高斯消元法(完整)

合集下载

第三节、高斯——若当消元

第三节、高斯——若当消元

0
1 1
3
0
1
0
1
0 0 9 18 0 0 1 5 上页 下页 返回
故原方程的解为 x 5,1,2T
第三章 第三节
二 逆矩阵
[ A E] 高斯—约当消元法[E A1]
矩阵的初等行变换
定理 设A为非奇异矩阵,方程组 AX In的增广矩
阵为 C A | In ,如果对C应用高斯---若当方法化为
In | B ,则 A1 B .
1 3 2
例2
用高斯——若当削元法求 的逆矩阵 A1
A 2 3
5 6
4 5
上页 下页 返回

第三章 第三节
1 3 2 1 0 0
C A | I3 2 5 4 0 1 0
3 6 5 0 0 1
1 0 2 5 3 0 1 3 2 1 0 0
0 1 0
2
1 0 0 1 0 2 1
第三章 第三节
第三节 高斯——若当消元法
一 高斯----若当消元
在高斯消元过程中,先将主元素化为1, 而后将主元所在列的其它元素均化为零,最后 将系数矩阵化为单位矩阵 E,无需回代就可求 得原方程的解,此法称为高斯—若当消元法。
例 1 用高斯——若当消元法求解线性方程组
上页 下页 返回
第三章 第三节
0
0 0 1 3 3 1 0 3 1 3 0 1
1 0 0 1 3 2
0 1 0 1 3 3 1
所以 1 3 2
A1
2
1
0
3 3 1
上页 下页 返回
例 1 用高斯——若当消元法求解线性方程组
2x1 8x2 2x3 14
x1
6 x2

科学计算方法6(高斯消元法)

科学计算方法6(高斯消元法)
注释: 8是主元(pivot), -0.5是乘子(multiplier)。 20/29
更加简洁的表示:
8 6 2 28 8 6 2 28 8 6 2 28
4
11
7 40 0
8
6 26 0
8
6 26
4 7 6 33 0 4 5 19 0 0 2 6
8 6 2 1 0 0 8 6 2 A= 4 11 7 = 0.5 1 0 0 8 6 =LU
28/29
My own faith has been strong for years. Back in 1985, I made a $100 bet with Peter Alfeld that a fast matrix inverse would be found by 1995. It wasn’t, so I paid him $100 and renewed the bet for another decade. It still hadn’t been found by 2005, so I paid him a further $100 and we renewed once more. One day I will win!—or my heirs?
我们经常使用记号O表示算法是“是多少阶的”。
因此高斯消元法为O(n3/3)的算法。复杂度(complexity)
是衡量算法性能优劣的主要指标。
26/29
例1. 在一台特定的计算机上, 估计用高斯消元法 求解5000*5000的线性方程组所需时间。
高斯消元法求解50*50的线性方程组所需时间为t1。
22/29
代码:
%elimination phase
for k = 1:n-1 %pivot row

高斯消元法简化线性方程组

高斯消元法简化线性方程组

高斯消元法简化线性方程组线性方程组是数学中常见的问题,其解决方法多种多样。

其中,高斯消元法是一种常用且有效的方法,可以用于简化线性方程组的求解过程。

本文将介绍什么是高斯消元法,以及如何应用它来解决线性方程组。

一、高斯消元法的原理高斯消元法是一种通过行变换将线性方程组转化为更简单形式的方法。

假设有一个线性方程组,包括n个未知数和n个方程:a11x1 + a12x2 + ... + a1nxn = b1a21x1 + a22x2 + ... + a2nxn = b2...an1x1 + an2x2 + ... + annxn = bn通过一系列的行变换,可以将线性方程组转化为上三角矩阵或者简化行阶梯形矩阵的形式。

二、高斯消元法的步骤1. 首先,将方程组表示为增广矩阵的形式,即将系数矩阵和常数向量合并在一起。

得到增广矩阵[A|B],其中A为系数矩阵,B为常数向量。

2. 选取一个主元素,一般选择第一列的第一个非零元素。

在每一行中,通过行变换将主元素所在列的其他元素消为零。

这一步骤称为“消元”。

3. 重复上述步骤,将主元素向下和向右移动,直到矩阵转化为上三角形或简化行阶梯形。

4. 如果出现主元素为零的情况,则需要通过交换行来选取一个非零元素作为主元素,以确保程序正确运行。

5. 进行回代求解,从最后一行开始,依次将已知数值代入方程组中,求解出未知数的值。

三、应用实例下面以一个具体的实例来说明高斯消元法的应用:假设有以下线性方程组:x + 2y - z = 52x - y + 3z = 93x + y - 2z = 1首先,将方程组表示为增广矩阵形式:[1 2 -1 | 5][2 -1 3 | 9][3 1 -2 | 1]选取第一列的第一个非零元素1作为主元素,进行消元操作:[1 2 -1 | 5][0 -5 5 | -1][0 -5 1 | -14]选取第二列的第一个非零元素-5作为主元素,继续进行消元操作:[1 2 -1 | 5][0 1 -1 | 1/5][0 0 -4 | -13/5]此时,矩阵已经转化为上三角形的形式。

数值方法高斯消元法

数值方法高斯消元法

数值方法高斯消元法
高斯消元法(Gaussian Elimination)是指通过迭代使用矩阵运算,化为上三
角形矩阵来求解线性方程组的一种特殊数值算法。

它是数值分析中用于求解结构化和非结构化方程组的主要方法之一,属于改进的回代法,是由德国数学家高斯于
19世纪末提出的。

高斯消元法主要用于求解下列形式的方程组:Ax = b,其中A为非奇异矩阵,
x为未知向量,b为系数向量。

由此可见,该方法最重要的两个思想就是消元和迭代。

本算法的消元操作是通过矩阵的标准变换来实现的,即存在一个三角阵T,它
的下三角部分的映射是原矩阵A,其上三角部分本身恒为单位矩阵,这样一来,原
方程就被转化为一组三角方程,而且由上三角的单位矩阵可以再次得出未知向量x。

在实际应用中,高斯消元法最重要的特点就是它的计算精度高,时间效率也非
常高。

这是因为在处理大矩阵时,它不仅能够提高计算精度,而且能有效控制计算时间。

因此,高斯消元法广泛用于各种数值分析领域,如量子力学计算,复杂系统建模,模式识别,统计过程等等。

此外,高斯消元法也被广泛应用于工业领域,如航空航天,汽车制造,电力电子等。

总而言之,高斯消元法无疑是一种非常出色的线性方程组求解算法,有效地合
理地求解了大量复杂的线性数值问题,用它取代传统的回代法有效地节省了计算时间,是当今数值分析中可靠、高效斗算算法。

高斯消元法详解

高斯消元法详解

高斯消元法详解高斯消元法是一种线性代数中用于解决线性方程组的方法。

它的基本思想是通过一系列的行变换将一个线性方程组转化为一个上三角矩阵,然后通过回带求解出未知数的值。

高斯消元法的基本步骤如下:1. 将待求解的线性方程组写成增广矩阵形式,即将系数矩阵和常数向量合并成一个矩阵。

2. 选取第一行第一列元素不为零的行作为主元行,通过初等行变换将该行化为主元,即使该行第一列元素为1,其余元素为0。

3. 对于每个未被选中的行,将其第一列元素通过初等行变换化为0。

具体做法是将该行乘以主元所在行第一列的相反数,并加到主元所在行上。

4. 重复步骤2和3直到所有未被选中的行都被化为0或者无法选取主元。

5. 回带求解出未知数的值。

从最后一行开始,依次代入已经求出来的未知数值并计算出当前未知数值。

需要注意的是,在进行高斯消元法时需要注意以下几点:1. 当选择主元时应尽量避免选取小数作为主元,因为小数的精度有限,可能会导致计算误差。

2. 当系数矩阵中存在多个相同的行时,需要将它们合并成一个行,以减少计算量。

3. 在进行回带求解时,应注意未知数的顺序和求解的顺序应该一致。

高斯消元法可以用于求解任意大小的线性方程组,但是当方程组的规模很大时,计算量会非常大。

此外,在某些情况下高斯消元法可能会出现无法选取主元或者主元为0的情况,此时需要采用其他方法进行求解。

总之,高斯消元法是一种简单而有效的线性方程组求解方法,在实际应用中得到了广泛的应用。

熟练掌握高斯消元法可以提高我们在科学计算和工程设计中的能力和水平。

高斯消元法

 高斯消元法

2
2
2x1 2x2 x3 6
3 x2
9 2
x3
0
2 x2
7 2
x3
13

6
上一页 下一页 返 回
再将方程组 ② 中第三个方程加上第二个方程的
2 倍,得一个阶梯形方程组
3
2
x1
2
x2
3x2
9 2
x3 x3
6 0
13 2
x3
13
由 x3的 值回代
x1 1
x2
3
x3 2
一、高斯消元法
消元法的基本思想是通过同解变换把方程组 化成容易求解的方程组.
5 上一页 下一页 返 回
例1 解线性方程组
2 x1 2 x2 x1 2 x2 4
x3 x3
6, 3,

5
x1
7 x2
x3
28.
解 方程组 ① 中第二个与第三个方程分别减去
第一个方程的 1 倍与 5 倍,得
amn
b (b1 , b2 ,, bm )T
x ( x1 , x2 ,, xn )T
则方程组(4.1)可简写为
Ax b
4
上一页 下一页 返 回
矩阵
A
A,
b
a11
a21
a12
a22
a1n a2n
b1 b2
am1
am 2
amn
bm
称为线性方程组(4.1)的增广矩阵.
显然线性方程组(4.1)与其增广矩阵构成一一对应 的关系.
0 0
2 x1 x2 4 x3 0
解,对增广矩阵作初等行变换
A,
b
2 4

高斯消元法(完整)

高斯消元法(完整)

高斯消元法解线性方程组在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。

那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。

一、线性方程组设含有n 个未知量、有m 个方程式组成的方程组a x a x a xb a x a x a x b a x a x a x b n n n n m m mn n m11112211211222221122+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。

当右端常数项b 1,b 2, …, b m 不全为0时,称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ (3.2) 称为齐次线性方程组。

由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。

显然由x 1=0, x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。

(利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。

因此,我们先给出线性方程组的矩阵表示形式。

)非齐次线性方程组(3.1)的矩阵表示形式为:AX = B其中A = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211,X = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21,B = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n b b b 21 称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。

高斯消元法详解

高斯消元法详解

高斯消元法详解介绍高斯消元法(Gaussian Elimination)是一种线性代数中常用的求解线性方程组的方法。

它的基本思想是通过一系列的行变换将线性方程组转化为上三角形矩阵,再通过回代求解得到方程组的解。

高斯消元法广泛应用于各个领域,包括数学、工程、计算机科学等。

基本原理高斯消元法的基本原理是利用矩阵的初等行变换,将线性方程组转化为上三角形的矩阵形式。

具体步骤如下:1.构造增广矩阵将线性方程组的系数矩阵与常数矩阵合并,构造增广矩阵。

增广矩阵按照方程组的顺序排列,每个行向量表示一个方程。

2.主元选取选择每一列的主元,使得主元所在的列(称为主元所在列)其他元素都为零。

主元可以是行首非零元素或者经过行交换后的非零元素。

3.消元过程从第一行开始,对每一行进行消元。

通过初等行变换,将主元所在列的其他元素变为零。

消元过程分为两种情况:–主元为零:需要进行行交换,将非零元素调整为主元。

–主元不为零:通过乘以一个系数,将主元下方的元素消为零。

4.回代求解将转化后的增广矩阵转化为上三角形矩阵后,从最后一行开始向上回代求解。

通过求解当前方程的未知数,计算出前面的未知数的值,最终得到方程组的解。

算法实现高斯消元法可以用算法描述如下:1.输入: 线性方程组的增广矩阵A。

2.输出:线性方程组的解X。

3.n = A的行数4.for i = 1 to n-1:1. a = A(i,i)(主元)2.for j = i+1 to n:1. b = A(j,i)2.for k = i to n+1:1.A(j,k) = A(j,k) - (b/a) * A(i,k)5.for i = n to 1:1.sum = 02.for j = i+1 to n:1.sum = sum + A(i,j) * X(j)3.X(i) = (A(i,n+1) - sum) / A(i,i)6.输出X示例假设有如下的线性方程组:2x + 3y - z = 14x + 2y + z = -2-2x + y + 2z = 5我们可以将其转化为增广矩阵:[2 3 -1 | 1][4 2 1 | -2][-2 1 2 | 5]按照高斯消元法的步骤,首先选取第一列的主元为2,然后通过消元将主元下方的元素变为零:[2 3 -1 | 1][0 -2 3 | -4][0 4 3 | 7]然后选取第二列的主元为-2,再进行消元:[2 3 -1 | 1][0 4 3 | 7][0 0 15 | -15]最后,进行回代求解,得到解为x=1,y=2,z=-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高斯消元法解线性方程组在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。

那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。

一、线性方程组设含有n 个未知量、有m 个方程式组成的方程组a x a x a xb a x a x a x b a x a x a x b n n n n m m mn n m11112211211222221122+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。

当右端常数项b 1, b 2, …, b m 不全为0时,称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000+++=+++=+++=⎧⎨⎪⎪⎩⎪⎪ (3.2) 称为齐次线性方程组。

由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。

显然由x 1=0, x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。

(利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。

因此,我们先给出线性方程组的矩阵表示形式。

)非齐次线性方程组(3.1)的矩阵表示形式为:AX = B其中A = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a 212222111211,X = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n x x x 21,B = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n b b b 21 称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。

将系数矩阵A 和常数矩阵B 放在一起构成的矩阵][B A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡m mn m m n n b b b a a a a a a a a a 21212222111211 称为方程组(3.1)的增广矩阵。

齐次线性方程组(3.2)的矩阵表示形式为:AX = O二、高斯消元法(下面介绍利用矩阵求解方程组的方法,那么矩阵初等行变换会不会改变方程组的解呢?我们先看一个定理。

)定理3.1 若用初等行变换将增广矩阵][B A 化为][D C ,则AX = B 与CX = D 是同解方程组。

证 由定理3.1可知,存在初等矩阵P 1, P 2, …, P k ,使P k …P 2P 1()A B = ()C D记P k …P 2P 1 = P ,则P 可逆,即P -1存在。

设X 1为方程组A X = B 的解,即A X 1 = B在上式两边左乘P ,得P A X 1 = PB即C X 1= D说明X 1也是方程组C X = D 的解。

反之,设X 2为方程组C X = D 的解,即 C X 2= D在上式两边左乘P -1,得P -1C X 2= P -1D即A X 2 = B说明X 2也是方程组AX = B 的解。

因此,方程组A X = B 与C X = D 的解相同,即它们是同解方程组。

(证毕)(由定理3.1可知,求方程组(3.1)的解,可以利用初等行变换将其增广矩阵][B A 化简。

又有第二章定理2.10可知,通过初等行变换可以将][B A 化成阶梯形矩阵。

因此,我们得到了求解线性方程组(3.1)的一般方法:)用初等行变换将方程组(3.1)的增广矩阵][B A 化成阶梯形矩阵,再写出该阶梯形矩阵所对应的方程组,逐步回代,求出方程组的解。

因为它们为同解方程组,所以也就得到了原方程组(3.1)的解。

这种方法被称为高斯消元法,(下面举例说明用消元法求一般线性方程组解的方法和步骤。

)例1 解线性方程组 x x x x x x x x x x x x x x x x 1234123412341234215320342221+--=-+--=-++=-++-=⎧⎨⎪⎪⎩⎪⎪ (3.3) 解 先写出增广矩阵][B A ,再用初等行变换将其逐步化成阶梯形矩阵,即][B A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------11122241130235111211②①③①④①+-+-+−→−−−()()132⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------13340577401114011211 ③②④②++-−→−−−()1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------22200666001114011211④③+−→−−−()13⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----00000666001114011211上述四个增广矩阵所表示的四个线性方程组是同解方程组,最后一个增广矩阵表示的线性方程组为x x x x x x x x x 1234234342141666+--=---=+=⎧⎨⎪⎩⎪ 将最后一个方程乘16,再将x 4项移至等号的右端,得 x x 341=-+将其代入第二个方程,解得212=x再将x x 23,代入第一个方程组,解得2141+-=x x因此,方程组(3.3)的解为 ⎪⎩⎪⎨⎧+-==+-=1212143241x x x x x (3.4)其中x 4可以任意取值。

由于未知量x 4的取值是任意实数,故方程组(3.3)的解有无穷多个。

由此可知,表示式(3.4)表示了方程组(3.3)的所有解。

表示式(3.4)中等号右端的未知量x 4称为自由未知量,用自由未知量表示其它未知量的表示式(3.4)称为方程组(3.3)的一般解,当表示式(3.4)中的未知量x 4取定一个值(如x 4=1),得到方程组(3.3)的一个解(如x 112=-,x 212=,x 30=,x 41=),称之为方程组(3.3)的特解。

注意,自由未知量的选取不是唯一的,如例1也可以将x 3取作自由未知量。

如果将表示式(3.4)中的自由未知量x 4取一任意常数k ,即令x 4= k ,那么方程组(3.3)的一般解为⎪⎪⎩⎪⎪⎨⎧=+-==+-=kx k x x k x 432112121 ,其中k 为任意常数。

用矩阵形式表示为 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k k k x x x x 121214321=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--0121211101k (3.5) 其中k 为任意常数。

称表示式(3.5)为方程组(3.3)的全部解。

(用消元法解线性方程组的过程中,当增广矩阵经过初等行变换化成阶梯形矩阵后,要写出相应的方程组,然后再用回代的方法求出解。

如果用矩阵将回代的过程表示出来,我们可以发现,这个过程实际上就是对阶梯形矩阵进一步简化,使其最终化成一个特殊的矩阵,从这个特殊矩阵中,就可以直接解出或“读出”方程组的解。

例如,)对例1中的阶梯形矩阵进一步化简,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----00000666001114011211③①③②③162++−→−−⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000111002004011011 ②①②141+-−→−−−()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000011100210010211001 上述矩阵对应的方程组为⎪⎩⎪⎨⎧=+==+1212143241x x x x x将此方程组中含x 4的项移到等号的右端,就得到原方程组(3.3)的一般解,⎪⎩⎪⎨⎧+-==+-=1212143241x x x x x (3.4) 其中x 4可以任意取值。

例2 解线性方程组 x x x x x x x x x x x x 123123123123234235743992588+-=+-=+-=+-=⎧⎨⎪⎪⎩⎪⎪解 利用初等行变换,将方程组的增广矩阵[]B A 化成阶梯阵,再求解。

即[]B A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----8852993475324321→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------0210735011104321 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------1100220011104321→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000110011104321 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000110020107021→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000110020103001 一般解为 x x x 123321===⎧⎨⎪⎩⎪例3 解线性方程组 x x x x x x x x x 1231231231242253++=-+-=+-=⎧⎨⎪⎩⎪ 解 利用初等行变换,将方程组的增广矩阵[]B A 化成阶梯阵,再求解。

即[]B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---315224211111→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--133033301111 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--200033301111阶梯形矩阵的第三行“0, 0, 0, -2”所表示的方程为:0002123x x x ++=-,由该方程可知,无论x 1,x 2,x 3取何值,都不能满足这个方程。

因此,原方程组无解。

三、线性方程组的解的判定前面介绍了用高斯消元法解线性方程组的方法,通过例题可知,线性方程组的解的情况有三种:无穷多解、唯一解和无解。

从求解过程可以看出,方程组(3.1)是否有解,关键在于增广矩阵[A B ]化成阶梯非零行的行数与系数矩阵A 化成阶梯形矩阵后非零行的行数是否相等。

因此,线性方程组是否有解,就可以用其系数矩阵和增广矩阵的秩来描述了。

定理3.9 线性方程组(3.1)有解的充分必要是 r A ()=r A B ()。

证 设系数矩阵A 的秩为r ,即r A ()= r 。

利用初等行变换将增广矩阵[A B ]化成阶梯阵:[A B ]初等行变换−→−−− c c c d c c c d c c d d s n k s n rs rn r r 11111222210000000000000000000 ****+⎛⎝ ⎫⎭⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪= [C D ] 故AX = B 与CX = D 是同解方程组,因此AX = B 有解⇔d r +1= 0 ⇔r C D ()=r C ()= r即r A B ()=r A ()= r 。

(证毕)推论1 线性方程组有唯一解的充分必要条件是r A ()=r A B ()= n 。

相关文档
最新文档