间的数值或者数量级存在较大差距,导致较小的数被淹没,导致主成分偏差较大,所以要进展数据标准化; 进展主成分分析时SPSS 可以自动进展标准化;标准化的目的是消除变量在水平和量纲上的差异造成的影响。

求解步骤⏹ 对原来的p 个指标进展标准化,以消除变量在水平和量纲上的影响 ⏹ 根据标准化后的数据矩阵求出相关系数矩阵 ⏹ 求出协方差矩阵的特征根和特征向量⏹ 确定主成分,并对各主成分所包含的信息给予适当的解释版本二:根据我国31个省市自治区2006年的6项主要经济指标数据,表二至表五,是SPSS 的输出表,试解释从每X 表可以得出哪些结论,进展主成分分析,找出主成分并进展适当的解释:〔下面是SPSS 的输出结果,请根据结果写出结论〕 表一:数据输入界面p 21p x x x ,,, 2121p y y y ,,, 21表二:数据输出界面a〕此表为相关系数矩阵,表示的是各个变量之间的相关关系,说明变量之间存在较强的相关系数,适合做主成分分析。

观察各相关系数,假如相关矩阵中的大局部相关系数小于,如此不适合作因子分析。

多元统计分析实验报告(精选多篇)

多元统计分析实验报告(精选多篇)

多元统计分析实验报告(精选多篇)第一篇:多元统计分析实验报告多元统计分析得实验报告院系:数学系班级:13级 B 班姓名:陈翔学号:20131611233 实验目得:比较三大行业得优劣性实验过程有如下得内容:(1)正态性检验;(2)主体间因子,多变量检验a;(3)主体间效应得检验;(4)对比结果(K 矩阵);(5)多变量检验结果;(6)单变量检验结果;(7)协方差矩阵等同性得Box 检验a,误差方差等同性得Levene 检验 a;(8)估计;(9)成对比较,多变量检验;(10)单变量检验。

实验结果:综上所述,我们对三个行业得运营能力进行了具体得比较分析,所得数据表明,从总体来瞧,信息技术业要稍好于电力、煤气及水得生产与供应业以及房地产业。

1。

正态性检验Kolmogorov-SmirnovaShapir o—Wilk 统计量 df Sig.统计量df Sig、净资产收益率。

113 35、200*。

978 35。

677 总资产报酬率。

121 35、200*。

964 35、298 资产负债率。

086 35。

200*.962 35、265 总资产周转率.180 35、006。

864 35。

000流动资产周转率、164 35、018.88535、002 已获利息倍数、28135.000。

55135、000 销售增长率.103 35、200*。

949 35、104 资本积累率。

251 35。

000、655 35。

000 *。

这就是真实显著水平得下限。

a。

Lilliefors显著水平修正此表给出了对每一个变量进行正态性检验得结果,因为该例中样本中n=35<2000,所以此处选用 Shapiro—W ilk 统计量。

由 Sig。

值可以瞧到,总资产周转率、流动资产周转率、已获利息倍数及资本积累率均明显不遵从正态分布,因此,在下面得分析中,我们只对净资产收益率、总资产报酬率、资产负债率及销售增长率这四个指标进行比较,并认为这四个变量组成得向量遵从正态分布(尽管事实上并非如此)。

《多元统计分析分析》实验报告

《多元统计分析分析》实验报告

《多元统计分析分析》实验报告2012 年月日学院经贸学院姓名学号实验实验成绩名称一、实验目的(一)利用SPSS对主成分回归进行计算机实现.(二)要求熟练软件操作步骤,重点掌握对软件处理结果的解释.二、实验内容以教材例题7.2为实验对象,应用软件对例题进行操作练习,以掌握多元统计分析方法的应用三、实验步骤(以文字列出软件操作过程并附上操作截图)1、数据文件的输入或建立:(文件名以学号或姓名命名)将表7.2数据输入spss:点击“文件”下“新建”——“数据”见图1:图1点击左下角“变量视图”首先定义变量名称及类型:见图2:图2:然后点击“数据视图”进行数据输入(图3):图3完成数据输入2、具体操作分析过程:(1)首先做因变量Y与自变量X1-X3的普通线性回归:在变量视图下点击“分析”菜单,选择“回归”-“线性”(图4):图4将因变量Y调入“因变量”栏,将x1-x3调入“自变量”栏(图5):然后选择相关要输出的结果:①点击右上角“统计量(s)”:“回归系数”下选择“估计”;“残差”下选择“D.W”;在右上角选择输出“模型拟合度”、“部分相关和偏相关”“共线性诊断”(后两项是做多重共线性检验)。

选完后点击“继续”(见图6)②如果需要对因变量与残差进行图形分析则需要在“绘制”下选择相关项目(图7),一般不需要则继续③如果需要将相关结果如因变量预测值、残差等保存则点击“保存”(图8),选择要保存的项目④如果是逐步回归法或者设置不带常数项的回归模型则点击“选项”(图9)其他选项按软件默认。

最后点击“确定”,运行线性回归,输出相关结果(见表1-3)图5 图6图7图8图9回归分析输出结果:的协差阵也就是相关阵进行分解做因子分析或主成分分析),如果不需要对变量做标准化处理就选“协方差矩阵”;“输出”中的两项都选,要求输出没有旋转的因子解(主成分分析必选项)和碎石图(用图形决定提取的主成分或因子的个数);“抽取“下,默认的是基于特征值(大于1表示提取的因子或主成分至少代表1个单位标准差的变量信息,因为标准化后的变量方差为1,因子或者主成分作为提取的综合变量应该至少代表1个变量的信息),也可以自选提取的因子个数(即第二项),本例中做主成分回归,选择提取全部可能的3个主成分,所以自选个数填3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元统计分析报告标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]
随着经济的发展,这个差距越来越大。

由于我国人口众多,素质较低,而且就业观念较落后,导致我国劳动力普遍廉价,就业职工工资普遍低下。

刚毕业的大学生人数众多,城市发展速度与农村发展速度不平衡,各省市自治区的就业条件和国家政策,就业环境不同,导致职工工资存在行业间的工资水平存在着巨大的差异,从另一个方面反映出了中国贫富差距的不断扩大。

对我国就业人员职工工资的研究,对我国的社会保障政策和就业政策,教育政策等具有重要的决策意义。

也为对我国经济社会的研究提供了一个因素。

我国就业职工工资水平的行业间的差异已经日益成为我国政府重视的一个问题。

[关键词] 不同行业就业平均工资
一、引言
当前我国处于经济发展快速时期,由于我国人口总数较大,就业人员众多。

因此,就业问题成为了我国社会的一个焦点问题。

研究好行业间就业问题以及就业职工工资问题,能够有效的把握好社会状况,能够帮助大学生更准确的定位自己,找到自己满意的工作。

制定正确的就业政策和社会保障,社会福利政策,来促进大学生的就业问题以及我国国民经济的发展。

本文选取2013年我国各行业城镇单位就业人员平均工资的数据,主要利用以下几种统计方法进行分析:因子分析法、聚类分析法。

将全国各省按照不同行业就业人数进行分类和排序,并与人们实际观察到的情况进行比较分析。

因子分析是指研究从变量群中提取共性因子的统计技术。

因子分析可在许多变量中找出隐藏的具有代表性的因子。

将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。

聚类分析是一组将研究对象分为的群组的统计分析技术,依据研究对象(样品或指标)的特征,对其进行分类的方法,减少研究对象的数目。

二、数据
下表是我国按行业分城镇单位就业人员平均工资的原始数据,数据来源于《2013中
国统计年鉴》,X1~X19分别代表农林牧渔业、采矿业、制造业、电力热力燃气及水生产和供应业、建筑业、批发零售业、交通运输仓储和邮政业、住宿和餐饮业、信息传输软件和信息技术服务业、金融业、房地产业、租赁和商务服务业、科学研究和技术服务业、水利环境和公共设施业、居民服务修理和其他服务业、教育、社会卫生和工作、文化体育和娱乐业、公共管理社会保障和社会组织。

三、分析
(一)因子分析
1、因子分析的适用性判定
如图所示,从KMO测度来看,KMO值等于0.705大于0.5,可以做因子分析,从巴特莱特球体检验来看,其零假设是相关矩阵为单位矩阵,P值等于0,说明拒绝原假设,原始数据适合进行因子分析。

上图说明因子解释原始变量方差的情况,提取了三个主成分因子,第一主成分的特征值为14.527,第二主成分的特征值为1.101,第三主成分的特征值为0.860,这三个主成分特征值的累计概率达到了86%,说明解释了原始数据86%的信息。

上图为各个变量的共同度,大多数变量的共同度都达到了0.9以上,说明提取的信息较多。

图为旋转前的因子载荷矩阵,旋转前各变量在各个载荷区别并不是很明显。

根据
X i=a1i F1+…+a im F m+ε可以算出各公共因子的线性组合。

图为旋转后的因子载荷矩阵,可以看出,电力热力、批发零售业、交通运输住宿和餐饮业、信息传输、金融业、房地产服务业、租赁、公共设施服务业、教育社会工作、卫生、体育社会保障、公共管理和社会组织对第一主成分的贡献较大,称为社会工作因子;农林牧业、采矿业、制造气燃气、建筑业对第二主成分的贡献较大,称为工农建筑业因子;居民服务、服务业对第三主成分的贡献较大,称为居民服务因子。

图为主成分的得分系数矩阵,根据F
j =β1j X1+β
2j
X2+…+βjp X p算出各主成分的
得分如下表所示。

上图为各个省份的主成分得分和综合得分情况。

图为主成分得分和综合得分的排名。

从第一主成分来看,东部地区和东南部发达地区的得分比较高,说明这些地方的社会工作,金融服务业的平均工资比较高。

从第二主成分来看,是一些经济发达的地区和资源比较丰富的地区,在经济发达的地区,制造气燃气和建筑业的平均工资的比较高,而在资源发达的地区,农林牧渔业和采矿业的就业人员的工资比较高。

从第三主成分来看,也是一些经济较为发达的东部地区,说明这些地区的居民服务人员的工资水平较高。

从综合得分来看,还是东部沿海地区的平均工资比较高,例外的是西藏的平均工资也比较高,当然工资比较高,所面临的就业压力和竞争也就比较大。

从这个方面可以反映出来,我们大学生在选择就业地区的时候,不一定要选择工资高的地方,也可以选择一些工资适中,就业压力不是很大的地区。

这些可以为我们在选择就业的时候提供一些根据。

(二)聚类分析
说明31个数据全部参加了聚类,而且没有缺失值。

图是聚类树状图,也叫聚类谱系图,从图中不但可以看出具体的聚类过程,也可以将样品合理分类。

图中从上到下可以看到,按距离的亲疏关系,首先将
3,24,27,28,29并为一类,12和15并为一类,依次这样合并,最后和为三大类。

结论:根据以上的图标的聚类过程,可以对原有31个省市各行业的城镇就业人口平均工资进行分类。

如果粗略地将全部样品分为两大类,则第一类为中西部地区和中南部地区,第二类为东部地区和经济发达地区。

说明我国各个行业之间的平均工资差异还是比较大的,在经济发达的东部地区的工资明显高于西部落后地区。

如果要进一步细分,则可分为四个小组。

第一组:甘肃,青海,贵州,陕西,河北,
河南,山西,山东;第二组:江西,湖北,广西,四川,湖南,重庆,云南;第三组:内
蒙古,吉林,辽宁,新疆,黑龙江,海南,北京;第四组浙江,江苏,福建,广东,天津,上海。

第四组都属于经济最为发达的地区,其人口流量大,人口密度高,同时各个产业都相对最为发达,因此各行业的平均工资也相对较多较集中。

第二组中的六个省市都来自中南部地区,因此行业结构比较类似,就业人员数也比较类似。

第一组中的省市产业以农业和工业为主,服务类行业、金融、房地产行业不太发达,因此人员就业的平均工资也不算太高。

第三组中的六个省市都有其最为突出的重点产业,比如海南、新疆的旅游业较为发达;内蒙古自然资源丰富,尤其是能源及矿产资源丰富,因此工业比较发达;东三省工业发达的同时其农业也比较发达;而北京是我国的政治中心和金融中心,因此在这六个省市在产业结构上有最为突出的特点,就业人员的平均工资比较高。

从上面也可以看出,各个行业之间的差距还是较大的,这对于我们刚刚或即将毕业的大学生来说,也是一种对就业行业的一种指导,可以引导自己去选择适合自己的工作。

四、总结
通过以上两种种多元统计方法的分析,总体来说经济发达地区的平均工资也相对较多,但由于各地区产业侧重点不同就业人数有一定差异。

比如,经济越发达的地区,服务业也越发达,则从事服务行业的人员也相对较多;而自然资源发达的地区。

另外,通过将各省市进行分类也可以看出不同的地区有不同的产业优势,因此从事各行业的人员分布也具有一定的特点。

比如个别省份有其最为突出的产业,则各行业的从业人员特点鲜明,当地特色行业的从业人数较多,而其他行业的人才可能就比较稀缺。

这也直接导致了各个行业之间平均工资的差异。

因此,本科毕业生在择业的时候,可以根据不同地区的特点以及工资结合自己的专业进行选择。

参考文献
[1] 付德印:《应用多元统计分析》. 北京:高等教育出版社,2013
[2] 何晓群:《应用多元统计分析》.北京:中国统计出版社,2010
[3] 中国统计年鉴2013年.中国统计出版社.。

相关文档
最新文档