第5章第3节等比数列及其前n项和

合集下载

(人教版)2020届高考数学一轮复习 第五章 数列 第三节 等比数列及其前n项和课时作业

(人教版)2020届高考数学一轮复习 第五章 数列 第三节 等比数列及其前n项和课时作业

第三节 等比数列及其前n 项和课时作业1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84解析:设数列{a n }的公比为q ,则a 1(1+q 2+q 4)=21,又a 1=3,所以q 4+q 2-6=0,所以q 2=2(q 2=-3舍去),所以a 3=6,a 5=12,a 7=24,所以a 3+a 5+a 7=42.故选B.答案:B2.等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13 C.19D .-19解析:由题知公比q ≠1,则S 3=a 11-q 31-q=a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19,故选C. 答案:C3.等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( ) A .-3 B .5 C .-31D .33解析:设等比数列{a n }的公比为q ,则由已知得q ≠1. ∵S 3=2,S 6=18, ∴1-q 31-q 6=218,得q 3=8, ∴q =2.∴S 10S 5=1-q 101-q5=1+q 5=33,故选D.答案:D4.在等比数列{a n }中,a 1=2,公比q =2.若a m =a 1a 2a 3a 4(m ∈N *),则m =( ) A .11 B .10 C .9D .8解析:a m =a 1a 2a 3a 4=a 41qq 2q 3=24×26=210=2m,所以m =10,故选B. 答案:B5.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( ) A .S n =2T nB .T n =2b n +1C .T n >a nD .T n <b n +1解析:因为点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,所以S n =3·2n-3,所以a n =3·2n-1,所以b n +b n +1=3·2n -1,因为数列{b n }为等比数列,设公比为q ,则b 1+b 1q =3,b 2+b 2q=6,解得b 1=1,q =2,所以b n =2n -1,T n =2n-1,所以T n <b n +1,故选D.答案:D6.(2018·郑州质检)已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是________.解析:设{a n }的公比为q .由a 25=2a 3a 6得(a 1q 4)2=2a 1q 2·a 1q 5,∴q =2,∴S 5=a 11-251-2=-62,a 1=-2. 答案:-27.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)=10a n +1,则公比q =________. 解析:因为等比数列{a n }为递增数列且a 1=-2<0,所以0<q <1,将3(a n +a n +2)=10a n +1两边同除以a n 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13,而0<q <1,所以q=13. 答案:138.若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =__________. 解析:∵a 2-a 1=1,a 3-a 2=3,∴q =3, ∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3, ∵a 1=1,∴a n =3n -1+12. 答案:3n -1+129.(2018·昆明市检测)数列{a n }满足a 1=-1,a n +1+2a n =3. (1)证明{a n -1}是等比数列,并求数列{a n }的通项公式; (2)已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,设b n =a n ·sgn(a n ),求数列{b n }的前100项和.解析:(1)因为a n +1=-2a n +3,a 1=-1, 所以a n +1-1=-2(a n -1),a 1-1=-2,所以数列{a n -1}是首项为-2,公比为-2的等比数列.故a n -1=(-2)n ,即a n =(-2)n+1.(2)b n =a n ·sgn(a n )=⎩⎪⎨⎪⎧2n+1,n 为偶数,2n-1,n 为奇数,设数列{b n }的前n 项和为S n ,则S 100=(2-1)+(22+1)+(23-1)+…+(299-1)+(2100+1)=2+22+23+…+2100=2101-2.10.(2018·合肥质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n 知a n +1n +1=12·a nn, ∴{a n n }是以12为首项、12为公比的等比数列.(2)由(1)知{a n n }是首项为12,公比为12的等比数列,∴a n n =(12)n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②得:12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组——能力提升练1.(2018·长春调研)等比数列{a n }中,a 3=9,前三项和S 3=27,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:当公比q =1时,a 1=a 2=a 3=9,∴S 3=3×9=27. 当q ≠1时,S 3=a 1-a 3q1-q,∴27=a 1-9q1-q∴a 1=27-18q , ∴a 3=a 1q 2,∴(27-18q )·q 2=9, ∴(q -1)2(2q +1)=0, ∴q =-12.综上q =1或q =-12.选C.答案:C2.数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( )A .1B .-1 C.12D .2解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:D3.(2018·彬州市模拟)已知等比数列{a n }的前n 项和S n =2n -a ,则a 21+a 22+…+a 2n =( ) A .(2n -1)2B .13(2n-1) C .4n-1D .13(4n-1) 解析:∵S n =2n-a ,∴a 1=2-a ,a 1+a 2=4-a ,a 1+a 2+a 3=8-a , 解得a 1=2-a ,a 2=2,a 3=4,∵数列{a n }是等比数列,∴22=4(2-a ),解得a =1. ∴公比q =2,a n =2n -1,a 2n =22n -2=4n -1.则a 21+a 22+…+a 2n =4n-14-1=13(4n-1).答案:D4.设数列{a n }是公比为q (|q |>1)的等比数列,令b n =a n +1(n ∈N *),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q =( ) A.32B .-43C .-32D .-52解析:数列{b n }有连续四项在集合{-53,-23,19,37,82}中,且b n =a n +1(n ∈N *),∴a n =b n -1,则{a n }有连续四项在{-54,-24,18,36,81}中, ∵数列{a n }是公比为q (|q |>1)的等比数列, 等比数列中有负数项,则q <0,且负数项为相隔两项∵|q |>1,∴等比数列各项的绝对值递增,按绝对值的顺序排列上述数值18,-24,36,-54,81,相邻两项相除-2418=-43,-3624=-32,-5436=-32,81-54=-32,∵|q |>1,∴-24,36,-54,81是{a n }中连续的四项,此时q =-32.答案:C5.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.解析:由S 3+3S 2=0,得a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 答案:-26.已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n.解析:(1)当n =1时,a 1=32a 1-1,∴a 1=2,当n ≥2时,∵S n =32a n -1,①∴S n -1=32a n -1-1(n ≥2),②①-②得a n =(32a n -1)-(32a n -1-1),即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列, ∴a n =2×3n -1.(2)由(1)得b n =2log 3a n2+1=2n -1,∴1b 1b 2+1b 2b 3+…+1b n -1b n=11×3+13×5+…+12n -32n -1=12(1-13+13-15+…+12n -3-12n -1)=n -12n -1. 7.数列{a n }中,a 1=2,a n +1=n +12na n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式; (2)设b n =a n4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2. 证明:(1)由题设得a n +1n +1=12·a n n ,又a 11=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,a n =n ·22-n=4n 2n .(2)b n =a n4n -a n=4n 2n 4n -4n 2n=12n-1,因为对任意n ∈N *,2n-1≥2n -1,所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=2⎝ ⎛⎭⎪⎫1-12n <2.。

【金版学案】2021届高考数学总温习 第五章 第三节等比数列及其前n项和课时精练 理(1)

【金版学案】2021届高考数学总温习 第五章 第三节等比数列及其前n项和课时精练 理(1)

第三节 等比数列及其前n 项和1.(2021·江西卷)等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24解析:由x,3x +3,6x +6成等比数列得,(3x +3)2=x (6x +6). 解得x 1=-3或x 2=-1(不合题意,舍去). 故数列的第四项为-24. 答案:A2.等差数列{a n }的前n 项和为S n ,且9a 1,3a 2,a 3成等比数列.假设a 1=3,那么a 4=( ) A .6 B .4 C .3 D .5解析:设等差数列{a n }的公差为d ,那么有9(a 1+d )2=9a 1·(a 1+2d ),因为a 1=3,因此可解得d =0,因此{a n }为常数列,a 4=a 1=3.应选C.答案:C3.设等比数列{a n }的前n 项和为S n ,假设8a 2+a 5=0,那么以下式子中数值不能确信的是( ) A.a 5a 3B.S 5S 3C.a n +1a nD.S n +1S n解析:由8a 2+a 5=0知,公比q =-2,因此a 5a 3=q 2=4,S 5S 3=1-q 51-q 3=113,a n +1a n=q =-2.S n +1S n=1-q n +11-q n,依照n 的奇偶性可知,该式的结果不定.应选D.答案:D4.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,那么数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.6164B.6364C.3116D.3316 解析:∵a 1=1,9S 3=S 6,∴q ≠1.那么9·1-q 31-q =1-q 61-q ,得q 3=1(舍),q 3=8,∴q =2,∴1a n =12n -1,∴数列⎩⎨⎧⎭⎬⎫1a n 前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116. 答案:C5.一个蜂巢里有1只蜜蜂,第一天,它飞出去带回了5个伙伴;第二天,6只蜜蜂飞出去各自带回了5个伙伴……若是那个进程继续下去,那么第6天所有蜜蜂归巢后,蜂巢中共有蜜蜂( )A.666-16-1只 B .66只C .63只D .62只解析:从第一天起,每一天归巢后,蜂巢中的蜜蜂数依次为:6,62,63,…,这是一个等比数列,首项为6,公比为6,因此第6天所有蜜蜂归巢后,蜂巢中共有蜜蜂66只.应选B.答案:B6.等比数列{a n }中,a 3=6,前三项和S 3=∫304x d x ,那么公比q 的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:S 3=∫304x d x =2x 2|30=2×32-0=18,由题知,a 1q 2=6①a 1+a 1q =12②②式除以①式得1q 2+1q =2,解得q =1或-12,应选C.答案:C7.概念在(-∞,0)∪(0,+∞)上的函数f (x ),若是关于任意给定的等比数列{a n },{f (a n )}仍是等比数列,那么称f (x )为“保等比数列函数”.现有概念在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x ;③f (x )=|x |;④f (x )=ln |x |.那么其中是“保等比数列函数”的f (x )的序号为 ( ) A .①② B .③④ C .①③ D .②④解析:等比数列性质,a n a n +2=a 2n +1,①f (a n )f (a n +2)=a 2n a 2n +2=(a 2n +1)2=f 2(a n +1);②f (a n )f (a n +2)=2a n 2a n +2=2a n +a n +2≠22a n +1=f 2(a n +1); ③f (a n )f (a n +2)=|a n a n +2|=|a n +1|2=f 2(a n +1);④f (a n )f (a n +2)=ln|a n |ln|a n +2|≠(ln|a n +1|)2=f 2(a n +1).应选C. 答案:C8.(2021·茂名一模)已知等比数列{a n }的公比q 为正数,且a 3·a 9=2a 25,那么q =__________.解析:设等比数列的首项为a 1,由a 3·a 9=2a 25,得:(a 1q 2)·(a 1q 8)=2(a 1q 4)2,即a 21q 10=2a 21q 8, ∵a 1≠0,q >0,∴q = 2.答案:29.(2021·北京卷)假设等比数列{a n }知足a 2+a 4=20,a 3+a 5=40,那么公比q =________;前n 项和S n =________.解析:设等比数列的公比为q ,由a 2+a 4=20,a 3+a 5=40.∴20q =40,且a 1q +a 1q 3=20,解之得q =2,且a 1=2.因此S n =a 11-q n1-q=2n +1-2.答案:2 2n +1-210.(2021·广东深圳二模)已知递增的等比数列{a n }中,a 2+a 8=3,a 3·a 7=2,那么a 13a 10=________.解析:∵{a n }是递增的等比数列,∴a 3a 7=a 2a 8=2,又∵a 2+a 8=3,∴a 2,a 8是方程x 2-3x +2=0的两根,那么a 2=1,a 8=2, ∴q 6=a 8a 2=2,∴q 3=2,∴a 13a 10=q 3= 2.答案:211.若是数列a 1,a 2a 1,a 3a 2,…,a n a n -1,…是首项为1,公比为-2的等比数列,那么a 5=________.解析:∵a na n -1=a 1(-2)n -1=(-2)n -1,∴a 5=a 5a 4·a 4a 3·a 3a 2·a 2a 1=(-2)4+3+2+1=32.答案:3212.已知等比数列{a n }的各项均为不等于1的正数,数列{b n }知足b n =ln a n ,b 3=18,b 6=12,那么数列{b n }前n 项和的最大值为__________.解析:由题知,b 3=18=ln a 3,a 3=e 18,b 6=12=l n a 6,a 6=e 12,a 6a 3=q 3=e -6,q =e -2,那么a 1=e 22,那么b 1=22,b 2=20,b n =22+(n -1)·(-2),n =12时,b n =0,那么S 12最大为132.答案:13213.(2021·陕西卷)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1, 证明数列{a n +1}不是等比数列. 解析:(1) 分两种情形讨论.①当q =1时,数列{a n }是首项为a 1的常数数列,因此S n =a 1+a 1+…+a 1=na 1. ②当q ≠1时,数列S n =a 1+a 2+…+a n -1+a n ⇒qS n =qa 1+qa 2+…+qa n -1+qa n . 上面两式错位相减:(1-q )S n =a 1+(a 2-qa 1)+(a 3-qa 2)…+(a n -qa n -1)-qa n =a 1-qa n . ⇒S n =a 1-qa n 1-q=a 11-q n1-q.③综上,S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q ,q ≠1.(2)利用反证法.设{a n }是公比q ≠1的等比数列, 假设数列{a n +1}是等比数列.那么 ①当∃n ∈N *,使得a n +1=0成立,那么{a n +1}不是等比数列. ②当∀n ∈N *,使得a n +1≠0成立,那么a n +1+1a n +1=a 1q n +1a 1q n -1+1=恒为常数⇒a 1q n +1=a 1q n -1+1⇒当a 1≠0时,q =1.这与题目条件q ≠1矛盾.③综上两种情形,假设数列{a n +1}是等比数列均不成立,因此当q ≠1时, 数列{a n +1}不是等比数列. 14.(2021·广州一模)已知数列{a n }的前n 项和为S n ,且a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).(1)求数列{a n}的通项公式;(2)假设p,q,r是三个互不相等的正整数,且p,q,r成等差数列,试判定a p-1,a q-1,a r-1是不是成等比数列?并说明理由.解析:(1)∵a1+2a2+3a3+…+na n=(n-1)S n+2n,∴当n=1时,有a1=(1-1)S1+2,解得a1=2.由a1+2a2+3a3+…+na n=(n-1)S n+2n,①a1+2a2+3a3+…+na n+(n+1)a n+1=nS n+1+2(n+1),②②-①得:(n+1)a n+1=nS n+1-(n-1)S n+2.③由③式得:(n+1)a n+1=nS n+1-(n-1)S n+2=n(S n+1-S n)+S n+2,得a n+1=S n+2.④当n≥2时a n=S n-1+2,⑤⑤-④得:a n+1=2a n.由a1+2a2=S2+4,得a2=4,∴a2=2a1.∴数列{a n}是以a1=2为首项,2为公比的等比数列.∴a n=2n.(2)∵p,q,r成等差数列,∴p+r=2q.假设a p-1,a q-1,a r-1成等比数列,那么(a p-1)(a r-1)=(a q-1)2,即(2p-1)(2r-1)=(2q-1)2,化简得:2p+2r=2×2q.(*)∵p≠r,∴2p+2r>22p×2r=2×2q,这与(*)式矛盾,故假设不成立.∴a p-1,a q-1,a r-1不是等比数列.。

2022届高考一轮复习第5章数列第3节等比数列及其前n项和

2022届高考一轮复习第5章数列第3节等比数列及其前n项和

15,且 a5=3a3+4a1,则 a3=( )
A.16
B.8
C.4
D.2
[解析]
由题意知aa11>+0a,1q+q>a10q,2+a1q3=15, a1q4=3a1q2+4a1,
解得aq1==21,,∴a3=a1q2=4.故选 C.
[答案] C
(2)(2019·高考全国卷Ⅰ)记 Sn 为等比数列{an}的前 n 项和.若 a1=13,a24=a6,则 S5 =________.
[解析] 由 a24=a6 得(a1q3)2=a1q5,
整理得 q=a11=3.∴S5=13(11--335)=1231.
[答案]
121 3
(3)(2018·高考全国卷Ⅲ)等比数列{an}中,a1=1,a5=4a3. ①求{an}的通项公式; ②记 Sn 为{an}的前 n 项和.若 Sm=63,求 m. [解析] ①设{an}的公比为 q,由题设得 an=qn-1. 由已知得 q4=4q2,解得 q=0(舍去),q=-2 或 q=2. 故 an=(-2)n-1 或 an=2n-1.
[解析] (1)证明:由题设得 4(an+1+bn+1)=2(an+bn),即 an+1+bn+1=12(an+bn). 又因为 a1+b1=1, 所以{an+bn}是首项为 1,公比为12的等比数列. 由题设得 4(an+1-bn+1)=4(an-bn)+8, 即 an+1-bn+1=an-bn+2. 又因为 a1-b1=1. 所以{an-bn}是首项为 1,公差为 2 的等差数列.
A.4
B.8
C.16
D.32
答案:C
2.(基础点:等比数列的前 n 项和)设{an}是公比为正数的等比数列,若 a1=1,a5

第五章 第三节 等比数列及其前n项和

第五章 第三节 等比数列及其前n项和
由(S4-S2)2=S2·(S6-S4)得 S6=21a,同理得 S8=85a,所以SS84= 855aa=17.
答案:17
教材知识四基导航 考点典例探究领航 创新变化提能返航 课时规范训练
大一轮复习 数学(理)
考点二 等比数列的判定与证明[探究型]——应用逻辑推理 [例 1] (2018·珠海模拟)已知数列{an}和{bn}满足:a1=λ,an+1 =23an+n-4,bn=(-1)n(an-3n+21),其中 λ 为实数,n 为正整数. (1)对任意实数 λ,证明数列{an}不是等比数列; (2)试判断数列{bn}是否为等比数列,并证明你的结论. 解:(1)假设存在一个实数 λ,使{an}成等比数列,则有 a22=a1a3, 即23λ-32=λ49λ-4,故49λ2-4λ+9=49λ2-4λ,即 9=0,这与事实 相矛盾.所以对任意实数 λ,数列{an}都不是等比数列.
大一轮复习 数学(理)
③若数列{an},{bn}(项数相同)是等比数列,则{λan},{|an|}, a1n,{a2n},{an·bn},abnn(λ≠0)仍然是等比数列;
④在等比数列{an}中,等距离取出若干项也构成一个等比数 列,即 an,an+k,an+2k,an+3k,…为等比数列,公比为 qk.
大一轮复习 数学(理)
2.分类讨论的思想:等比数列的前 n 项和公式涉及对公比 q 的分类讨论,当 q=1 时,{an}的前 n 项和 Sn=na1;当 q≠1 时, {an}的前 n 项和 Sn=a111--qqn=a11--aqnq.
教材知识四基导航 考点典例探究领航 创新变化提能返航 课时规范训练
教材知识四基导航 考点典例探究领航 创新变化提能返航 课时规范训练
大一轮复习 数学(理)

第五章 第三节 等比数列及其前n项和

第五章  第三节  等比数列及其前n项和

解析:∵ an- 2 an-1=0,∴an=2an-1 2×1-2n ∴q=2.∴Sn= =2n+1-2. 1-2
答案:2n+1-2
返回
2 8 3.(2012· 长安模拟)已知数列{an}中,a1=3,a2=9.当n≥2时, 3an+1=4an-an-1(n∈N*). (1)证明:{an+1-an}为等比数列; (2)求数列{an}的通项.
a1q +a1q
2
3
1 1 =32a q2+a q3. 1 1
2 a1q=2, 即 2 5 a1q =32.
a2qq+1=2q+1, 1 化简得 2 5 a1q q+1=32q+1, a1=1, 又∵a1>0,q>0,解得 q=2.
1 1 1 1 + ,a3+a4=32 + . =2 a a 1 a3 a4 2
(1)求{an}的通项公式;
2 (2)设bn=an+log2an,求数列{bn}的前n项和Tn.
返回
解:(1)设等比数列{an}的公比为q,则an=a1qn-1,
1 1 由已知得a1+a1q=2a +a q, 1 1
D.32
答案: C
返回
3.已知等比数列{an}的前三项依次为a-1,a+1,a+4, 则an=
3n A.4· 2 3n-1 C.4· 2 2n B.4· 3 2n-1 D.4· 3
(
)
解析:(a+1)2=(a-1)(a+4)⇒a=5,
等比 设a、b为任意两个同号的实数,则a、b的等 中项 比中项G= ± ab
返回
二、等比数列的性质 1.通项公式的推广:an=am· n-m. q
2.对于任意正整数p、q、r、s,只要满足p+q=r+s, a · =ar· s a a 则有 p q . 1 3.若{an},{bn}(项数相同)是等比数列,则{λan},{a }, n

高考数学总复习 第5章 第3讲 等比数列及其前n项和课件 理 新人教A版

高考数学总复习 第5章 第3讲 等比数列及其前n项和课件 理 新人教A版
第二十六页,共49页。
[变式探究(tànjiū)] 已知数列{an}的前n项和Sn=2an+1,求 证:{an}是等比数列,并求出通项公式.
证明:∵Sn=2an+1, ∴Sn+1=2an+1+1, ∴ an + 1 = Sn + 1 - Sn = (2an + 1 + 1) - (2an + 1) = 2an + 1 - 2an. ∴an+1=2an, 又∵S1=2a1+1=a1,∴a1=-1≠0,
-an-1),不为定值,故不符合题意;对于 f(x)= |x|,f(an)=
|an|,则
|an| = |an-1|
aan-n 1= |q|为定值,
第二十四页,共49页。
符合题意;对于 f(x)=ln|x|,f(an)=ln|an|,由等比数列定 义得, ln|an| 并不为定值,故不符合题意;故①③正确.
(2)在等比数列{an}中,a2013=8a2010,则 q=________. (3)已知等比数列的公比是 2,且前 4 项的和为 1,那么 前 8 项之和为________.
第十页,共49页。
2. 等比数列的主要性质 (1){an}是等比数列⇒{c·an}是等比数列(c≠0). (2){an}{bn}均为等比数列⇒{an·bn}、{abnn}是等比数列. (3){an}为等比数列,则aamn =________. (4)若 m、n、p、q∈N*且 m+n=p+q,则 am·an=ap·aq. 特别地,a1an=a2an-1
填一填:(1)2 2n-1-12 (2)2
第十四页,共49页。
(3)17 提示:将 q=2,S4=1,n=4 代入 Sn=a111--qqn, 得 1=a111--224,解之得 a1=115, ∴S8=11511--228=17.

2020版高考数学一轮复习 第5章 数列 第3讲 等比数列及其前n项和讲义 理(含解析)

2020版高考数学一轮复习 第5章 数列 第3讲 等比数列及其前n项和讲义 理(含解析)
题型 错误! 等比数列的判断与证明
(2018·全国卷Ⅰ)已知数列{an}满足 a1=1,nan+1=2(n+1)an,设 bn= ann.
(1)求 b1,b2,b3; (2)判断数列{bn}是否为等比数列,并说明理由; (3)求{an}的通项公式. 解 (1)由条件可得 an+1=错误!an。 将 n=1 代入,得 a2=4a1,而 a1=1,所以 a2=4。 将 n=2 代入,得 a3=3a2,所以 a3=12. 从而 b1=1,b2=2,b3=4。 (2){bn}是首项为 1,公比为 2 的等比数列.由题设条件可得na+n+11 = 错误!,即 bn+1=2bn,又 b1=1,所以{bn}是首项为 1,公比为 2 的等比数 列. (3)由(2)可得错误!=2n-1,所以 an=n·2n-1. 条件探究 1 将举例说明条件改为“a1=1,a2,n-(2an+1-1)an-2an+1 =0,且 an>0",求{an}的通项公式.
答案 6
解析 因为 a1=2,an+1=2an,所以 an≠0,故aan+n 1=2.
所以数列{an}是公比为 2 的等比数列,因为 Sn=126,所以错误!=126, 所以 2n=64,故 n=6.
题型 错误! 等比数列基本量的运算
1.已知等比数列{an}满足 a1+a2=6,a4+a5=48,则数列{an}前 8 项的 和 S8=( )
第 3 讲 等比数列及其前 n 项和
[考纲解读] 1。理解等比数列的概念及等比数列与指数函数的关系. 2。掌握等比数列的通项公式与前 n 项和公式,并熟练掌握其推导方法,能 在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决 相应的问题.(重点) 3。熟练掌握等比数列的基本运算和相关性质.(难点)

2021高考数学人教版一轮复习练习:第五章 第3节 等比数列及其前n项和

2021高考数学人教版一轮复习练习:第五章 第3节 等比数列及其前n项和

多维层次练30[A 级 基础巩固]1.(2020·郴州一模)在数列{a n }中,满足a 1=2,a 2n =a n -1·a n +1(n ≥2,n ∈N *),S n 为{a n }的前n 项和,若a 6=64,则S 7的值为( )A .126B .256C .255D .254解析:数列{a n }中,满足a 2n =a n -1a n +1(n ≥2),则数列{a n }为等比数列,设其公比为q ,又由a 1=2,a 6=64,得q 5=a 6a 1=32,则q =2,则S 7=a 1(1-27)1-2=28-2=254.答案:D2.(2020·惠州联考)已知数列{a n }为等差数列,且2a 1,2,2a 6成等比数列,则{a n }前6项的和为( )A .15 B.212 C .6D .3解析:由2a 1,2,2a 6成等比数列,可得4=2a 1·2a 6=2a 1+a 6, 即a 1+a 6=2,又数列{a n }为等差数列, 所以{a n }前6项的和为12×6(a 1+a 6)=6.答案:C3.已知数列{a n }为正项等比数列,a 2=2,a 3=2a 1,则a 1a 2+a 2a 3+…+a n a n +1=( )A .(2+2)[1-(2)n ]B .(2+2)[(2)n -1] C.2(2n -1)D.2(1-2n )解析:由{a n }为正项等比数列,且a 2=2,a 3=2a 1,可得a 1=1,公比q =2,所以数列{a n a n +1}是以2为首项,2为公比的等比数列,则a 1a 2+a 2a 3+…+a n a n +1=2(1-2n )1-2=2(2n -1).答案:C4.(2020·衡阳一模)在等比数列{a n }中,a 1a 3=a 4=4,则a 6的所有可能值构成的集合是( )A .{6}B .{-8,8}C .{-8}D .{8}解析:因为a 1a 3=a 22=4,a 4=4,所以a 2=2,所以q 2=a 4a 2=2,所以a 6=a 2q 4=2×4=8,故a 6的所有可能值构成的集合是{8}.答案:D5.已知各项均为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则2a 7+a 11的最小值为( )A .16B .8C .2 2D .4解析:因为a 4与a 14的等比中项为22, 所以a 4·a 14=a 7·a 11=(22)2=8, 所以2a 7+a 11≥22a 7a 11=22×8=8, 所以2a 7+a 11的最小值为8.答案:B6.(2019·全国卷Ⅰ)设S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.解析:由a 24=a 6得(a 1q 3)2=a 1q 5,整理得q =1a 1=3.所以S 5=13(1-35)1-3=1213.答案:12137.在各项均为正数的等比数列{a n }中,若a m ·a m +2=2a m +1(m ∈N *),数列{a n }的前n 项积为T n ,且T 2m +1=128,则m 的值为________,数列{a n }的前n 项和S n =________.解析:因为a m ·a m +2=2a m +1,所以a 2m +1=2a m +1,即a m +1=2,即{a n }为常数列.又T 2m +1=(a m +1)2m +1,由22m +1=128,得m =3. 数列{a n }的前n 项和S n =2n . 答案:3 2n8.已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项的和S 9=________.解析:由a 2n +1a n=4(a n +1-a n )可得a 2n +1-4a n +1a n +4a 2n =0,即(a n +1-2a n )2=0,即a n +1=2a n ,又a 1=2,所以数列{a n }是首项和公比都是2的等比数列,则其前9项的和S 9=2(1-29)1-2=210-2=1 022.答案:1 0229.已知{a n }是公差为3的等差数列,数列{b n }满足b 1=1,b 2=13,a nb n +1+b n +1=nb n .(1)求{a n }的通项公式; (2)求{b n }的前n 项和.解:(1)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2,所以数列{a n }是首项为2,公差为3的等差数列,通项公式为a n =3n -1.(2)由(1)知a n b n +1+b n +1=nb n ,得b n +1=b n3,因此{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n ,则S n =1-⎝ ⎛⎭⎪⎫13n 1-13=32-12×3n -1. 10.已知数列{a n }中,点(a n ,a n +1)在直线y =x +2上,且首项a 1=1.(1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n 项和为T n ,请写出适合条件T n ≤S n 的所有n 的值.解:(1)因为点(a n ,a n +1)在直线y =x +2上,所以a n +1=a n +2,所以a n +1-a n =2,所以数列{a n }是等差数列,公差为2,又a 1=1, 所以a n =1+2(n -1)=2n -1.(2)数列{a n }的前n 项和S n =n (1+2n -1)2=n 2.等比数列{b n }中,b 1=a 1=1,b 2=a 2=3,所以q =3. 所以b n =3n -1.所以数列{b n }的前n 项和T n =1-3n 1-3=3n -12.T n ≤S n 可化为3n -12≤n 2,又n ∈N *,所以n =1或2.故适合条件T n ≤S n 的所有n 的值为1,2.[B 级 能力提升]11.(2020·合肥二模)“垛积术”(隙积术)是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价是1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是⎣⎢⎡⎦⎥⎤100-200⎝ ⎛⎭⎪⎫910n 万元,则n 的值为( )A .7B .8C .9D .10解析:由题意知,茭草垛自上而下堆放的货物件数构成一个等差数列{a n },且a n =n ,货物单价构成一个等比数列{b n },且b n =⎝ ⎛⎭⎪⎫910n -1,所以每一层货物的总价为a n b n =n ·⎝ ⎛⎭⎪⎫910n -1万元, 所以这堆货物的总价(单位:万元)为S n =a 1b 1+a 2b 2+a 3b 3+…+a n b n ,所以S n =1×1+2×910+3×⎝ ⎛⎭⎪⎫9102+…+(n -1)×⎝ ⎛⎭⎪⎫910n -2+n ×⎝ ⎛⎭⎪⎫910n -1. 两边同乘910得,910S n =1×910+2×⎝ ⎛⎭⎪⎫9102+3×⎝ ⎛⎭⎪⎫9103+…+(n -1)×⎝ ⎛⎭⎪⎫910n -1+n ×⎝ ⎛⎭⎪⎫910n,两式相减得110S n =1+910+⎝ ⎛⎭⎪⎫9102+⎝ ⎛⎭⎪⎫9103+…+⎝ ⎛⎭⎪⎫910n -1-n ×⎝ ⎛⎭⎪⎫910n =10-(10+n )×⎝ ⎛⎭⎪⎫910n,所以S n =100-10×(10+n )×⎝ ⎛⎭⎪⎫910n,由100-10×(10+n )×⎝ ⎛⎭⎪⎫910n =100-200×⎝ ⎛⎭⎪⎫910n,整理得10×(10+n )=200,解得n =10. 答案:D12.数列{a n }满足a 1+3a 2+…+(2n -1)a n =3-2n +32n ,n ∈N *,则a 1+a 2+…+a n =________.解析:因为a 1+3a 2+…+(2n -1)a n =3-2n +32n ,所以a 1+3a 2+…+(2n -3)a n -1=3-2n +12n -1(n ≥2),两式相减得(2n -1)a n =2n -12n (n ≥2),a n =12n (n ≥2),当n =1时,a 1=3-52=12,适合上式,所以a n =12n (n ∈N *).因此a 1+a 2+…+a n =12⎝ ⎛⎭⎪⎫1-12n 1-12=1-12n .答案:1-12n13.(2020·长治二模)S n 为等比数列{a n }的前n 项和,已知a 4=9a 2,S 3=13,且公比q >0.(1)求a n 及S n .(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求出λ的值;若不存在,请说明理由.解:(1)由题意可得⎩⎪⎨⎪⎧a 1q 3=9a 1q ,a 1(1-q 3)1-q=13,q >0,解得a 1=1,q =3, 所以a n =3n -1,S n =1-3n 1-3=3n -12.(2)假设存在常数λ,使得数列{S n +λ}是等比数列, 因为S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13,所以(λ+4)2=(λ+1)(λ+13),解得λ=12,此时S n +12=12×3n ,则S n +1+12S n +12=3, 故存在常数λ=12,使得数列⎩⎨⎧⎭⎬⎫S n +12是等比数列.[C 级 素养升华]14.(多选题)设数列{a n }是各项均为正数的等比数列,T n 是{a n }的前n 项之积,a 2=27,a 3·a 6·a 9=127,则当T n 最大时,n 的值为( )A .4B .5C .6D .7解析:因为数列{a n }是各项均为正数的等比数列,a 3·a 6·a 9=127,所以a 36=127,解得a 6=13.因为a 2=27,所以q 4=1327=181,解得q =13,所以a n =a 2qn -2=27×⎝ ⎛⎭⎪⎫13n -2=⎝ ⎛⎭⎪⎫13n -5.令a n =⎝ ⎛⎭⎪⎫13n -5=1,解得n =5,则当T n 最大时,n 的值为4或5.答案:AB素养培育数学运算、数学抽象——等差(比)数列性质的应用(自主阅读)(1)数学运算是指在明析运算对象的基础上,依据运算法则解决数学问题的素养.本系列数学运算主要表现为:理解数列问题,掌握数列运算法则,探究运算思路,求得运算结果.通过对数列性质的学习,发展数学运算能力,促进数学思维发展.(2)数学抽象是指能够在熟悉的情境中直接抽象出数学概念和规则,能够在特例的基础上归纳形成简单的数学命题,能够在解决相似的问题中感悟数学的通性通法,体会其中的数学思想.类型1 等差数列两个性质的应用 在等差数列{a n }中,S n 为{a n }的前n 项和: (1)S 2n -1=(2n -1)a n ;(2)设{a n }的项数为2n ,公差为d ,则S 偶-S 奇=nd .[典例1] (1)等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m=0,S 2m -1=38,则m =________.(2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则数列的公差d =________.解析:(1)由a m -1+a m +1-a 2m =0得2a m -a 2m =0,解得a m =0或a m=2.又S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m =38,显然可得a m ≠0,所以a m =2.代入上式可得2m -1=19,解得m =10.(2)设等差数列的前12项中奇数项和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎨⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎨⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5. 答案:(1)10 (2)5类型2 等比数列两个性质的应用在等比数列{a n }中,(1)若m +n =p +q (m ,n ,p ,q ∈N *),则a n ·a m =a p ·a q ;(2)当公比q ≠-1时,S n ,S 2n -S n ,S 3n -S 2n ,…成等比数列(n ∈N *).[典例2] (1)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A .6B .5C .4D .3(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )A.18B .-18 C.578 D.558解析:(1)数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4=lg(a 4·a 5)4=lg(2×5)4=4.(2)因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18,所以a 7+a 8+a 9=18.答案:(1)C (2)A类型3 等比数列前n 项和S n 相关结论的活用(1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q .若共有2n 项,则S 偶∶S 奇=q .(2)分段求和:S n +m =S n +q n S m (q 为公比).[典例3] (1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.(2)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________. 解析:(1)由题意,得⎩⎨⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎨⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2. (2)设等比数列{a n }的公比q ,易知S 3≠0.则S 6=S 3+S 3q 3=9S 3,所以q 3=8,q =2.所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,其前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116. 答案:(1)2 (2)3116。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009~2013年高考真题备选题库第5章数列第3节等比数列及其前n 项和1. ( 2013广东,5分)设数列{a n }是首项为1,公比为—2的等比数列,贝U a i + &]+ a 3 + |a 4| = _______ . 解析:本题主要考查等比数列通 项等知识,意在考查考生的运算求解能力.依 题意得a 1=1, a 2=— 2, a 3= 4, a 4=— 8,所以 a 1+ 念|+a 3+ 旧4|= 15. 答案:15 2. (2013北京,5分)若等比数列{a n }满足a 2+ a 4= 20, 83+ 85= 40,则公比q = 前n 项和S n =解析:本题主要考查等比数列的基 础知识,意在考 查考生的计算能力.由题知 P 1q+ a 1q 3;20,解得 f q= 2, a 1q + ag = 40, |a 1= 2,故 S=罟=2n +1-2.答案:22n +1— 23. ( 2011辽宁,5分)若等比数列{a n }满足a n a n +1= 16n,则公比为()D. 16解析:由 a n a n + 1= 16n ,得 a n + 1 a n + 2= 16n + 1, ” n + 1 a n + 1 a n + 2 16— 2 >,0 荷=16,.・.q 2= 16,两式相除得, a n a n + 1•/ a n a n +1= 16n,可知公比 为正数,••• q= 4. 答案:B 4. ( 2010辽宁,5分)设S n 为等比数列{a n }的前n 项和,已知3S 3= a 4 — 2,3S 2= a 3— 2, 则公比q=( ) 解析: p S 3= a 4— 2 3S 2= a 3— 2 ①他② ,①-②得:3a 3= a 4-a 3,4a 3= a 4, q = a 3= 4.答案:5. ( 2012新课标全国,5分)等比数列{a n }的前n 项和为S n ,若S 3+ 3S 2= 0,则公比q解析:2+ a1q = 0,答案:由 S3+ 3S2= 0, 即卩 a1+a2+ a3+ 3(a1 + a2)= 0,即卩 4a1 + 4a2 + a3= 0, 即卩 4a1 + 4a1q 即 q2+ 4q + 4= 0,所以 q=— 2.6. ( 2011广东,5分)已知{a n}是递增等比数列,a2= 2, a4— a3= 4,则此数列的公比q解析:由题意得2q2— 2q= 4,解得q= 2或q=— 1.又{a n}单调递增,得q> 1,.,. q= 2.答案:27. (2011新课标全国,12分)等比数列{a n}的各项均为正数,且 2a i + 3a2= 1, a3= 9a2a6.⑴求数列{a n}的通项公式;⑵设b n= log3a1 + Iog3a2 +…+ log3a n,求数列{右}的前n项和.解:(1)设数列{a n}的公比为q.由a3= 9a2a6得a2= 9a2,所以q2= f ■由条件可知q> 0,故1q=3.1由 2a1 + 3a2= 1,得 2a1 + 3a1q = 1,得 a1 = 3.1故数列{a n}的通项公式为a n=尹⑵ b n= Iog3a1 + Iog3a2 +…+ Iog3a n =—(1 + 2+ …+门)=—晋4故右=-^ =-2(1-丄).b n n(n+1 ) n n+11 1 1 1 1 1 1 1 2nb;+ b;+…+眉—2[(1 — 2)+(1— 3)+…+(n—不)]=—乔.所以数列{£}的前n项和为—n+t考点二等比数列的前n项和1. ( 2013江西,5分)某住宅小区计划植树不少于100棵,若第一天植2棵,植树的棵数是前一天的 2倍,则需要的最少天数 n(n € N*)等于__________ .解析:本题主要考查等比数列的概念与前 n项和等基础知识,考查实际建模的能力以及以后每天分析、解决问题的能力.设每天植树的棵数组成的数列为{a n},由题意可知它是等比数列,且首项为2,公比为2,所以由题意可得 gX 100,即 2n> 51,而 25 = 32,26 = 64, n € N*,1 — 2所以nA 6.答案:62. ( 2013辽宁,5分)已知等比数列{a n}是递增数列,S n是{為}的前n项和.若a1, a3是方程x 2— 5x+ 4 = 0的两个根,贝U S 6 =解析:本题主要考查等比数列的性 质、通项公式、求和公式,意在考 查考生对等比数列 公式的运用,以及等比数列性 质的应用情况.由题意得,a i + a 3= 5, a i a 3= 4,由数列是 递增 数列得,a 1= 1, a 3= 4,所以q= 2,代入等比数列的求和公式得 &= 63. 答案:63 3. ( 2013湖北,13分)已知S n 是等比数列{a n }的前n 项和,S 4, S 2, S 3成等差数列,且 a 2+ a 3+ a 4=— 18. (1) 求数列{a n }的通项公式; (2) 是否存在正整数n,使得S n >2013?若存在,求出符合条件的所有 n 的集合;若不存 在,说明理由. 解:本题主要考查等比数列的性 质、等差数列的性 质、等比数列的通 项公式及前n 项和公式,也考 查了分类讨论思想. (1)设数列{a n }的公比为q,则a 1* 0, q* 0.由题意得 S 2— S 4= S 3 — S 2, a 2+ a 3 + a 4=— 18, 12 3 2 —a 1q — a 1q = ag ,即« 202(1 + q+ q =— 18, {ai = 3 1 ‘ 故数列{a n }的通项公式为a n = 3( — 2)n -1q =— 2. (2)由(1)有s n = 若存在n,使得 屮=1-(- 2)nS n 》2 013,贝U 1— ( — 2)n>2 013,即(一2)n< — 2012. 当n 为偶数时, 当n 为奇数时, (—2)n>0,上式不成立;(—2)n=— 2n< — 2 012,即 2n>2 012,贝U n 》11. 综上,存在符合条件的正整数n,且所有 这样的n 的集合为{n|n=2k+ 1, k€ N , k>5}.4. ( 2010广东,5分)已知数列 {a n }为等比数列,S n 是它的前n 项和•若a 2a 3= 2a 1,且a 4与2a7的等差中项为5,则S5=(A . 35 B. 33 C. 31解析:设数列{a n }的公比为q, D. 29a 2 a 3= a ? q 3= a 1 a 4= 2a 1? a 4= 2, 84+ 2a 7= a 4 + 2a 4q 3= 2故 a 1 =薯16, S 5=晋L 31.答案:C5. ( 2010浙江,5分)设S n 为等比数列{a n }的前n 项和,8a 2 + a 5= 0,则()—2答案:111北京,5分)在等比数列{a n }中,若a 1 = 2, a 4= 4,则公比q =3/111-巧a 4= ag ,得 4 = 2q ,解得 q = 2, a 1 + a ? +…+ a n =答案:A 11D. 11解析:设等比数列{a n }的公比为q (qM0),依题意知8a 1q+ a 1q 4= 0,a 1 M0,则 q 3= — 8,故 q = — 2,所以 1 q _1+ 32S 2- 1 — q 2— 1 — 4 —— 11.答案:A6. (2010辽宁,5分)设{a n }是由正数组成的等比数列, S n 为其前n 项和.已知a 2a 4= 1,S 3= 7,贝y S 5=( )A 15 A.- 33 C — C. 417 D.-fag a 1q 3= 1解析:显然公比qz 1,由题意得,ia1=4解得$1 :q=2...S5=吓 U=乎.答案:B7. ( 2012江西,5分)等比数列{a n }的前n 项和为S n ,公比不为1■若玄尸1,且对任意的 n € N +都有 a n +2 + a n +1 — 2為=0,贝U & = 解析:由 a n + 2 + a n + 1 — 2a n = 0,得 a n q + a n q 一 2a n = 0 ,显然 a n M 0,所以 q + q — 2 = 0.又qM1,解得q=-2■又 a '=1,所以 - 7严="8. (2011 ;a1+ a 2+…+a n =解析: ----- =2n —1一1 1 — 2 2-9. (2009浙江,4分)设等比数列{a n}的公比q =1,前n项和为S n,则|4=2 a4—21a a(1)3 1 S叫1一 2")15a4= a1(2)= 8*1,S4= --------- = ga j,1 — 2解析:-S4=• a415.答案: 1510. (2012陕西,12分)已知等比数列{a n}的公比q= — g1(1)若a3= 4,求数列{a n}的前n项和;⑵证明:对任意k€ N + , a k, a k+ 2, a k+1成等差数列.解:(1)由 a3= a1q2=1及 q= — 2,得 a1 = 1,1X[1_(-2 J] 所以数列{a n}的前n项和S n=⑵证明:对任意k€ N + ,k+ 1k+ 1 k_ 1 k k 一 1 22a k + 2_ (a k + a k+1)= 2a1q 一(a1q + a1q )= a1 q (2q _ q_ 1),由 q=_ 2得 2q2 — q一 1 = 0,故 2a k+ 2— @+ a k+1) = 0.所以,对任意k€ N +, a k, a k+2, a k +1成等差数列.11. (2009山东,12分)等比数列{a n}的前n项和为S n.已知对任意的n€ N,点(n, S n)均在函数y= b x+ r(b> 0且b丰1, b, r均为常数)的图象上.(1)求r的值;⑵当 b = 2 时,记 b n= 2(log2a n + 1)(n€ N*).证明:对任意的n€ N *,不等式^+^卑y…+b1 b2 b n+ 1b n>7n+ 1成立.解:(1)由题意,S n = b n+ r, 当nA2 时,S n—1 = b n—1+ r, 所以 a n=S n— S n-1= b"一^b— 1), 由于b> 0且b丰1,所以nA 2时,{a n}是以b为公比的等比数列,又 a1 = b+ r, a2= b(b_ 1), —= b,a1即b(b- 1= b ,解得 r =- 1. b + r ⑵证明:法一:由(1)知a n = 2n -1, 因此 b n = 2n(n€ N ),2+ 1 4+ 1所证不等式为2+ 1 4+ 1①当n= 1时,左式=3, 左式>右式,所以结论成立. ②假设n = k 时结论成立,2k+ 1 2k+ 3 …• 2k 2(k + 1 )2k+ 32k+ 3要证当n = k+ 1时结论成立, 只需证芈乞>J k+2,2p k+ 1 2k+ 3 J _____________ 即证 2 (k+ 1半+ 2 ,由均值不等式2k 严=世土1+世土2》苗+石严成立,故£貯成立,所以,当n=k+ 1时,结论成立. 由①②可知,n€ N *时,法二:由(1)知:a n = 2n -1,因此 b n = 2n (n€ N *), 所证不等式为2 4 7…詈〉后^.2n+ 1■ 2n2 + 4 4 + 6 6+ 8=_2 ___ 2 ___ 2_=2• 4 • 6^2 X 4 Q 4X 6 #6X 872n (2n + 2 }♦ ♦ ・• • •24 62n则当n= k+ 1 时,>E 2(k+ 1 )= 2”,b i + 1 b 2 + 1不等式b 1 b 22n+f2n + 2)22n考点三 等比数列的性质及应用11. ( 2013江苏,5分)在正项等比数列{a n }中,a 5 =刁a s + a 7= 3.则满足a i +a 2+…+ a n >a i a 2…a n 的最大正整数n 的值为解析:本题主要考查等比数列的基本性 质,意在考 查学生的运算能力.i i设等比数列{ a n }的公比为 q(q>0).由 a 5= ?, a 6+ a 7= 3,可得-(q + q 2)= 3,即 q 2+ q — 6 =0,所以q= 2,所以a n = 2n —6,数列{a *}的前n 项和S n = 2n —5— 2 —5,所以a i a 2…a n =但但扇 =2平严由a i +a 2+…+ a n >a i a 2…码可得2n -5— 2-5>2平严,由2n -5>2^^—严,可 求得n 的最大值为i2,而当n = 13时,28— 2—5>2i3不成立,所以n 的最大值为i2.答案:12(2012新课标全国,5分)已知{ a n }为等比数列,a 4+ a7= 2, a5a 6=— 8,贝U a i + a®a 4 + a 7= 2,解析:设数列{a n }的公比为q,由彳 。

相关文档
最新文档