(完整版)三年级知识点:用假设法解题练习30道(附答案)
三年级假设法解题练习题

三年级假设法解题练习题一、基本假设法练习1. 小明有10个苹果,如果他每天吃2个,几天后苹果吃完?2. 小红买了5支铅笔,如果每支铅笔可以用3天,这些铅笔可以用多少天?3. 假设一本书有100页,小华每天看20页,几天可以看完这本书?4. 假设一辆汽车每行驶100公里耗油10升,行驶500公里需要多少升油?5. 假设一个班级有40人,如果每个人捐10元钱,这个班级总共可以捐多少钱?二、进阶假设法练习1. 假设一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 假设一个正方形的边长是8厘米,求这个正方形的周长。
3. 假设小刚每天步行30分钟,他的速度是每分钟60米,问他一天可以走多远?4. 假设一瓶饮料有500毫升,如果每次喝100毫升,这瓶饮料可以喝几次?5. 假设一个三层书架,每层可以放20本书,这个书架总共可以放多少本书?三、应用假设法练习1. 假设小明家的花园是长方形,长是15米,宽是10米,求花园的面积。
2. 假设小华家的鱼缸可以装40升水,现在鱼缸里有20升水,还能再加多少升水?3. 假设学校有5个班级,每个班级有40人,求学校总共有多少名学生?4. 假设一个水果摊上的苹果每斤5元,香蕉每斤3元,小丽买了2斤苹果和3斤香蕉,一共花了多少钱?5. 假设一辆公交车每站停留5分钟,全程共经过10个站,求公交车全程停留的总时间。
四、混合假设法练习1. 假设一个班级有25个男生和20个女生,如果每个学生都参加运动会,这个班级共有多少名学生参加?2. 假设一本书的厚度是2厘米,如果10本书叠放在一起,它们总共有多厚?3. 假设一家超市有5排货架,每排货架上有10种不同的商品,这家超市总共有多少种商品?4. 假设一辆自行车每分钟可以行驶200米,如果骑行了20分钟,这辆自行车行驶了多少米?5. 假设一个公园的门票价格是每人10元,如果一家四口去公园玩,他们需要支付多少元门票?五、逻辑推理假设法练习1. 假设小猫每分钟可以跑100米,小狗每分钟可以跑150米,如果它们同时起跑,小狗多久后能追上小猫?2. 假设小明有3个红球和2个蓝球,如果他随机拿一个球,拿到红球的概率是多少?3. 假设一个篮子里有5个苹果和3个橘子,如果闭着眼睛拿一个水果,拿到苹果的概率是多少?4. 假设小华每天做5道数学题,如果他连续做了5天,他一共做了多少道数学题?5. 假设一个班级有10个学生,其中有3个学生参加了篮球比赛,剩下的学生参加了足球比赛,参加足球比赛的学生有多少人?六、实际应用假设法练习1. 假设一瓶洗发水可以洗10次头发,如果小明每3天洗一次头发,这瓶洗发水可以用多久?2. 假设一部电影时长是90分钟,如果每分钟播放24帧画面,这部电影的画面总数是多少帧?3. 假设一个水池每分钟可以注满10升水,如果需要注满一个容量为200升的水池,需要多少分钟?4. 假设一辆火车每小时可以行驶120公里,如果从A城市到B城市的距离是300公里,火车需要多少小时才能到达?5. 假设一家餐厅每天可以接待100位顾客,如果连续营业10天,这家餐厅总共可以接待多少位顾客?答案一、基本假设法练习1. 5天2. 15天3. 5天4. 50升5. 400元二、进阶假设法练习1. 50平方厘米2. 32厘米3. 1800米4. 5次5. 60本三、应用假设法练习1. 150平方米2. 20升3. 200名学生4. 34元5. 50分钟四、混合假设法练习1. 45名学生2. 20厘米3. 50种商品4. 4000米5. 40元五、逻辑推理假设法练习1. 2分钟后2. 3/5或60%3. 5/8或62.5%4. 25道数学题5. 7人六、实际应用假设法练习1. 30天2. 21600帧3. 20分钟4. 2.5小时5. 1000位顾客。
假设法解题一附答案

假设法解题 (一)假设是解决较复杂的应用题时常用的一种解题策略,一般针对题目中出现了2种或2种以上的未知量的应用题。
思考时可以先假设全部是一种未知量,然后按照题目的意思进行推算,并根据已知条件把数量上出现的矛盾加以适当的调整,最后找到答案。
数量上出现的矛盾加以适当的调整,最后找到答案。
例题1: 鸡兔同笼,共100个头,320只脚,鸡兔各有多少只?只脚,鸡兔各有多少只?例2 :甲每小时走12千米,乙每小时走8千米。
某日甲从A 地到B 地,乙同时从B 地到A 地,已知乙到A 地时,甲已先到B 地5小时。
求AB 两地距离?两地距离?例3:小王骑车从甲地到乙地往返一次。
去的时候速度是每小时20千米,回来的时候速度是每小时12千米,求他往返的平均速度。
千米,求他往返的平均速度。
例题1: 鸡兔同笼,共100个头,320只脚,鸡兔各有多少只?只脚,鸡兔各有多少只?思路导航:实际上,鸡兔脚的数量是不同的。
我们假设鸡兔脚的数量相同,一只鸡2只脚,只脚,一只兔也一只兔也2只脚。
只脚。
我们能够得出一个新数量,我们能够得出一个新数量,我们能够得出一个新数量,鸡兔共鸡兔共100只,只,有有100×2=200只脚。
问题出来了,实际上多出了320-200=120只脚,为什么?其实,这些多出来的脚是兔子的脚。
从假设看,一只兔子我们要补充给它2条腿,才符合实际。
实际上多出的脚,一共有多少个“2条腿”呢?有120÷2=60个。
这就是兔子的只数。
列算式这就是兔子的只数。
列算式兔子(320-100×2)÷2=(320-200)÷2=120÷2=60(只)(只)鸡100-60=40(只)(只)答:鸡有40只,兔有60只。
只。
例2 :甲每小时走12千米,乙每小时走8千米。
某日甲从A 地到B 地,乙同时从B 地到A 地,已知乙到A 地时,甲已先到B 地5小时。
求AB 两地距离?两地距离? 思路导航:假设甲到B 地后,继续往前走,那么当乙到达A 地时,甲又走了12×5=60(千米),这是在相同时间内,甲比乙多走的路,由于甲每小时比乙多走12-8=4(千米),因此,因此,看看60千米里面有几个4千米,千米,就得出乙行完全程的就得出乙行完全程的时间,再用乙的速度×时间,就可以得出AB 两地的距离。
小学奥数 三年级 假设法

神通广大的假设法
例1
(★★)
孙果果是果果山的采购员,他要去买上衣和裤子共20件,一共带了440元,其中上衣每件24元,裤子每件19元。
孙果果应该买上衣和裤子各多少件?
例2
(★★)
孙果果特别喜欢吃桃子,晴天每天可以采20个,雨天每天只能采12个。
他一连几天采了112个桃子,平均每天采14个。
问这几天中有几个雨天?
例3
(★★★)
现有大、小宝箱共50个,每个大宝箱可装宝贝4千克,每个小宝箱可装宝贝2千克,大宝箱比小宝箱共多装20千克。
问:大、小宝箱各有多少个?
例4
(★★★★)
天上一群九头鸟和地上一群九尾狐商量去吃唐僧,九头鸟有九头一尾,九尾狐有九尾一头。
孙悟空将它们抓起来关进了笼子,猪八戒在笼子外得意地数出了134个头和166条尾巴。
那么共有多少只九头鸟,多少只九尾狐?
例5
(★★★★)
老师领得工资240两,有2两、5两、10两三种一共50张,其中2两和5两的张数一样多,那么三种各有多少张?。
假设法解题一附答案

假设法解题(一)假设是解决较复杂的应用题时常用的一种解题策略,一般针对题目中出现了2种或2种以上的未知量的应用题。
思考时可以先假设全部是一种未知量,然后按照题目的意思进行推算,并根据已知条件把数量上出现的矛盾加以适当的调整,最后找到答案。
例题1:鸡兔同笼,共100个头,320只脚,鸡兔各有多少只例2 :甲每小时走12千米,乙每小时走8千米。
某日甲从A地到B地,乙同时从B地到A地,已知乙到A地时,甲已先到B地5小时。
求AB两地距离例3:小王骑车从甲地到乙地往返一次。
去的时候速度是每小时20千米,回来的时候速度是每小时12千米,求他往返的平均速度。
例题1:鸡兔同笼,共100个头,320只脚,鸡兔各有多少只思路导航:实际上,鸡兔脚的数量是不同的。
我们假设鸡兔脚的数量相同,一只鸡2只脚,一只兔也2只脚。
我们能够得出一个新数量,鸡兔共100只,有100×2=200只脚。
问题出来了,实际上多出了320-200=120只脚,为什么其实,这些多出来的脚是兔子的脚。
从假设看,一只兔子我们要补充给它2条腿,才符合实际。
实际上多出的脚,一共有多少个“2条腿”呢有120÷2=60个。
这就是兔子的只数。
列算式兔子(320-100×2)÷2=(320-200)÷2=120÷2=60(只)鸡100-60=40(只)答:鸡有40只,兔有60只。
例2 :甲每小时走12千米,乙每小时走8千米。
某日甲从A地到B地,乙同时从B地到A地,已知乙到A地时,甲已先到B地5小时。
求AB两地距离思路导航:假设甲到B地后,继续往前走,那么当乙到达A地时,甲又走了12×5=60(千米),这是在相同时间内,甲比乙多走的路,由于甲每小时比乙多走12-8=4(千米),因此,看60千米里面有几个4千米,就得出乙行完全程的时间,再用乙的速度×时间,就可以得出AB两地的距离。
关键词:速度差、行走距离差(假设时间相同后有行走距离差)假设提示:题目没有多少个数量,一个是速度,一个是时间。
(完整版)3年级奥数假设法解题

小学三年级奥数题——用假设法解题练习一:1、鸡兔共30只,共有脚84只,鸡兔各有多少只?2、鸡兔共100只,共有脚280只,鸡兔各有多少只?3、鸡兔共50只,兔的脚比鸡的脚少40只,鸡兔各有多少只?4、鸡兔共45只,鸡的脚比兔的脚多60只,鸡兔各有多少只?练习二:1、鸡兔同笼,鸡比兔多30只,一共有脚168只。
鸡兔各有多少只?2、鸡兔同笼,鸡比兔多25只,一共有脚170只。
鸡兔各有多少只?3、买甲、乙两种戏票,甲种票每张4元,乙种票每张3元,乙种票比甲种票多买了9张,一共用去97元,两种票各买了多少张?4、共有鸡兔的脚48只,若将鸡的只数与兔的只数互换一下则共有脚42只,鸡兔各有几只?练习三:1、某校举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小明得了84分,他做错了多少题?2、某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共有15道题,小明得了102分,他做对了多少题?3、某公司运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元,运后的运费结算为8880元,问这次运输损失了几箱?4、某车间生产一批服装共250件,生产一件可得25元,如果有一件不符合要求,则倒扣20元,生产后得到费用5350元。
问有几件不合格?练习四:1、水果糖的块数是巧克力糖的3倍,如果小明每天吃2块水果糖,1块巧克力糖,几天后,水果糖还剩下7块,巧克力糖正好吃完。
原来水果糖有多少块?2、小明家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小明每天各吃1个苹果,妈妈每天吃1个梨。
若干天后,苹果还剩9个,而梨恰好吃完,原来苹果有多少个?3、某商店有些红气球和黄气球,红气球的只数是黄气球的4倍,每天卖出2只红气球和1只黄气球,若干天后,红气球剩下12只,黄气球刚好卖完。
红气球原来有多少?4、四(3)班有彩色粉笔和白色粉笔若干盒,白粉笔的盒数是彩色粉笔的7倍,每天用去2盒白粉笔和1盒彩色粉笔,当彩色粉笔全部用完时,白粉笔还剩10盒,原来白粉笔有几盒?练习五:1、学校买来8张办公桌和6把椅子,共花去1650元。
小学奥数 假设法 知识点+例题+练习 (分类全面)

假设法解题
教学目标
会运用假设法解决较难的问题
重点
对数量条件进行推算
难点
对数量条件进行推算
教
学
过
程
课堂精讲
假设法是解应用题时常用的一种思维方法。在一些应用题中,要求两个或两个以上的未知量,思考时可以先假设要求的两个或几个未知数相等,或者先假设两种要求的未知量是同一种量,然后按题中的已知条件进行推算,并对照已知条件,把数量上出现的矛盾加以适当的调整,最后找到答案。
例5、学校春游共用了10辆客车,已知大客车每辆坐100人,小客车每辆坐60人,大客车比小客车一共坐520人。大、小客车各几辆?
例6、用大、小两种汽车运货。每辆大汽车装18箱,每辆小汽车装12箱。现有18车货,价值3024元。若每箱便宜2元,则这批货价值2520元。大、小汽车各有多少辆?
拓展:一辆卡车运矿石,晴天每天运20次,雨天每天可运12次,它一共运了112次,平均每天运14次。这几天中有几天是雨天?
拓展:某校举行化学竞赛共有15道题,规定每做对一题得10分,每做错一道或不做倒扣4分。小华在这次竞赛中共得66分,他做对了几道题?
例8、 甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。两人各投10次,共得152分。其中甲比乙多得16分,两人各中多少次?
拓展:甲组工人生产一种零件,每天生产250个。按规定每个合格记4分,生产一只不合格要倒扣15分。该组工人4天共得了3753分,问:生产合格的零件共多少只?
5、搬运1000玻璃瓶,规定安全运到一只可得搬运费3角。但打碎一只,不仅不给搬运费还要赔5角。如果运完后共得运费260元,那么,搬运中打碎了多少只?
6、某次数学竞赛共有20条题目,每答对一题得5分,错1题不仅不得分,而且要倒扣2分,这次竞赛小明得了86分,问他答对了几条题?
三年级知识点:用假设法解题练习30道附答案

三年级知识点:用假设法解题练习30道(附答案)假设法解题1、鸡兔共50只,兔的脚比鸡的脚少40只,鸡兔各有多少只?兔:40 + 4=10只,鸡:50-10=40只2、鸡兔共45只,鸡的脚比兔的脚多60只,鸡兔各有多少只?60 + 2=30 45-30=15 兔:15+(2+1)=5 只鸡:15-5=40 只3、共有鸡兔的脚48只,如果将鸡的只数与兔的只数互换一下则共有脚42只,鸡兔各有多少只?48 + 2=24兔(48-24) + 4=6互换鸡变6只兔:(48-6x2)+4=9只4、一辆自行车有2个轮子,一辆三轮车有3个轮子,车棚里放着自行车和三轮车共10辆,共25个轮子。
自行车(5)辆,三轮车(5)辆。
5、一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?4x36=144 吨,45 —36=9 辆,144 + 9=16 吨,16x45=720 吨。
6、一批货物用大卡车装要16辆,如果用小卡车装要48辆。
已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?4x16=64 吨,48-16=32 辆,64 + 32=2 吨,2x48=96 0吨7、有甲、乙、丙三种练习簿,价钱分别为7角、3角和2 角,三种练习簿一共买了47本,付了21元2角。
买乙种练习簿的本数是丙种练习簿的2倍,三种练习簿各买了多少本?7乂47=329 (角),329-212=117 (角),因为把3角和2角的练习簿都看成了7角,117+(7*33**2)=9 (本)1x9=9 (本),2x9=18 (本), 47-18-9=20 (本)8、甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克。
问两桶油原来各有多少千克?36+2=18千克,36+18=54千克,乙54 + 2=27千克,甲18 +27=45千克。
三年级假设法解题练习题

三年级假设法解题练习题假设法是数学解题中常用的一种方法,它通过对问题进行一定的假设,进而简化题目的难度,以便更容易找到解决方案。
在三年级数学中,也可以运用假设法来解决一些复杂的问题。
下面是一些三年级假设法解题练习题,帮助同学们更好地掌握这一解题方法。
【题目一】小明和小华两个人一起参加了一个足球比赛,他们两个人都进了两个球,比分是多少?解题思路:假设小明进的球数是X,小华进的球数是Y,根据题意可以列出以下等式:X + Y = 4根据等式可以得出:X = 4 - Y因此,当Y = 0时,X = 4;当Y = 1时,X = 3;当Y = 2时,X = 2;当Y = 3时,X = 1;当Y = 4时,X = 0。
所以,可能的比分是:4:0,3:1,2:2,1:3,0:4。
【题目二】小明一共有24本书,其中有若干本是科普书,若干本是小说。
如果小明的科普书和小说的比例是2:3,他有多少本小说?解题思路:假设小说的本数是X,科普书的本数是Y,根据题意可以列出以下等式:X + Y = 24X:Y = 2:3根据第二个等式可以得出:X = 2Y/3将X代入第一个等式中,得到:2Y/3 + Y = 24解方程得到:5Y/3 = 24化简得到:Y = 24 * 3 / 5 = 14.4小说的本数应为整数,所以假设小说的本数为14本,科普书的本数为24 - 14 = 10本。
【题目三】班里一共有40个学生,其中女生和男生的比例是3:4。
女生有多少个?解题思路:假设女生的人数是X,男生的人数是Y,根据题意可以列出以下等式:X + Y = 40X:Y = 3:4根据第二个等式可以得出:X = 3Y/4将X代入第一个等式中,得到:3Y/4 + Y = 40解方程得到:7Y/4 = 40化简得到:Y = 40 * 4 / 7 = 22.86男生的人数应为整数,所以假设男生的人数为23个,女生的人数为40 - 23 = 17个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三年级知识点:用假设法解题练习30道(附答案)假设法解题1、鸡兔共50只,兔的脚比鸡的脚少40只,鸡兔各有多少只?兔:40÷4=10只,鸡:50-10=40只2、鸡兔共45只,鸡的脚比兔的脚多60只,鸡兔各有多少只?60÷2=30 45-30=15 兔:15÷(2+1)=5 只鸡:15-5=40只3、共有鸡兔的脚48只,如果将鸡的只数与兔的只数互换一下则共有脚42只,鸡兔各有多少只?48÷2=24 兔(48-24)÷4=6 互换鸡变6只兔:(48-6×2)÷4=9只4、一辆自行车有2个轮子,一辆三轮车有3个轮子,车棚里放着自行车和三轮车共10辆,共25个轮子。
自行车(5)辆,三轮车(5)辆。
5、一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?4×36=144吨,45-36=9辆,144÷9=16吨,16×45=720吨。
6、一批货物用大卡车装要16辆,如果用小卡车装要48辆。
已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?4×16=64吨,48-16=32辆,64÷32=2吨,2×48=96吨7、有甲、乙、丙三种练习簿,价钱分别为7角、3角和2角,三种练习簿一共买了47本,付了21元2角。
买乙种练习簿的本数是丙种练习簿的2倍,三种练习簿各买了多少本?7×47=329(角),329-212=117(角),因为把3角和2角的练习簿都看成了7角,117÷(7×3-3×2-2)=9(本)1×9=9(本),2×9=18(本),47-18-9=20(本)8、甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克。
问两桶油原来各有多少千克?36÷2=18千克,36+18=54千克,乙54÷2=27千克,甲18+27=45千克。
9、王亮和李强各有画片若干张,如果王亮拿出和李强同样多的画片送给李强,李强再拿出和王亮同样多的画片给王亮,这时两个人都有24张。
问王亮和李强原来各有画片多少张?24÷2=12张,12+24=36张李:36÷2=18张,王:12+18=30张10、一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?4×36=144吨,45-36=9辆,144÷9=16吨,16×45=720吨。
11、一批货物用大卡车装要16辆,如果用小卡车装要48辆。
已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?4×16=64吨,48-16=32辆,64÷32=2吨,2×48=96吨12、有甲、乙、丙三种练习簿,价钱分别为7角、3角和2角,三种练习簿一共买了47本,付了21元2角。
买乙种练习簿的本数是丙种练习簿的2倍,三种练习簿各买了多少本?7×47=329(角),329-212=117(角),因为把3角和2角的练习簿都看成了7角,117÷(7×3-3×2-2)=9(本)1×9=9(本),2×9=18(本),47-18-9=20(本)13、有5元和10元的人民币共14张,共100元,问5元和10元的人民币各多少张?假设有14张5元,14×5=70元,100-70=30元,10元有:30÷(10-5)=6张,五元有:14-6=8张14、笼中共有鸡兔100只,鸡和兔的脚共248只,求笼中鸡兔各多少只?假设有鸡100只,100×2=200只,兔:(248-200)÷(4-2)=24只,鸡:100-24=76只3、一堆2分和5分的硬币共39枚,共值1.5元。
问2分和5分的银币各有多少枚?假设有2分39枚,150-39×2=72,5分:72÷(5-2)=24枚,2分有39-24=15枚15、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为一元和一角的人民币。
求换来的这两种人民币各多少张?50+5=55角,假设有一角28张,55-28×1=27角,一元:27÷(10-1)=3张,5角:28-3=25张16、有一元、二元、五元的人民币50张,总面值为116元。
已知一元的比二元的多2张,问三种面值的人民币各有多少张?假设减少2张一元,50-2=48张,假设有一、二元48张,(1+2)÷2=1.5元,(116-2)-48×1.5=42元,五元: 42÷(5-1.5)=12张,二元有:(48-12)÷2=18,一元有:18+2=20张17、有3元、5元和7元的电影票400张,一共价值1920元。
其中7元的和5元的张数相等,三种价值的电影票各有多少张?(7+5)÷2=6元,假设5元、7元有400张,3元:(400×6-1920)÷(6-3)=160张,5元、7元各有:(400-160)÷2=170张18、有一元、五元、十元的人民币共14张,总计66元,其中一元的比十元的多2张,问三种人民币各有多少张?假设减少一元2张,66-2=64元,(10+1)÷2=5.5元假设有五元12张。
(12×5.5-64)÷(5.5-5)=4张,十元(12-4)÷2=4张,一元:4+2=6张19、有1角、2角、4角、5角的邮票共26张,总计6.9元。
其中,1角和2角的张数相等,4角和5角的张数相等。
求这四张邮票各有多少张?6.9元角,假设1角和2角26张,(1+2)÷2=1.5角,(4+5)÷2=4.5角(69-26×1.5) ÷(4.5-1.5)=10张,4角和5角各有10÷2=5张,1角和2角各有: (26-10) ÷2=8张20、有黑白棋子一堆,其中黑子个数是白子个数的2倍。
如果从这堆棋子中每次取出黑子4个,白子3个,那么取了多少次后,白子余1个,而黑子余18个?1×2=2个,3×2=6个,(18-2)÷ (6-4)=8次21、有黑白棋子一堆,其中黑子个数是白子个数的3倍。
如果从这堆棋子中每次同时取出黑子6个,白子3个,那么取了多少次后,白子余5个,黑子余36个?3×5=15个, 3×3=9个,(36-15)÷(9-6)=7次22、有黑白棋子一堆,其中黑子个数是白子个数的2倍。
如果从这堆棋子中每次同时取出黑子3个,白子4个,那么取了多少次后,白子余2个,黑子余29个?2×2=4个,4×2=8个,(29-4)÷(8-3)=5次23、操场上有一群同学,男生人数是女生的4倍,每次同时有2名男生和1名女生回教室,若干次后,男生剩下8人,女生剩下1人。
操场上共有多少名同学?1×4=4人,1×4=4人,(8-4)÷(4-2)=2次(2+1)×2+8+1=15人。
24、用大小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱。
现有18车货,价值3024元。
若每箱便宜2元,则这批货物价值2520元。
问大小汽车各多少辆?2520-3024=504元,假设大汽车有18辆,小车:(18×18×2-504)÷(18×2-12×2)=12辆,大车:18-12=6辆25、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次。
平均每天运14次。
这几天中有几天是雨天?112÷14=8天,假设雨天运8天,晴天(112-12×8)÷(20-12)=2天,雨天:8-2=6天26、有鸡蛋18箩,每只大箩装180个,每只小箩装120个,这批蛋共值302.4元。
若将每个鸡蛋便宜2分出售,这些鸡蛋可卖252元。
问大箩、小箩各有多少个?302.4-252=50.4元=5040分,假设小箩有18箩,大箩(18×180×2-5040) ÷(180×2-120×2)=12箩,小箩:18-12=6箩27、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元。
如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问有多少千克大西瓜?290-250=40元,40÷0.05=800千克,假设大西瓜有800千克,小:(800×0.4-290)÷(0.4-0.3)=300千克,大:800-300=500千克28、甲乙二人投飞镖比赛,规定每中一次记10分,脱靶一次倒扣6分。
两人各投10次,共得152分。
其中甲比乙多得16分,问两人各中多少次?甲(152+16)÷2=84分,乙(152-16)÷2=68分,假设甲投中10×10=100,未中(100-84)÷16=1次,甲:10-1=9次假设乙投中10×10=100,未中(100-68)÷16=2次,甲:10-2=8次29、百货公司委托搬运站送500只玻璃瓶,双方商定每只运费0.24元。
如果打破一只,不但不给运费,而且还要赔偿1.26元,结果,搬运站共得运费115.50元。
问搬运中打破了几只?(500×0.24-115.50)÷(1.26+0.24)=3只30、某次数学竞赛共有20道题,每答对一道得5分,答错一道不仅不给分,还倒扣2分。
这次数学竞赛小明得了86分,问他答对了几道题?(20×5-86)÷(5+2)=2道。