2017年山东省枣庄市滕州市木石中学中考数学模拟试卷带答案解析(一)

合集下载

山东省枣庄市年中考数学试卷(word解析版)

山东省枣庄市年中考数学试卷(word解析版)

2017年山东省枣庄市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.下列计算,正确的是( )A.﹣=B.|﹣2|=﹣C.=2ﻩD.()﹣1=2【考点】立方根;有理数的减法;算术平方根;负整数指数幂.【分析】根据立方根的概念、二次根式的加减运算法则、绝对值的性质、负整数指数幂的运算法则计算,即可判断.【解答】解:﹣=2﹣=,A错误;|﹣2|=,B错误;=2,C错误;()﹣1=2,D正确,故选:D.2.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96 B.69ﻩC.66ﻩD.99【考点】生活中的旋转现象.【分析】直接利用中心对称图形的性质结合69的特点得出答案.【解答】解:现将数字“69”旋转180°,得到的数字是:69.故选:B.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°ﻩB.22.5°C.30°ﻩD.45°【考点】平行线的性质.【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:A.4.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣bﻩC.﹣bﻩD.b【考点】二次根式的性质与化简;实数与数轴.【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲ﻩB.乙ﻩC.丙ﻩD.丁【考点】方差;算术平均数.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A.ﻩB.ﻩC. D.【考点】相似三角形的判定.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.ﻩC. D.1【考点】翻折变换(折叠问题).【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM的值.【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=,故选:B.8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30ﻩC.45ﻩD.60【考点】角平分线的性质.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12ﻩB.﹣27 C.﹣32 D.﹣36【考点】菱形的性质;反比例函数图象上点的坐标特征.【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【解答】解:∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入y=得,4=,解得:k=﹣32.故选C.10.如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.2<r<ﻩB.<r<3C.<r<5ﻩD.5<r<【考点】点与圆的位置关系;勾股定理.【分析】利用勾股定理求出各格点到点A的距离,结合点与圆的位置关系,即可得出结论.【解答】解:给各点标上字母,如图所示.AB==2,AC=AD==,AE==3,AF==,AG=AM=AN==5,∴<r<3时,以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内.故选B.11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0) B.(﹣6,0) C.(﹣,0)ﻩD.(﹣,0)【考点】一次函数图象上点的坐标特征;轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P 为线段CD′的中点,由此即可得出点P的坐标.【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故选C.(方法二)连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD 值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2),CD∥x轴,∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2),点O为线段DD′的中点.又∵OP∥CD,∴点P为线段CD′的中点,∴点P的坐标为(﹣,0).故选C.12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】A、将a=1代入原函数解析式,令x=﹣1求出y值,由此得出A选项不符合题意;B、将a=2代入原函数解析式,令y=0,根据根的判别式△=8>0,可得出当a=﹣2时,函数图象与x轴有两个不同的交点,即B选项不符合题意;C、利用配方法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a的取值范围,由此可得出C选项不符合题意;D、利用配方法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D选项符合题意.此题得解.【解答】解:A、当a=1时,函数解析式为y=x2﹣2x﹣1,当x=﹣1时,y=1+2﹣1=2,∴当a=1时,函数图象经过点(﹣1,2),∴A选项不符合题意;B、当a=﹣2时,函数解析式为y=﹣2x2+4x﹣1,令y=﹣2x2+4x﹣1=0,则△=42﹣4×(﹣2)×(﹣1)=8>0,∴当a=﹣2时,函数图象与x轴有两个不同的交点,∴B选项不符合题意;C、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,∴二次函数图象的顶点坐标为(1,﹣1﹣a),当﹣1﹣a<0时,有a>﹣1,∴C选项不符合题意;D、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,∴二次函数图象的对称轴为x=1.若a>0,则当x≥1时,y随x的增大而增大,∴D选项符合题意.故选D.二、填空题(本大题共6小题,每小题4分,共24分)13.化简:÷=.【考点】分式的乘除法.【分析】根据分式的乘除法的法则进行计算即可.【解答】解:÷=•=,故答案为:.14.已知关于x的一元二次方程ax2﹣2x﹣1=0有两个不相等的实数根,则a的取值范围是a>﹣1且a≠0 .【考点】根的判别式.【分析】根据一元二次方程的定义和判别式的意义得到a≠0且△=(﹣2)2﹣4a(﹣1)>0,然后求出两不等式的公共部分即可.【解答】解:根据题意得a≠0且△=(﹣2)2﹣4a(﹣1)>0,解得a>﹣1且a≠0.故答案为a>﹣1且a≠0.15.已知是方程组的解,则a2﹣b2=1.【考点】二元一次方程组的解.【分析】根据是方程组的解,可以求得a+b和a﹣b的值,从而可以解答本题.【解答】解:∵是方程组的解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.16.如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为π .【考点】切线的性质;平行四边形的性质;弧长的计算.【分析】先连接OE、OF,再求出圆心角∠EOF的度数,然后根据弧长公式即可求出的长.【解答】解:如图连接OE、OF,∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,的长==π.故答案为:π.17.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OAB C的面积为4.【考点】反比例函数系数k的几何意义.【分析】可设D点坐标为(x,y),则可表示出B点坐标,从而可表示出矩形OABC的面积,利用xy=2可求得答案.【解答】解:设D(x,y),∵反比例函数y=的图象经过点D,∴xy=2,∵D为AB的中点,∴B(x,2y),∴OA=x,OC=2y,=OA•OC=x•2y=2xy=2×2=4,∴S矩形OABC故答案为:4.18.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)【考点】矩形的性质;等腰三角形的判定;相似三角形的判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?【考点】一元一次不等式的整数解.【分析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.【解答】解:根据题意解不等式组,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴﹣<x≤1,故满足条件的整数有﹣2、﹣1、0、1.20.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有50人,在扇形统计图中,m的值是30% ;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由舞蹈的人数除以占的百分比求出调查学生总数,确定出扇形统计图中m的值;(2)求出绘画与书法的学生数,补全条形统计图即可;(3)列表得出所有等可能的情况数,找出恰好为一男一女的情况数,即可求出所求概率.【解答】解:(1)20÷40%=50(人),15÷50=30%;故答案为:50;30%;(2)50×20%=10(人),50×10%=5(人),如图所示:(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,男1男2男3女1女2男1﹣﹣﹣男2男1男3男1女1男1女2男1男2(男1男2)﹣﹣﹣男3男2女1男2女2男2男3(男1男3)男2男3﹣﹣﹣女1男3女2男3女1(男1,女1)男2女1男3女1﹣﹣﹣女2女1女2(男1女2)男2女2男3女2女1女2﹣﹣﹣所有等可能的情况有20种,其中抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)==.21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.【考点】作图﹣位似变换;作图﹣平移变换;解直角三角形.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,B2=∠ACB,由图形可知,∠A2C2过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==2,∴sin∠ACB===,即sin∠A2C2B2=.22.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).【考点】直线与圆的位置关系;扇形面积的计算.【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC 是圆的切线;(2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,求出圆心角的度数,直角三角形ODB的面积减去扇形DOF面积即可确定出阴影部分面积.【解答】解:(1)BC与⊙O相切.证明:连接OD.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.(2)设OF=OD=x,则OB=OF+BF=x+2,根据勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt △O DB中,OD=OB , ∴∠B =30°, ∴∠D OB =60°, ∴S 扇形AO B==,则阴影部分的面积为S △ODB ﹣S 扇形DOF =×2×2﹣=2﹣.故阴影部分的面积为2﹣.23.我们知道,任意一个正整数n 都可以进行这样的分解:n=p ×q(p ,q是正整数,且p≤q ),在n 的所有这种分解中,如果p,q 两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解.并规定:F (n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n 的平方,我们称正整数m 是完全平方数.求证:对任意一个完全平方数m,总有F (m )=1;(2)如果一个两位正整数t ,t =10x +y(1≤x ≤y ≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t 为“吉祥数”,求所有“吉祥数”; (3)在(2)所得“吉祥数”中,求F(t)的最大值. 【考点】因式分解的应用.【分析】(1)对任意一个完全平方数m ,设m =n 2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t 的个位上数与十位上的数得到的新数为t′,则t′=10y +x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.24.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC的度数.【考点】四边形综合题.【分析】(1)根据正方形的性质证明△APE≌△CFE,可得结论;(2)分别证明∠PAE=45°和∠BAC=45°,则∠CAE=90°,即△ACE是直角三角形;(3)分别计算PG和BG的长,利用平行线分线段成比例定理列比例式得:,即,解得:a=b,得出a与b的比,再计算GH和BG的长,根据角平分线的逆定理得:∠HCG=∠BCG,由平行线的内错角得:∠AEC=∠ACB=45°.【解答】证明:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵,∴△APE≌△CFE,∴EA=EC;(2)△ACE是直角三角形,理由是:如图2,∵P为AB的中点,∴PA=PB,∵PB=PE,∴PA=PE,∴∠PAE=45°,又∵∠BAC=45°,∴∠CAE=90°,即△ACE是直角三角形;(3)设CE交AB于G,∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a,∵PE∥CF,∴,即,解得:a=b,∴a:b=:1,作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=(2b﹣2b)=(2﹣)b,又∵BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q 的坐标.【考点】二次函数综合题.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式,再求其顶点D即可;(2)过F作FG⊥x轴于点G,可设出F点坐标,利用△FBG∽△BDE,由相似三角形的性质可得到关于F点坐标的方程,可求得F点的坐标;(3)由于M、N两点关于对称轴对称,可知点P为对称轴与x轴的交点,点Q在对称轴上,可设出Q点的坐标,则可表示出M的坐标,代入抛物线解析式可求得Q点的坐标.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴=,当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点F在x轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F 点的坐标为(﹣3,﹣);综上可知F点的坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对称轴MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6的图象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).。

2017年山东省枣庄市滕州市中考三模数学试卷及答案

2017年山东省枣庄市滕州市中考三模数学试卷及答案

2015年山东省枣庄市滕州市中考数学三模试卷一、选择题(每小题3分,共36分)1.下列图形中,既是中心对称,又是轴对称图形的是()A.B.C.D.2.据报道,滕州市某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水30万吨,将30万用科学记数法表示应为()A. 0.3×106 B. 3×105 C. 3×106 D. 30×1043.某篮球队12名队员的年龄如表:则这12名队员年龄的众数和平均数分别是()A. 18,19 B. 19,19 C. 18,19.5 D. 19,19.54.将二次函数y=x2的图象向右平移3个单位,再向上平移7个单位后,所得图象的函数表达式是()A. y=(x﹣3)2+7 B. y=(x+3)2+7 C. y=(x﹣3)2﹣7 D. y=(x+3)2﹣75.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A. 3 B. 6 C. 9 D. 126.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A. 2 B. 4 C. 4 D. 87.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B 转过的路径长为()A. B. C. D.π8.已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=() A.﹣1 B.﹣3 C. 3 D. 79.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A. B. C. D.10.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D. 2∠ABF11.如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()A.正三角形 B.正方形 C.正五边形 D.正六边形12.二次函数y=ax2+bx+c图象如图所示,下列正确的个数为()①bc>0②2a﹣3c<0③2a+b>0④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0⑤a+b+c>0⑥当x>1时,y随x增大而增大.A. 3 B. 4 C. 5 D. 6二、填空题(每小题4分,共24分)13.如果菱形的两条对角线的长为a和b,且a,b满足(a ﹣5)2+=0,那么菱形的面积等于.14.不等式组的解集是.15.已知关于x的方程x2+(1﹣m)x+=0有两个不相等的实数根,则m的最大整数值是.16.如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为.17.第三届全国智力运动会将于2015年10月在山东枣庄隆重举行,届时滕州某初中学校将从小记者团内负责体育赛事报道的3名同学(2男1女)中任选2名前往采访,那么选出的2名同学恰好是一男一女的概率是.18.已知二次函数y=﹣x2+2bx+c,当x>1时,y的值随x 值的增大而减小,则实数b的取值范围是.三、解答题19.(1)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|(2)解方程:﹣=1.20.将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入.图2是它的平面示意图,请根据图中的信息,求出容器中牛奶的高度(结果精确到0.1cm).(参考数据:≈1.73,≈1.41)21.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?22.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF 平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.23.如图,已知函数y=(x>0)的图象经过点A、B,点A 的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A 的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.24.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.25.如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B (4,0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.2015年山东省枣庄市滕州市中考数学三模试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.下列图形中,既是中心对称,又是轴对称图形的是()A. B. C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误.故选:A.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.据报道,滕州市某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水30万吨,将30万用科学记数法表示应为()A. 0.3×106 B. 3×105 C. 3×106 D. 30×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:30万=300000=3×105,故选:B.点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.某篮球队12名队员的年龄如表:则这12名队员年龄的众数和平均数分别是( )A . 18,19B . 19,19C . 18,19.5D . 19,19.5考点: 众数;加权平均数.分析: 根据众数及平均数的概念求解.解答: 解:年龄为18岁的队员人数最多,众数是18; 平均数==19.故选:A .点评: 本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.4.将二次函数y=x 2的图象向右平移3个单位,再向上平移7个单位后,所得图象的函数表达式是( )A. y=(x﹣3)2+7 B. y=(x+3)2+7 C. y=(x﹣3)2﹣7 D. y=(x+3)2﹣7考点:二次函数图象与几何变换.分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.解答:解:将二次函数y=x2的图象向右平移3个单位,再向上平移7个单位后,所得图象的函数表达式是y=(x﹣3)2+7.故选:A.点评:本题考查了二次函数图象与几何变换,函数图象右移减、左移加,上移加、下移减是解题关键.5.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A. 3 B. 6 C. 9 D. 12考点:位似变换.分析:利用位似图形的面积比等于位似比的平方,进而得出答案.解答:解:∵△ABC与△A′B′C′是位似图形,且△ABC 与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.点评:此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解题关键.6.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A. 2 B. 4 C. 4 D. 8考点:垂径定理;等腰直角三角形;圆周角定理.分析:根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.解答:解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O 的直径AB 垂直于弦CD ,∴CE=DE ,△OCE 为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C .点评: 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.7.如图,在△ABC 中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC 绕直角顶点C 逆时针旋转60°得△A ′B ′C ,则点B 转过的路径长为( )A .B .C .D . π考点: 旋转的性质;弧长的计算.专题:几何图形问题.分析:利用锐角三角函数关系得出BC的长,进而利用旋转的性质得出∠BCB′=60°,再利用弧长公式求出即可.解答:解:∵在△ABC中,∠ACB=90°,∠ABC=30°,AB=2,∴cos30°=,∴BC=ABcos30°=2×=,∵将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,∴∠BCB′=60°,∴点B转过的路径长为:=π.故选:B.点评:此题主要考查了旋转的性质以及弧长公式应用,得出点B转过的路径形状是解题关键.8.已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=() A.﹣1 B.﹣3 C. 3 D. 7考点:一次函数图象上点的坐标特征.分析:分别把函数y=ax+b经过(1,3),(0,﹣2)代入求出a、b的值,进而得出结论即可.解答:解:∵函数y=ax+b经过(1,3),(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选:D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.9.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A. B. C. D.考点:动点问题的函数图象.专题:动点型.分析:通过相似三角形△EFB∽△EDC的对应边成比例列出比例式=,从而得到y与x之间函数关系式,从而推知该函数图象.解答:解:根据题意知,BF=1﹣x,BE=y﹣1,且△EFB∽△EDC,则=,即=,所以y=(0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选:C.点评:本题考查了动点问题的函数图象.解题时,注意自变量x的取值范围.10.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D. 2∠ABF考点:全等三角形的判定与性质.分析:根据全等三角形的判定与性质,可得∠ACB与∠DBE 的关系,根据三角形外角的性质,可得答案.解答:解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.点评:本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质.11.如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得到的平面图形一定是()A.正三角形 B.正方形 C.正五边形 D.正六边形考点:剪纸问题.专题:操作型.分析:先求出∠O=60°,再根据直角三角形两锐角互余沿折痕展开依次进行判断即可得解.解答:解:∵平角∠AOB三等分,∴∠O=60°,∵90°﹣60°=30°,∴剪出的直角三角形沿折痕展开一次得到底角是30°的等腰三角形,再沿另一折痕展开得到有一个角是30°的直角三角形,最后沿折痕AB展开得到等边三角形,即正三角形.故选:A.点评:本题考查了剪纸问题,难点在于根据折痕逐层展开,动手操作会更简便.12.二次函数y=ax2+bx+c图象如图所示,下列正确的个数为()①bc>0②2a﹣3c<0③2a+b>0④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0⑤a+b+c>0⑥当x>1时,y随x增大而增大.A. 3 B. 4 C. 5 D. 6考点:二次函数图象与系数的关系.分析:由抛物线开口向上知a>0,由对称轴在y轴右侧知b<0,由与y轴的交点为在y轴的负半轴上得到c<0,所以判定①正确;由a>0,c<0,利用不等式的性质判定②错误;由对称轴为x==1,得2a+b=0,可以判定③错误;由抛物线与x轴的两个交点位置,可以判定④正确;由当x=1时,y=a+b+c<0,可以判定⑤错误;根据二次函数的性质,可以判定⑥正确.所以①④⑥正确.解答:解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴右侧,∴﹣>0,∴b<0,∵与y轴的交点为在y轴的负半轴上,∴c<0,∴bc>0,∴①正确;∵a>0,c<0,∴2a>0,﹣3c>0,∴2a﹣3c>0,∴②错误;∵对称轴为x==1,∴2a+b=0,∴③错误;∵抛物线y=ax2+bx+c与x轴交点横坐标的值即为方程ax2+bx+c=0的解,由图形可知,一个交点在x轴正半轴上,一个交点在x轴负半轴上,∴ax2+bx+c=0有两个解x1,x2,x1>0,x2<0,∴④正确;∵当x=1时,y=a+b+c<0,∴⑤错误;∵a>0,对称轴为x=1,∴当x>1时,y随x增大而增大,∴⑥正确.综上所述,①④⑥正确.故选A.点评:本题考查了二次函数图象与系数之间的关系,二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧(简称:左同右异);常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.同时考查了不等式的性质,二次函数与一元二次方程的关系.二、填空题(每小题4分,共24分)13.如果菱形的两条对角线的长为a和b,且a,b满足(a ﹣5)2+=0,那么菱形的面积等于10 .考点:菱形的性质;非负数的性质:偶次方;非负数的性质:算术平方根.分析:由a,b满足(a﹣5)2+=0,可求得a与b的值,然后由菱形的两条对角线的长为a和b,根据菱形的面积等于对角线积的一半,即可求得答案.解答:解:∵a,b满足(a﹣5)2+=0,∴a﹣5=0,b﹣4=0,∴a=5,b=4,∵菱形的两条对角线的长为a和b,∴菱形的面积等于:ab=10.故答案为:10.点评:此题考查了菱形的性质以及非负数的非负性.注意菱形的面积等于对角线积的一半.14.不等式组的解集是1<x<4 .考点:解一元一次不等式组.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.解答:解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.点评:此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.15.已知关于x的方程x2+(1﹣m)x+=0有两个不相等的实数根,则m的最大整数值是0 .考点:根的判别式.专题:判别式法.分析:根据判别式的意义得到△=(1﹣m)2﹣4×>0,然后解不等式得到m的取值范围,再在此范围内找出最大整数即可.解答:解:根据题意得△=(1﹣m)2﹣4×>0,解得m<,所以m的最大整数值为0.故答案为:0.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.16.如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为(a+5,﹣2).考点:坐标与图形变化-平移.分析:根据对应点A、A′的坐标确定出平移规律为向右5个单位,向下4个单位,然后写出点Q的坐标即可.解答:解:由图可知,A(﹣4,3),A′(1,﹣1),所以,平移规律为向右5个单位,向下4个单位,∵P(a,2),∴对应点Q的坐标为(a+5,﹣2).故答案为:(a+5,﹣2).点评:本题考查了坐标与图形变化﹣平移,观察图形得到变化规律是解题的关键.17.第三届全国智力运动会将于2015年10月在山东枣庄隆重举行,届时滕州某初中学校将从小记者团内负责体育赛事报道的3名同学(2男1女)中任选2名前往采访,那么选出的2名同学恰好是一男一女的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2名同学恰好是一男一女的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有6种等可能的结果,选出的2名同学恰好是一男一女的有4种情况,∴选出的2名同学恰好是一男一女的概率是:=.故答案为:.点评:此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.18.已知二次函数y=﹣x2+2bx+c,当x>1时,y的值随x 值的增大而减小,则实数b的取值范围是b≤1 .考点:二次函数的性质.专题:计算题.分析:先利用二次函数的性质求出抛物线的对称轴为直线x=b,则当x>b时,y的值随x值的增大而减小,由于x>1时,y的值随x值的增大而减小,于是得到b≤1.解答:解:抛物线的对称轴为直线x=﹣=b,因为a=﹣1<0,所以抛物线开口向下,所以当x>b时,y的值随x值的增大而减小,而x>1时,y的值随x值的增大而减小,所以b≤1.故答案为b≤1.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.三、解答题19.(1)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|(2)解方程:﹣=1.考点:实数的运算;零指数幂;负整数指数幂;解分式方程;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=1﹣5﹣+=﹣4;(2)去分母得:x(x+2)﹣2=(x+2)(x﹣2),去括号得:2x=﹣2,解得:x=﹣1.经检验x=﹣1是分式方程的解.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入.图2是它的平面示意图,请根据图中的信息,求出容器中牛奶的高度(结果精确到0.1cm).(参考数据:≈1.73,≈1.41)考点:解直角三角形的应用.专题:几何图形问题.分析:根据题意得出AP,BP的长,再利用三角形面积求法得出NP的长,进而得出容器中牛奶的高度.解答:解:过点P作PN⊥AB于点N,∵由题意可得:∠ABP=30°,AB=8cm,∴AP=4cm,BP=AB•cos30°=4cm,∴NP×AB=AP×BP,∴NP===2(cm),∴9﹣2≈5.5(cm),答:容器中牛奶的高度约为:5.5cm.点评:此题主要考查了解直角三角形以及三角形面积求法等知识,得出PN的长是解题关键.21.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000 名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.解答:解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF 平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.考点:菱形的判定;平行四边形的性质;解直角三角形.分析:(1)先证明四边形是平行四边形,再根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.点评:本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.23.如图,已知函数y=(x>0)的图象经过点A、B,点A 的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A 的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.专题:代数几何综合题.分析:(1)根据待定系数法,可得函数解析式,根据图象上的点满足函数解析式,可得D点坐标,根据三角形的面积公式,可得答案;(2)根据BE的长,可得B点的纵坐标,根据点在函数图象上,可得B点横坐标,根据两点间的距离公式,可得答案.解答:解;(1)y=(x>0)的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴.(2)∵BE=,∴.∵BE⊥CD,点B的纵坐标=2﹣=,由反比例函数y=,点B的横坐标x=2÷=,∴点B的横坐标是,纵坐标是.∴CE=.点评:本题考查了反比例函数k的几何意义,利用待定系数法求解析式,图象上的点满足函数解析式.24.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.考点:切线的判定与性质.专题:几何图形问题.分析:(1)连接OD,根据圆周角定理求出∠DAB+∠DBA=90°,求出∠CDA+∠ADO=90°,根据切线的判定推出即可;(2)根据勾股定理求出DC,根据切线长定理求出DE=EB,根据勾股定理得出方程,求出方程的解即可.解答:解:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,已知D为⊙O的一点,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=6,即BE=6.点评:本题考查了切线的性质和判定,勾股定理,切线长定理,圆周角定理,等腰三角形的性质和判定的应用,题目比较典型,综合性比较强,难度适中.25.如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B (4,0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:代数几何综合题;压轴题.分析:(1)把点A、B的坐标代入函数解析式,解方程组求出a、b的值,即可得解;(2)根据抛物线解析式求出对称轴,再根据平行四边形的对角线互相平分求出点C的横坐标,然后代入函数解析式计算求出纵坐标,即可得解;(3)设AC、EF的交点为D,根据点C的坐标写出点D的坐标,然后分①点O是直角顶点时,求出△OED和△PEO相似,根据相似三角形对应边成比例求出PE,然后写出点P的坐标即可;②点C是直角顶点时,同理求出PF,再求出PE,然后写出点P的坐标即可;③点P是直角顶点时,利用勾股定理列式求出OC,然后根据直角三角形斜边上的中线等于斜边的一半可得PD=OC,再分点P在OC的上方与下方两种情况写出点P的坐标即可.解答:解:(1)把点A(1,0)和B(4,0)代入y=ax2+bx+2得,,解得,所以,抛物线的解析式为y=x2﹣x+2;(2)抛物线的对称轴为直线x=,∵四边形OECF是平行四边形,∴点C的横坐标是×2=5,∵点C在抛物线上,∴y=×52﹣×5+2=2,∴点C的坐标为(5,2);(3)设OC与EF的交点为D,∵点C的坐标为(5,2),∴点D的坐标为(,1),①点O是直角顶点时,易得△OED∽△PEO,∴=,即=,解得PE=,所以,点P的坐标为(,﹣);②点C是直角顶点时,同理求出PF=,所以,PE=+2=,所以,点P的坐标为(,);③点P是直角顶点时,由勾股定理得,OC==,∵PD是OC边上的中线,∴PD=OC=,若点P在OC上方,则PE=PD+DE=+1,此时,点P的坐标为(,),若点P在OC的下方,则PE=PD﹣DE=﹣1,此时,点P的坐标为(,),综上所述,抛物线的对称轴上存在点P(,﹣)或(,)或(,)或(,),使△OCP是直角三角形.。

2017年山东省枣庄市滕州市木石中学中考数学模拟试卷(一)

2017年山东省枣庄市滕州市木石中学中考数学模拟试卷(一)

2017年山东省枣庄市滕州市木石中学中考数学模拟试卷(一)一、选择题(共16小题,每小题3分,满分48分)1.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108 B.4.4×109C.4.4×108D.4.4×10102.(3分)下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4C.a2•a3=a5 D.(a﹣b)2=a2﹣b23.(3分)分式的值为零,则x的值为()A.﹣1 B.0 C.±1 D.14.(3分)方程x2+x=0的解是()A.x=±1 B.x=0 C.x1=0,x2=﹣1 D.x=15.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.7.(3分)你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为Y,下面能大致表示上面故事情节的图象是()A.B.C.D.8.(3分)如图,已知一次函数y=﹣x+2的图象与坐标轴分别交于A、B两点,⊙O的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PM,切点为M,则PM的最小值为()A.2 B.C.D.9.(3分)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A.1 B.2 C.3 D.410.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,=2,则k的值为()连接AO,若S△AOBA.2 B.3 C.4 D.511.(3分)如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB=6,DE=3,则AC的长是()A.8 B.6 C.5 D.412.(3分)如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个 B.1个 C.2个 D.3个13.(3分)如图,△ABC的三个顶点在正方形网格的格点上,则tan∠A的值是()A.B.C.D.14.(3分)如图,AB、AC是⊙O的两条弦,∠A=25°,过点C的切线与OB的延长线交于点D,则∠D的度数()A.25°B.30°C.40°D.50°15.(3分)已知:,那么下列式子中一定成立的是()A.2x=3y B.3x=2y C.x=6y D.xy=616.(3分)掷一枚质地均匀的硬币一次,反面朝上的概率是()A.1 B.C.D.二、填空题(共6小题,每小题3分,满分18分)17.(3分)分解因式:3x2﹣3y2=.18.(3分)关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是.19.(3分)如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是.20.(3分)如图,已知点A的坐标为(m,0),点B的坐标为(m﹣2,0),在x轴上方取点C,使CB⊥x轴,且CB=2AO,点C,C′关于直线x=m对称,BC′交直线x=m于点E,若△BOE的面积为4,则点E的坐标为.21.(3分)如图,在正方形ABCD中,点E为AD的中点,连接EC,过点E作EF⊥EC,交AB于点F,则tan∠ECF=.22.(3分)某中学随机调查了15名学生,了解他们一周在学校参加体育锻炼时间,列表如下:则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是;.三、解答题(共8小题,满分34分)23.(4分)计算:|﹣2|+20150﹣+3tan30°.24.(4分)先化简,再求值:(﹣),其中x=﹣2.25.(4分)根据图1,图2所提供的信息,解答下列问题:(1)2007年海南省城镇居民人均可支配收入为元,比2006年增长%;(2)求2008年海南省城镇居民人均可支配收入(精确到1元),并补全条形统计图;(3)根据图1指出:2005﹣2008年海南省城镇居民人均可支配收入逐年(填“增加”或“减少”).26.(4分)如图,四边形ABCD为平行四边形,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:△ABE≌△FCE;(2)过点D作DG⊥AE于点G,H为DG的中点.判断CH与DG的位置关系,并说明理由.27.(4分)如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A处测得电线杆上C处的仰角为30°,已知测角仪的高AB=1.5米,BE=2.3米,求拉线CE的长,(精确到0.1米)参考数据≈1.41,≈1.73.28.(4分)如图,AB是半圆O的直径,E是弧BC的中点,OE交弦BC于点D,点F为OE的延长线上一点且OC2=OD•OF.(1)求证:CF为⊙O的切线.(2)已知DE=2,tan∠BAC=.①求⊙O的半径;②求sin∠BAD的值.29.(5分)如图,反比例函数y=的图象与一次函数y=kx﹣3的图象在第一象限内相交于点A,且点A的横坐标为4.(1)求点A的坐标及一次函数的解析式;(2)若直线x=2与反比例函数和一次函数的图象分别交于点B、C,求线段BC 的长.30.(5分)在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C.(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点且在直线BC下方,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=﹣4a,连接KB并延长交抛物线于点Q,求PQ的长.2017年山东省枣庄市滕州市木石中学中考数学模拟试卷(一)参考答案与试题解析一、选择题(共16小题,每小题3分,满分48分)1.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108 B.4.4×109C.4.4×108D.4.4×1010【解答】解:4 400 000 000=4.4×109,故选:B.2.(3分)下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4C.a2•a3=a5 D.(a﹣b)2=a2﹣b2【解答】解:A.2a﹣a=a,故错误;B.a2+a2=2a2,故错误;C.a2•a3=a5,正确;D.(a﹣b)2=a2﹣2ab+b2,故错误;故选:C.3.(3分)分式的值为零,则x的值为()A.﹣1 B.0 C.±1 D.1【解答】解:由题意,得x2﹣1=0,且x+1≠0,解得,x=1.故选D.4.(3分)方程x2+x=0的解是()A.x=±1 B.x=0 C.x1=0,x2=﹣1 D.x=1【解答】解:由原方程得到:x(x+1)=0,解得,x1=0,x2=﹣1.故选:C.5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:由x>﹣1,得x>﹣1,由2x≤4,得x≤2,∴不等式组的解集是﹣1<x≤2,故选:B.6.(3分)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.【解答】解:该班男生有x人,女生有y人.根据题意得:,故选:D.7.(3分)你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为Y,下面能大致表示上面故事情节的图象是()A.B.C.D.【解答】解:开始时的水位不是0,因而A错误;乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,因而选项D错误;乌鸦衔来一些小石子放入瓶中,水面上升,到达一定的高度,乌鸦开始喝水,因而水面下降,下降到的高度一定要高于原来,未放石子前的高度;故选B.8.(3分)如图,已知一次函数y=﹣x+2的图象与坐标轴分别交于A、B两点,⊙O的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PM,切点为M,则PM的最小值为()A.2 B.C.D.【解答】解:连结OM、OP,作OH⊥AB于H,如图,当x=0时,y=﹣x+2=2,则A(0,2),当y=0时,﹣x+2=0,解得x=2,则B(2,0),所以△OAB为等腰直角三角形,则AB=OA=4,OH=AB=2,因为PM为切线,所以OM⊥PM,所以PM==,当OP的长最小时,PM的长最小,而OP=OH=2时,OP的长最小,所以PM的最小值为=.故选D.9.(3分)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵b=2a,∴2a﹣b=0,所以③错误;∵抛物线开口向下,x=﹣1是对称轴,所以x=﹣1对应的y值是最大值,∴a﹣b+c>2,所以④正确.故选C.10.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S=2,则k的值为()△AOBA.2 B.3 C.4 D.5【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S=|k|=2,△AOB解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.11.(3分)如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB=6,DE=3,则AC的长是()A.8 B.6 C.5 D.4【解答】解:如图,过D作DF⊥AC,∵AD是角平分线,DE⊥AB,∴DF=DE=3,=S△ABD+S△ACD,∵S△ABC∴15=×6×3+×AC×3,解得AC=4,故选D.12.(3分)如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个 B.1个 C.2个 D.3个【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△AEF∽△CBF,△AEF∽△DEC,∴与△AEF相似的三角形有2个.故选:C.13.(3分)如图,△ABC的三个顶点在正方形网格的格点上,则tan∠A的值是()A.B.C.D.【解答】解:利用三角函数的定义可知tan∠A=.故选A.14.(3分)如图,AB、AC是⊙O的两条弦,∠A=25°,过点C的切线与OB的延长线交于点D,则∠D的度数()A.25°B.30°C.40°D.50°【解答】解:连接OC,∵CD是切线,∴∠OCD=90°,∵∠A=25°,∴∠COD=2∠A=50°,∴∠D=90°﹣50°=40°.故选C.15.(3分)已知:,那么下列式子中一定成立的是()A.2x=3y B.3x=2y C.x=6y D.xy=6【解答】解:A、根据等式的性质2,等式两边同时乘以6,即可得2x=3y;B、根据等式性质2,等式两边都乘以9,应得3x=y;C、根据等式性质2,等式两边都乘以3,应得x=y;D、根据等式性质2,等式两边都乘以3y,应得xy=y2;故选A.16.(3分)掷一枚质地均匀的硬币一次,反面朝上的概率是()A.1 B.C.D.【解答】解:抛一枚质地均匀的硬币,正面朝上和反面朝上的可能性相等,都是,故选B二、填空题(共6小题,每小题3分,满分18分)17.(3分)分解因式:3x2﹣3y2=3(x+y)(x﹣y).【解答】解:原式=3(x2﹣y2)=3(x+y)(x﹣y),故答案为:3(x+y)(x﹣y)18.(3分)关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是0.【解答】解:根据题意得a﹣1≠0且△=(﹣2)2﹣4×(a﹣1)×3≥0,解得a≤且a≠1,所以整数a的最大值为0.故答案为0.19.(3分)如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是x<2.【解答】解:根据图象可得不等式﹣2x+b>ax﹣1的解集是x<2,故答案为:x<2.20.(3分)如图,已知点A的坐标为(m,0),点B的坐标为(m﹣2,0),在x轴上方取点C,使CB⊥x轴,且CB=2AO,点C,C′关于直线x=m对称,BC′交直线x=m于点E,若△BOE的面积为4,则点E的坐标为(﹣2,2).【解答】解:如图,设AE与CC′交于点D.∵点A的坐标为(m,0),在x轴上方取点C,使CB⊥x轴,且CB=2AO,∴CB=﹣2m.∵点C,C′关于直线x=m对称,∴CD=C′D,∵ABCD是矩形,AB=CD,∴AB=C′D.又∵∠BAE=∠C′DE=90°,∠AEB=DEC′,∴△ABE≌△DC′E,∴AE=DE,∴AE=AD=BC=﹣m.∵△BOE的面积为4,∴(2﹣m)(﹣m)=4,整理得,m2﹣2m﹣8=0,解得m=4或﹣2,∵在x轴上方取点C,∴﹣2m>0,∴m<0,∴m=4不合题意舍去,∵点E的坐标为(m,﹣m),∴点E的坐标为(﹣2,2).故答案为(﹣2,2).21.(3分)如图,在正方形ABCD中,点E为AD的中点,连接EC,过点E作EF⊥EC,交AB于点F,则tan∠ECF=.【解答】解:∵四边形ABCD是正方形,∴AD=DC,∠A=∠D=90°,∵AE=ED,∴CD=AD=2AE,∵∠FEC=90°,∴∠AEF+∠DEC=90°,∵∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∵∠A=∠D,∴△AEF∽△DCE,∴==,∴tan∠ECF==.故答案为.22.(3分)某中学随机调查了15名学生,了解他们一周在学校参加体育锻炼时间,列表如下:则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是6;6.【解答】解:∵共有15个数,最中间的数是8个数,∴这15名同学一周在校参加体育锻炼时间的中位数是6;6出现的次数最多,出现了6次,则众数是6;故答案为:6,6.三、解答题(共8小题,满分34分)23.(4分)计算:|﹣2|+20150﹣+3tan30°.【解答】解:原式=2﹣+1﹣3+=0.24.(4分)先化简,再求值:(﹣),其中x=﹣2.【解答】解:原式=•=•=,当x=﹣2时,原式=.25.(4分)根据图1,图2所提供的信息,解答下列问题:(1)2007年海南省城镇居民人均可支配收入为10997元,比2006年增长17.1%;(2)求2008年海南省城镇居民人均可支配收入(精确到1元),并补全条形统计图;(3)根据图1指出:2005﹣2008年海南省城镇居民人均可支配收入逐年增加(填“增加”或“减少”).【解答】解:(1)10997,17.1;(2)10997×(1+14.6%)≈12603(元)所补全的条形图如图所示;(3)增加.26.(4分)如图,四边形ABCD为平行四边形,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:△ABE≌△FCE;(2)过点D作DG⊥AE于点G,H为DG的中点.判断CH与DG的位置关系,并说明理由.【解答】解:(1)∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∴∠B=∠ECF∵E为BC的中点,∴BE=CE,在△ABE和△FCE中,∴△ABE≌△FCE.(2)结论:CH⊥DG.理由如下:∵△ABE≌△FCE,∴AB=CF,∵AB=CD,∴DC=CF,∵H为DG的中点,∴CH∥FG∵DG⊥AE,∴CH⊥DG.27.(4分)如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A处测得电线杆上C处的仰角为30°,已知测角仪的高AB=1.5米,BE=2.3米,求拉线CE的长,(精确到0.1米)参考数据≈1.41,≈1.73.【解答】解:过点A作AM⊥CD于点M,则四边形ABDM为矩形,AM=BD=6米,在Rt△ACM中,∵∠CAM=30°,AM=6米,∴CM=AM•tan∠CAM=6×=2(米),∴CD=2+1.5≈4.96(米),在Rt△CDE中,ED=6﹣2.3=3.7(米),∴CE=≈6.2(米).28.(4分)如图,AB是半圆O的直径,E是弧BC的中点,OE交弦BC于点D,点F为OE的延长线上一点且OC2=OD•OF.(1)求证:CF为⊙O的切线.(2)已知DE=2,tan∠BAC=.①求⊙O的半径;②求sin∠BAD的值.【解答】解:(1)∵OC2=OE2=OD•OF,∠COD=∠FOC,∴△COD∽△COF,∴∠F=∠OCD,又E是弧BC的中点,∴∠COE=∠BOE,∵OC=OB,∴OD⊥BC,∴∠F+∠FCD=90°,∴∠OCD+∠FCD=90°,即OC⊥CF,∴CF为⊙O的切线.(2)①∵Rt△ABC中,,∴可设BC=4x,则AC=3x,AB=5x,OE=2.5x,∵OD是△ABC的中位线,∴OD=1.5x,∴DE=x=2,∴OE=2.5x=5,∴⊙O的半径为5;②如图,作DG⊥OB于G,∵Rt△BOD中,DG=OD×BD÷OB,∴DG=3×4÷5=2.4,∵Rt△ABC中,AC=6,AB=10,∴BC=8,CD=4,∴Rt△ACD中,AD=,∴Rt△AGD中,sin∠BAD=DG÷AD=.29.(5分)如图,反比例函数y=的图象与一次函数y=kx﹣3的图象在第一象限内相交于点A,且点A的横坐标为4.(1)求点A的坐标及一次函数的解析式;(2)若直线x=2与反比例函数和一次函数的图象分别交于点B、C,求线段BC 的长.【解答】解:(1)∵点A (4,m)在反比例函数y=的图象上,∴m==1,∴A(4,1),把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3;(2)∵直线x=2与反比例和一次函数的图象分别交于点B、C,∴当x=2时,y B==2,y C=2﹣3=﹣1,∴线段BC的长为|y B﹣y C|=2﹣(﹣1)=3.30.(5分)在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C.(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点且在直线BC下方,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=﹣4a,连接KB并延长交抛物线于点Q,求PQ的长.【解答】解:(1)当y=0时,ax2﹣5ax+4a=0,解得x1=1,x2=4,则A(1,0),B (4,0),∴AB=3,∵△ABC的面积为3,∴•3•OC=3,解得OC=2,则C(0,﹣2),把C(0,﹣2)代入y=ax2﹣5ax+4a得4a=﹣2,解得a=﹣,∴抛物线的解析式为y=﹣x2+x﹣2;(2)过点P作PH⊥x轴于H,作CD⊥PH于点H,如图2,设P(x,ax2﹣5ax+4a),则PD=4a﹣(ax2﹣5ax+4a)=﹣ax2+5ax,∵AB∥CD,∴∠ABC=∠BCD,∵∠BCP=2∠ABC,∴∠PCD=∠ABC,∴Rt△PCD∽Rt△CBO,∴PD:OC=CD:OB,即(﹣ax2+5ax):(﹣4a)=x:4,解得x1=0,x2=6,∴点P的横坐标为6;(3)过点F作FG⊥PK于点G,如图3,∵AK=FK,∴∠KAF=∠KFA,而∠KAF=∠KAH+∠PAH,∠KFA=∠PKF+∠KPF,∵∠KAH=∠FKP,∴∠HAP=∠KPA,∴HA=HP,∴△AHP为等腰直角三角形,∵P(6,10a),∴﹣10a=6﹣1,解得a=﹣,在Rt△PFG中,∵PF=﹣4a=2,∠FPG=45°,∴FG=PG=PF=2,在△AKH和△KFG中,∴△AKH≌△KFG,∴KH=FG=2,∴K(6,2),设直线KB的解析式为y=mx+n,把K(6,2),B(4,0)代入得,解得,∴直线KB的解析式为y=x﹣4,当a=﹣时,抛物线的解析式为y=﹣x2+x﹣2,解方程组,解得或,∴Q(﹣1,﹣5),而P(6,﹣5),∴PQ∥x 轴,∴QP=7.。

2017年山东省枣庄市中考数学试卷-答案

2017年山东省枣庄市中考数学试卷-答案

∴215∠=︒,∴115∠=︒.故选:A .22恰好有3个在圆内.故选B.3322⎝⎭2⎝⎭【提示】(方法一)根据一次函数解析式求出点A,B的坐标,再由中点坐标公式求出点C,D的坐标,根y=即可求出x的值,从据对称的性质找出点D′的坐标,结合点C,D′的坐标求出直线CD′的解析式,令0而得出点P的坐标.(方法二)根据一次函数解析式求出点A,B的坐标,再由中点坐标公式求出点C,D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.【考点】关于对称点的坐标特征,中点坐标公式,确定一次函数的解析式,两点间线段最短,求一次函数与坐标轴的交点坐标180【提示】先连接OE、OF,再求出圆心角∠EOF的度数,然后根据弧长公式即可求出的长.2333【提示】(1)连接OD ,证明OD AC ∥,即可证得90ODB ∠=︒,从而证得BC 是圆的切线;(2)在直角三角形OBD 中,设OF OD x ==,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即为圆的半径,求出圆心角的度数,直角三角形ODB 的面积减去扇形DOF 面积即可确定出阴影部分面积. 【考点】直线与圆的位置关系,扇形面积的计算∠=∠,∴45AEC ACB∠=∠=︒.GH AC∥,∴PEG BCG⊥,GB BC⊥,∴HCG BCG∠=∠,∵PE CF【提示】(1)由B ,C 的坐标,利用待定系数法可求得抛物线解析式,再求其顶点D 即可;(2)过F 作FG x ⊥轴于点G ,可设出F 点坐标,利用FBG BDE △∽△,由相似三角形的性质可得到关于F 点坐标的方程,可求得F 点的坐标;(3)由于M 、N 两点关于对称轴对称,可知点P 为对称轴与x 轴的交点,点Q 在对称轴上,可设出Q 点的坐标,则可表示出M 的坐标,代入抛物线解析式可求得Q 点的坐标.【考点】二次函数综合题。

2017年山东省枣庄市中考数学三模试卷(解析版)

2017年山东省枣庄市中考数学三模试卷(解析版)

2017年山东省枣庄市中考数学三模试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,不选或选出的答案超过一个均计零分.1.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b22.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1073.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.• C.÷D.5.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x名工人生产螺钉,则下面所列方程正确的是()A.1000(26﹣x)=800xB.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.2×1000(26﹣x)=800x6.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)7.如图,阴影部分是两个半径为1的扇形,若α=120°,β=60°,则大扇形与小扇形的面积之差为()A.B.C. D.8.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A在边B′C上,则∠B′的大小为()A.42°B.48°C.52°D.58°9.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130° D.140°10.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.11.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定12.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.计算2﹣的结果是.14.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.15.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=度.16.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.17.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为.18.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C 的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.三、解答题:本大题共7小题,共60分,解答时,要写出必要的文字说明、证明过程或演算步骤.19.先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.20.如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)21.为了了解某学校初四年级学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m值.②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.22.如图,P1、P2是反比例函数y=(k>0)在第一象限图象上的两点,点A1的坐标为(4,0).若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点.(1)求反比例函数的解析式.(2)①求P2的坐标.②根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=的函数值.23.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD 边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN交BA的延长线于点M.(1)求证:AP⊥BQ;(2)若AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.24.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.25.若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:y2=﹣x2+mx+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.2017年山东省枣庄市中考数学三模试卷参考答案与试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,不选或选出的答案超过一个均计零分.1.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【考点】4I:整式的混合运算.【分析】分别利用积的乘方运算法则以及同底数幂的除法运算法则、完全平方公式、单项式乘以单项式运算法则化简求出答案.【解答】解:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.2.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【考点】4H:整式的除法.【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10﹣7.故选:B.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的定义判别即可.【解答】解:A、此图案是轴对称图形,但不是中心对称图形;B、此图案是轴对称图形,但不是中心对称图形;C、此图案是中心对称图形,但不是轴对称图形;D、此图案既是轴对称图形又是中心对称图形;故选:D.4.下列运算结果为x﹣1的是()A.1﹣B.• C.÷D.【考点】6C:分式的混合运算.【分析】根据分式的基本性质和运算法则分别计算即可判断.【解答】解:A、1﹣=,故此选项错误;B、原式=•=x﹣1,故此选项正确;C、原式=•(x﹣1)=,故此选项错误;D、原式==x+1,故此选项错误;故选:B.5.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x名工人生产螺钉,则下面所列方程正确的是()A.1000(26﹣x)=800xB.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.2×1000(26﹣x)=800x【考点】89:由实际问题抽象出一元一次方程.【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C6.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【考点】Q3:坐标与图形变化﹣平移.【分析】根据点A、B平移后横纵坐标的变化可得线段AB向左平移2个单位,向上平移了3个单位,然后再确定a、b的值,进而可得答案.【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选A.7.如图,阴影部分是两个半径为1的扇形,若α=120°,β=60°,则大扇形与小扇形的面积之差为()A.B.C. D.【考点】MO:扇形面积的计算.【分析】利用扇形的面积公式分别求出两个扇形的面积,再用较大面积减去较小的面积即可.【解答】解:﹣=,故选B.8.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A在边B′C上,则∠B′的大小为()A.42°B.48°C.52°D.58°【考点】R2:旋转的性质.【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=48°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=42°.【解答】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选A.9.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130° D.140°【考点】PB:翻折变换(折叠问题).【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可.【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°,∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.10.当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是()A. B. C. D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】根据k>0,判断出反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限,结合选项所给图象判断即可.【解答】解:∵k>0,∴反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限.故选C.11.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定【考点】A3:一元二次方程的解.【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.12.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为()A.(1,﹣1)B.(﹣1,﹣1)C.(,0)D.(0,﹣)【考点】R7:坐标与图形变化﹣旋转;L8:菱形的性质.【分析】根据菱形的性质,可得D点坐标,根据旋转的性质,可得D点的坐标.【解答】解:菱形OABC的顶点O(0,0),B(2,2),得D点坐标为(1,1).每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360=7.5周,OD旋转了7周半,菱形的对角线交点D的坐标为(﹣1,﹣1),故选:B.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.计算2﹣的结果是﹣2.【考点】78:二次根式的加减法.【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【解答】解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.【考点】X4:概率公式;X3:概率的意义.【分析】求出随机闭合开关S1,S2,S3,S4,S5中的三个,共有几种可能情况,以及能让灯泡L1,L2同时发光的有几种可能,由此即可解决问题.【解答】解:∵随机地闭合开关S1,S2,S3,S4,S5中的三个共有10种可能(任意开两个有4+3+2+1=10可能,故此得出结论),能够使灯泡L1,L2同时发光有2种可能(S1,S2,S4或S1,S2,S5).∴随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是=.故答案为.15.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=45度.【考点】MC:切线的性质;L5:平行四边形的性质.【分析】连接OD,只要证明△AOD是等腰直角三角形即可推出∠A=45°,再根据平行四边形的对角相等即可解决问题.【解答】解;连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.16.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.【考点】AA:根的判别式.【分析】将一次函数解析式代入到二次函数解析式中,得出关于x的一元二次方程,由两函数图象只有一个交点可得知该方程有两个相同的实数根,结合根的判别式即可得出关于c的一元一次方程,解方程即可得出结论.【解答】解:将正比例函数y=4x代入到二次函数y=3x2+c中,得:4x=3x2+c,即3x2﹣4x+c=0.∵两函数图象只有一个交点,∴方程3x2﹣4x+c=0有两个相等的实数根,∴△=(﹣4)2﹣4×3c=0,解得:c=.故答案为:.17.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为或.【考点】PB:翻折变换(折叠问题).【分析】根据勾股定理,可得EB′,根据相似三角形的性质,可得EN的长,根据勾股定理,可得答案.【解答】解:如图,由翻折的性质,得AB=AB′,BE=B′E.①当MB′=2,B′N=1时,设EN=x,得B′E=.△B′EN∽△AB′M,=,即=,x2=,BE=B′E==.②当MB′=1,B′N=2时,设EN=x,得B′E=,△B′EN∽△AB′M,=,即=,解得x2=,BE=B′E==,故答案为:或.18.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C 的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为15.【考点】H3:二次函数的性质;L8:菱形的性质.【分析】设D(x,﹣x2+6x),根据勾股定理求得OC,根据菱形的性质得出BC,=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,然后根据三角形面积公式得出∴S△BCD根据二次函数的性质即可求得最大值.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,∴S△BCD∵﹣<0,有最大值,最大值为15,∴S△BCD故答案为15.三、解答题:本大题共7小题,共60分,解答时,要写出必要的文字说明、证明过程或演算步骤.19.先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.【考点】6D:分式的化简求值.【分析】先算括号里面的,再算除法,最后算减法,根据x2+2x﹣15=0得出x2+2x=15,代入代数式进行计算即可.【解答】解:原式=•﹣=﹣=,∵x2+2x﹣15=0,∴x2+2x=15,∴原式=.20.如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】通过解直角△BCD和直角△ACD分别求得BD、CD以及AD的长度,则易得AB的长度,则根据题意得到整个过程中旗子上升高度,由“速度=”进行解答即可.【解答】解:在Rt△BCD中,BD=9米,∠BCD=45°,则BD=CD=9米.在Rt△ACD中,CD=9米,∠ACD=37°,则AD=CD•tan37°≈9×0.75=6.75(米).所以,AB=AD+BD=15.75米,整个过程中旗子上升高度是:15.75﹣2.25=13.5(米),因为耗时45s,所以上升速度v==0.3(米/秒).答:国旗应以0.3米/秒的速度匀速上升.21.为了了解某学校初四年级学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m值.②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.【考点】W5:众数;VB:扇形统计图;VC:条形统计图;W2:加权平均数;W4:中位数.【分析】(1)①根据2小时所占扇形的圆心角的度数确定其所占的百分比,然后根据条形统计图中2小时的人数求得m的值;②结合周角是360度进行计算;③求得总人数后减去其他小组的人数即可求得第三小组的人数;(2)利用众数、中位数的定义及平均数的计算公式确定即可.【解答】解:(1)①∵课外阅读时间为2小时的所在扇形的圆心角的度数为90°,∴其所占的百分比为=,∵课外阅读时间为2小时的有15人,∴m=15÷=60;②依题意得:×360°=30°;③第三小组的频数为:60﹣10﹣15﹣10﹣5=20,补全条形统计图为:(2)∵课外阅读时间为3小时的20人,最多,∴众数为3小时;∵共60人,中位数应该是第30和第31人的平均数,且第30和第31人阅读时间均为3小时,∴中位数为3小时;平均数为:=2.75小时.22.如图,P1、P2是反比例函数y=(k>0)在第一象限图象上的两点,点A1的坐标为(4,0).若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点.(1)求反比例函数的解析式.(2)①求P2的坐标.②根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=的函数值.【考点】G8:反比例函数与一次函数的交点问题;KW:等腰直角三角形.【分析】(1)先根据点A1的坐标为(4,0),△P1OA1为等腰直角三角形,求得P1的坐标,再代入反比例函数求解;(2)先根据△P2A1A2为等腰直角三角形,将P2的坐标设为(4+a,a),并代入反比例函数求得a的值,得到P2的坐标;再根据P1的横坐标和P2的横坐标,判断x的取值范围.【解答】解:(1)过点P1作P1B⊥x轴,垂足为B∵点A1的坐标为(4,0),△P1OA1为等腰直角三角形∴OB=2,P1B=OA1=2∴P1的坐标为(2,2)将P1的坐标代入反比例函数y=(k>0),得k=2×2=4∴反比例函数的解析式为(2)①过点P2作P2C⊥x轴,垂足为C∵△P2A1A2为等腰直角三角形∴P2C=A1C设P2C=A1C=a,则P2的坐标为(4+a,a)将P2的坐标代入反比例函数的解析式为,得a=,解得a1=,a2=(舍去)∴P2的坐标为(,)②在第一象限内,当2<x<2+时,一次函数的函数值大于反比例函数的值.23.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD 边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在直线对折得到△BQN,延长QN交BA的延长线于点M.(1)求证:AP⊥BQ;(2)若AB=3,BP=2PC,求QM的长;(3)当BP=m,PC=n时,求AM的长.【考点】LO:四边形综合题.【分析】(1)证明△ABP≌△BCQ,则∠BAP=∠CBQ,从而证明∠CBQ+∠APB=90°,进而得证;(2)设MQ=MB=x,则MN=x﹣2.在直角△MBN中,利用勾股定理即可列方程求解;(3)设AM=y,BN=BC=m+n,在直角△BNM中,MB=y+m+n,MN=MQ﹣QN=(y+m+n)﹣m=y+n,利用勾股定理即可求解.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB=BC.∴在△ABP和△BCQ中,,∴△ABP≌△BCQ,∴∠BAP=∠CBQ.∵∠BAP+∠APB=90°,∴∠CBQ+∠APB=90°,∴∠BEP=90°,∴AP⊥BQ;(2)解:∵正方形ABCD中,AB=3,BP=2CP,∴BP=2,由(1)可得NQ=CQ=BP=2,NB=3.又∵∠NQB=∠CQB=∠ABQ,∴MQ=MB.设MQ=MB=x,则MN=x﹣2.在直角△MBN中,MB2=BN2+MN2,即x2=32+(x﹣2)2,解得:x=,即MQ=;(3)∵BP=m,CP=n,由(1)(2)得MQ=BM,CQ=QN=BP=m,设AM=y,BN=BC=m+n,在直角△BNM中,MB=y+m+n,MN=MQ﹣QN=(y+m+n)﹣m=y+n,(y+m+n)2=(m+n)2+(y+n)2,即y2+2(m+n)y+(m+n)2=(m+n)2+y2+2ny+n2,则y=,AM=.24.如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=BG;(2)若AB=4,求DC的长.【考点】S9:相似三角形的判定与性质.【分析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是△ABG的中位线,即可得出答案;(2)首先得出△FOE≌△CBE(ASA),则BC=FO=AB=2,进而得出AC的长,再利用相似三角形的判定与性质得出DC的长.【解答】(1)证明:∵以Rt△ABC的直角边AB为直径作⊙O,点F恰好落在的中点,∴=,∴∠AOF=∠BOF,∵∠ABC=∠ABG=90°,∴∠AOF=∠ABG,∴FO∥BG,∵AO=BO,∴FO是△ABG的中位线,∴FO=BG;(2)解:在△FOE和△CBE中,,∴△FOE≌△CBE(ASA),∴BC=FO=AB=2,∴AC==2,连接DB,∵AB为⊙O直径,∴∠ADB=90°,∴∠ADB=∠ABC,∵∠BCD=∠ACB,∴△BCD∽△ACB,∴=,∴=,解得:DC=.25.若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:y2=﹣x2+mx+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.【考点】HF:二次函数综合题.【分析】(1)先求得y1顶点坐标,然后依据两个抛物线的顶点坐标相同可求得m、n的值;(2)设A(a,﹣a2+2a+3).则OQ=x,AQ=﹣a2+2a+3,然后得到OQ+AQ与a的函数关系式,最后依据配方法可求得OQ+AQ的最值;(3)连接BC,过点B′作B′D⊥CM,垂足为D.接下来证明△BCM≌△MDB′,由全等三角形的性质得到BC=MD,CM=B′D,设点M的坐标为(1,a).则用含a 的式子可表示出点B′的坐标,将点B′的坐标代入抛物线的解析式可求得a的值,从而得到点M的坐标.【解答】解:(1)∵y1=﹣2x2+4x+2=﹣2(x﹣1)2+4,∴抛物线C1的顶点坐标为(1,4).∵抛物线C1与C2顶点相同,∴=1,﹣1+m+n=4.解得:m=2,n=3.∴抛物线C2的解析式为y2=﹣x2+2x+3.(2)如图1所示:设点A的坐标为(a,﹣a2+2a+3).∵AQ=﹣a2+2a+3,OQ=a,∴AQ+OQ=﹣a2+2a+3+a=﹣a2+3a+3=﹣(a﹣)2+.∴当a=时,AQ+OQ有最大值,最大值为.(3)如图2所示;连接BC,过点B′作B′D⊥CM,垂足为D.∵B(﹣1,4),C(1,4),抛物线的对称轴为x=1,∴BC⊥CM,BC=2.∵∠BMB′=90°,∴∠BMC+∠B′MD=90°.∵B′D⊥MC,∴∠MB′D+∠B′MD=90°.∴∠MB′D=∠BMC.在△BCM和△MDB′中,,∴△BCM≌△MDB′.∴BC=MD,CM=B′D.设点M的坐标为(1,a).则B′D=CM=4﹣a,MD=CB=2.∴点B′的坐标为(a﹣3,a﹣2).∴﹣(a﹣3)2+2(a﹣3)+3=a﹣2.整理得:a2﹣7a+10=0.解得a=2,或a=5.当a=2时,M的坐标为(1,2),当a=5时,M的坐标为(1,5).综上所述当点M的坐标为(1,2)或(1,5)时,B′恰好落在抛物线C2上.2017年5月26日。

2017枣庄中考数学试题及答案

2017枣庄中考数学试题及答案

2017枣庄中考数学试题及答案2017年枣庄市中考数学试题一、选择题(共10小题,每小题3分,满分30分)1. 下列哪个选项是正确的整数比例?A. 3:4B. 0.6:0.4C. 1.5:2.5D. 5:82. 一个等腰三角形的底边长为6厘米,腰长为5厘米,那么它的面积是多少平方厘米?A. 12B. 14C. 16D. 183. 如果一个圆的半径是7厘米,那么它的周长是多少厘米?A. 14πB. 21πC. 28πD. 49π4. 以下哪个数是无理数?A. 0.8080080008……B. 0.7071067811865476C. 1/35. 一个班级有40名学生,其中25人喜欢打篮球,那么喜欢打篮球的学生占班级的百分比是多少?A. 50%B. 60%C. 70%D. 80%6. 一个长方体的长、宽、高分别是5厘米、3厘米和2厘米,那么它的体积是多少立方厘米?A. 6B. 15C. 30D. 607. 下列哪个选项是正确的分数除法运算?A. (3/4) ÷ (2/3) = 9/8B. (5/6) ÷ (1/2) = 5/3C. (7/8) ÷ (3/4) = 7/6D. (4/5) ÷ (5/8) = 32/358. 如果一个数的平方是49,那么这个数的立方是多少?A. 343B. 81C. 64D. 1269. 一个等差数列的前三项分别是2、5、8,那么它的第10项是多少?A. 26B. 27D. 2910. 一个圆的直径是10厘米,那么它的面积是多少平方厘米?(取π=3.14)A. 31.4B. 62.8C. 78.5D. 157二、填空题(共6小题,每小题4分,满分24分)11. 一个等边三角形的边长是6厘米,那么它的高是_____厘米。

12. 如果一个圆的面积是78.5平方厘米(取π=3.14),那么它的直径是_____厘米。

13. 一个分数化简后的值是3/4,如果分子加上6,分母减去4,新的分数化简后的值是_____。

山东省枣庄市中考数学一模试卷(含解析)

山东省枣庄市中考数学一模试卷(含解析)

2017年山东省枣庄市中考数学一模试卷一、选择题(本大题共12小题,每小题3分)1.下列说法正确的是()A.1的相反数是﹣1 B.1的倒数是﹣1C.1的立方根是±1 D.﹣1是无理数2.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°3.数5的算术平方根为()A.B.25 C.±25 D.±4.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号分别为1,2,3,4,5的五位同学最后成绩如下表所示:那么这五位同学演讲成绩的众数与中位数依次是()A.96,88 B.92,88 C.88,86 D.86,885.下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a46.由几个相同的小正方形搭成的一个几何体如图所示,这个几何体的主视图是()A.B.C.D.7.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=198.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.B.C.D.19.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.10.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8 C.4D.211.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是()A.15° B.20° C.25° D.30°12.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题4分,共24分)13.在图中涂黑一个小正方形,使得图中黑色的正方形成为轴对称图形,这样的小正方形可以有个.14.已知是二元一次方程组的解,则2m﹣n的平方根为.15.如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为.16.在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是.17.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为.18.如图,在Rt △ABC 中,∠A=30°,BC=2,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是 .三、解答题(本大题共7小题,共60分)19.(8分)先化简(1+)÷,再从1,2,3三个数中选一个合适的数作为x 的值,代入求值.20.(10分)郴州市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A .艺术类;B .文学类;C .科普类;D .其他,并将统计结果绘制成如图所示的两幅不完整的统计图.(1)这次统计共抽取了 本书籍,扇形统计图中的m= ,∠α的度数是 ; (2)请将条形统计图补充完整;(3)估计全校师生共捐赠了多少本文学类书籍.21.(6分)一艘轮船位于灯塔P 南偏西60°方向,距离灯塔20海里的A 处,它向东航行多少海里到达灯塔P 南偏西45°方向上的B 处(参考数据:≈1.732,结果精确到0.1)?22.(8分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.23.(8分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标;(3)写出一次函数大于反比例函数的x的取值范围.24.(8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.25.(12分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.2017年山东省枣庄市中考数学一模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分)1.下列说法正确的是()A.1的相反数是﹣1 B.1的倒数是﹣1C.1的立方根是±1 D.﹣1是无理数【考点】24:立方根;14:相反数;17:倒数;26:无理数.【分析】根据相反数、倒数、立方根,即可解答.【解答】解:A、1的相反数是﹣1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.【点评】本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.2.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°【考点】JA:平行线的性质.【分析】如图,首先证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=55°,借助三角形外角的性质求出∠AMO即可解决问题.【解答】解:如图,∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠AMO=∠A+∠ANM=60°+55°=115°,∴∠2=∠AMO=115°.故选C.【点评】该题主要考查了平行线的性质、对顶角的性质、三角形的外角性质等几何知识点及其应用问题;牢固掌握平行线的性质、对顶角的性质等几何知识点是灵活运用、解题的基础.3.数5的算术平方根为()A.B.25 C.±25 D.±【考点】22:算术平方根.【分析】根据算术平方根的含义和求法,可得:数5的算术平方根为,据此解答即可.【解答】解:数5的算术平方根为.故选:A.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.4.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号分别为1,2,3,4,5的五位同学最后成绩如下表所示:那么这五位同学演讲成绩的众数与中位数依次是()A.96,88 B.92,88 C.88,86 D.86,88【考点】W5:众数;W4:中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:数据86出现了2次最多为众数,按大小排列86,86,88,93,96,故88处在第3位为中位数.所以本题这组数据的中位数是88,众数是86.故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;6F:负整数指数幂.【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的除法运算法则分别化简求出答案.【解答】解:A、a•a=a2,正确,不合题意;B、2a+a=3a,正确,不合题意;C、(a3)2=a6,故此选项错误,符合题意;D、a3÷a﹣1=a4,正确,不合题意;故选:C.【点评】此题主要考查了合并同类项以及同底数幂的除法运算等知识,正确掌握相关运算法则是解题关键.6.由几个相同的小正方形搭成的一个几何体如图所示,这个几何体的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层是靠右边两个小正方形,故选:A.【点评】本题考查了简单组合的三视图,从正面看得到的视图是主视图.7.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=19【考点】A6:解一元二次方程﹣配方法.【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为()A.B.C.D.1【考点】KF:角平分线的性质;KK:等边三角形的性质;KO:含30度角的直角三角形;KQ:勾股定理.【分析】根据△ABC为等边三角形,BP平分∠ABC,得到∠PBC=30°,利用PC⊥BC,所以∠PCB=90°,在Rt△PCB中, =1,即可解答.【解答】解:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC==30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中, =1,∴点P到边AB所在直线的距离为1,故选:D.【点评】本题考查了等边三角形的性质、角平分线的性质、利用三角函数求值,解决本题的关键是等边三角形的性质.9.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先求出两个不等式的解,然后表示出解集,并在数轴上表示出来.【解答】解:解不等式x+1>0得:x>﹣1,解不等式2x﹣4≤0得:x≤2,则不等式的解集为:﹣1<x≤2,在数轴上表示为:.故选B.【点评】本题考查了解一元一次不等式组以及在数轴上表示不等式的解集,解答本题的关键是熟练掌握不等式的解法以及求不等式解集的规律.10.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M到坐标原点O的距离是()A.10 B.8 C.4D.2【考点】MC:切线的性质;D5:坐标与图形性质.【分析】如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在RT△AOM中求出OM即可.【解答】解:如图连接BM、OM,AM,作MH⊥BC于H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8,∴∠OAM=∠MH0=∠HOA=90°,∴四边形OAMH是矩形,∴AM=OH,∵MH⊥BC,∴HC=HB=6,∴OH=AM=10,在RT△AOM中,OM===2.故选D.【点评】本题考查切线的性质、坐标与图形性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,构造直角三角形.11.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是()A.15° B.20° C.25° D.30°【考点】R2:旋转的性质.【分析】先根据正方形的性质和旋转的性质得到∠AOF的度数,OA=OF,再根据等腰三角形的性质即可求得∠OFA的度数.【解答】解:∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴∠AOF=90°+40°=130°,OA=OF,∴∠OFA=(180°﹣130°)÷2=25°.故选:C.【点评】考查了旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.同时考查了正方形的性质和等腰三角形的性质.12.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A.1 B.2 C.3 D.4【考点】H4:二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c>0,然后根据对称轴推出2a+b与0的关系,根据图象判断﹣1<x<3时,y的符号.【解答】解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选C.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6小题,每小题4分,共24分)13.在图中涂黑一个小正方形,使得图中黑色的正方形成为轴对称图形,这样的小正方形可以有 3 个.【考点】P8:利用轴对称设计图案.【分析】直接利用轴对称图形的性质分析得出答案.【解答】解:如图所示:有3种情况可以使图形成为轴对称图形.故答案为:3.【点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.14.已知是二元一次方程组的解,则2m﹣n的平方根为±2 .【考点】97:二元一次方程组的解;21:平方根.【分析】首先根据是二元一次方程组的解,可得,据此求出m、n 的值各是多少;然后把求出的m、n的值代入2m﹣n,即可求出2m﹣n的平方根为多少.【解答】解:∵是二元一次方程组的解,∴解得∵2m﹣n=2×3﹣2=6﹣2=4∴2m﹣n的平方根为±2.故答案为:±2.【点评】(1)此题主要考查了二元一次方程组的解,熟练掌握运算法则是解题的关键.(2)此题还考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.15.如图,在平面直角坐标系中,点A的坐标为(0,6),将△OAB沿x轴向左平移得到△O′A′B′,点A的对应点A′落在直线y=﹣x上,则点B与其对应点B′间的距离为8 .【考点】F8:一次函数图象上点的坐标特征;Q3:坐标与图形变化﹣平移.【分析】根据题意确定点A′的纵坐标,根据点A′落在直线y=﹣x上,求出点A′的横坐标,确定△OAB沿x轴向左平移的单位长度即可得到答案.【解答】解:由题意可知,点A移动到点A′位置时,纵坐标不变,∴点A′的纵坐标为6,﹣x=6,解得x=﹣8,∴△OAB沿x轴向左平移得到△O′A′B′位置,移动了8个单位,∴点B与其对应点B′间的距离为8,故答案为:8.【点评】本题考查的是一次函数图象上点的坐标特征和图形的平移,确定三角形OAB移动的距离是解题的关键.16.在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是.【考点】X6:列表法与树状图法;61:分式的定义.【分析】首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果与能组成分式的情况数,然后根据概率公式求解即可求得答案.【解答】解:画树状图得:∴一共有6种等可能的结果,把两张卡片上的整式分别作为分子和分母,能组成分式的有4个,∴能组成分式的概率是=.故答案为:.【点评】此题考查了列表法或树状图法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.17.如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为60°.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.【解答】解:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°,则NG=AM,故AN=NG,则∠2=∠4,∵EF∥AB,∴∠4=∠3,∴∠1=∠2=∠3=×90°=30°,∴∠DAG=60°,故答案为:60°.【点评】此题主要考查了翻折变换的性质以及平行线的性质,正确得出∠2=∠4是解题关键.18.如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是﹣π.【考点】MO:扇形面积的计算.【分析】连接连接OD、CD,根据S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)计算即可解决问题.【解答】解:如图,连接OD、CD.∵AC是直径,∴∠ADC=90°,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,∵OC=OD,∴△OCD是等边三角形,∵BC是切线.∴∠ACB=90°,∵BC=2,∴AB=4,AC=6,∴S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)=×6×2﹣×3×3﹣(﹣×32)=﹣π.故答案为:﹣π.【点评】本题考查扇形面积公式、直角三角形30度角性质、等边三角形性质等知识,解题的关键是学会分割法求面积,属于中考常考题型.三、解答题(本大题共7小题,共60分)19.先化简(1+)÷,再从1,2,3三个数中选一个合适的数作为x的值,代入求值.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x=3代入计算即可求出值.【解答】解:原式=•=•=x﹣2,当x=3时,原式=3﹣2=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(10分)(2015•郴州)郴州市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.(1)这次统计共抽取了200 本书籍,扇形统计图中的m= 40 ,∠α的度数是36°;(2)请将条形统计图补充完整;(3)估计全校师生共捐赠了多少本文学类书籍.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)用A的本数÷A所占的百分比,即可得到抽取的本数;用C的本数÷总本数,即可求得m;计算出D的百分比乘以360°,即可得到圆心角的度数;(2)计算出B的本数,即可补全条形统计图;(3)根据文学类书籍的百分比,即可解答.【解答】解:(1)40÷20%=200(本),80÷200=40%,×360°=36°,故答案为:200,40,36°;(2)B的本数为:200﹣40﹣80﹣20=60(本),如图所示:(3)3000×=900(本).答:估计全校师生共捐赠了900本文学类书籍.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.一艘轮船位于灯塔P南偏西60°方向,距离灯塔20海里的A处,它向东航行多少海里到达灯塔P南偏西45°方向上的B处(参考数据:≈1.732,结果精确到0.1)?【考点】TB:解直角三角形的应用﹣方向角问题.【分析】利用题意得到AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,如图,在Rt△APC中,利用余弦的定义计算出PC=10,利用勾股定理计算出AC=10,再判断△PBC为等腰直角三角形得到BC=PC=10,然后计算AC﹣BC即可.【解答】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=20,在Rt△APC中,∵cos∠APC=,∴PC=20•cos60°=10,∴AC==10,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10﹣10≈7.3(海里).答:它向东航行约7.3海里到达灯塔P南偏西45°方向上的B处.【点评】本题考查了解直角三角形的应用﹣方向角:在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.22.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.【考点】LA:菱形的判定与性质.【分析】(1)首先根据题意画出图形,由E是AD的中点,AF∥BC,易证得△AFE≌△DBE,即可得AF=BD,又由在Rt△ABC中,∠BAC=90°,D是BC的中点,可得AD=BD=CD=AF,证得四边形ADCF是平行四边形,继而判定四边形ADCF是菱形;(2)首先连接DF,易得四边形ABDF是平行四边形,即可求得DF的长,然后由菱形的面积等于其对角线积的一半,求得答案.【解答】(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.【点评】此题考查了菱形的判定与性质以及全等三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.23.如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标;(3)写出一次函数大于反比例函数的x的取值范围.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)将A坐标代入一次函数解析式中即可求得a的值,将A(﹣1,4)坐标代入反比例解析式中即可求得m的值;(2)解方程组,即可解答;(3)根据(2)的结果即可得到结论.【解答】解:(1)∵点A的坐标是(﹣1,a),在直线y=﹣2x+2上,∴a=﹣2×(﹣1)+2=4,∴点A的坐标是(﹣1,4),代入反比例函数y=,∴m=﹣4.(2)解方程组,解得:或,∴该双曲线与直线y=﹣2x+2另一个交点B的坐标为(2,﹣2);(3)满足一次函数大于反比例函数的x的取值范围是:x<﹣1或0<x<2.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:反比例函数的图象上点的坐标特征,待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.24.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.【考点】MD:切线的判定.【分析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.【解答】(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴,即,∴BC=2.【点评】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;熟练掌握圆周角定理、切线的判定是解决问题的关键.25.(12分)(2016•枣庄)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.【考点】HF:二次函数综合题.【分析】(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.【解答】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC 与对称轴x=﹣1的交点为M ,则此时MA+MC 的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M (﹣1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(﹣1,2);(3)设P (﹣1,t ),又∵B (﹣3,0),C (0,3),∴BC 2=18,PB 2=(﹣1+3)2+t 2=4+t 2,PC 2=(﹣1)2+(t ﹣3)2=t 2﹣6t+10,①若点B 为直角顶点,则BC 2+PB 2=PC 2即:18+4+t 2=t 2﹣6t+10解之得:t=﹣2;②若点C 为直角顶点,则BC 2+PC 2=PB 2即:18+t 2﹣6t+10=4+t 2解之得:t=4,③若点P 为直角顶点,则PB 2+PC 2=BC 2即:4+t 2+t 2﹣6t+10=18解之得:t 1=,t 2=; 综上所述P 的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,) 或(﹣1,).【点评】本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.。

【2017中考数学真题】山东枣庄市试卷及解析【2017数学中考真题系列】

【2017中考数学真题】山东枣庄市试卷及解析【2017数学中考真题系列】

2017年山东省枣庄市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.下列计算,正确的是()A.﹣=B.|﹣2|=﹣C. =2D.()﹣1=22.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96 B.69 C.66 D.993.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15° B.22.5°C.30° D.45°4.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C.D.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.C.D.18.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP 交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.609.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣3610.如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.2<r<B.<r<3C.<r<5 D.5<r<11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大二、填空题(本大题共6小题,每小题4分,共24分)13.化简:÷= .14.已知关于x的一元二次方程ax2﹣2x﹣1=0有两个不相等的实数根,则a的取值范围是.15.已知是方程组的解,则a2﹣b2= .16.如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为.17.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为.18.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?20.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.22.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).23.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p ≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.24.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB 的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b 及∠AEC的度数.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q 在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.2017年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.下列计算,正确的是()A.﹣=B.|﹣2|=﹣C. =2D.()﹣1=2【考点】24:立方根;1A:有理数的减法;22:算术平方根;6F:负整数指数幂.【分析】根据立方根的概念、二次根式的加减运算法则、绝对值的性质、负整数指数幂的运算法则计算,即可判断.【解答】解:﹣=2﹣=,A错误;|﹣2|=,B错误;=2,C错误;()﹣1=2,D正确,故选:D.2.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96 B.69 C.66 D.99【考点】R1:生活中的旋转现象.【分析】直接利用中心对称图形的性质结合69的特点得出答案.【解答】解:现将数字“69”旋转180°,得到的数字是:69.故选:B.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15° B.22.5°C.30° D.45°【考点】JA:平行线的性质.【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:A.4.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【考点】W7:方差;W1:算术平均数.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B.C.D.【考点】S8:相似三角形的判定.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C.7.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A.2 B.C.D.1【考点】PB:翻折变换(折叠问题).【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM的值.【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F 处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=,故选:B.8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP 交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【考点】KF:角平分线的性质.【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.9.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36【考点】L8:菱形的性质;G6:反比例函数图象上点的坐标特征.【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【解答】解:∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B 的坐标代入y=得,4=,解得:k=﹣32.故选C .10.如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内,则r 的取值范围为( )A .2<r <B .<r <3C .<r <5D .5<r <【考点】M8:点与圆的位置关系;KQ :勾股定理.【分析】利用勾股定理求出各格点到点A 的距离,结合点与圆的位置关系,即可得出结论.【解答】解:给各点标上字母,如图所示.AB==2,AC=AD==,AE==3,AF==,AG=AM=AN==5,∴<r <3时,以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内.故选B .11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)【考点】F8:一次函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD 值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故选C.(方法二)连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD 值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2),CD∥x轴,∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2),点O为线段DD′的中点.又∵OP∥CD,∴点P为线段CD′的中点,∴点P的坐标为(﹣,0).故选C.12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a>0,则当x≥1时,y随x的增大而增大【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】A、将a=1代入原函数解析式,令x=﹣1求出y值,由此得出A选项不符合题意;B、将a=2代入原函数解析式,令y=0,根据根的判别式△=8>0,可得出当a=﹣2时,函数图象与x轴有两个不同的交点,即B选项不符合题意;C、利用配方法找出二次函数图象的顶点坐标,令其纵坐标小于零,可得出a的取值范围,由此可得出C选项不符合题意;D、利用配方法找出二次函数图象的对称轴,结合二次函数的性质,即可得出D选项符合题意.此题得解.【解答】解:A、当a=1时,函数解析式为y=x2﹣2x﹣1,当x=﹣1时,y=1+2﹣1=2,∴当a=1时,函数图象经过点(﹣1,2),∴A选项不符合题意;B、当a=﹣2时,函数解析式为y=﹣2x2+4x﹣1,令y=﹣2x2+4x﹣1=0,则△=42﹣4×(﹣2)×(﹣1)=8>0,∴当a=﹣2时,函数图象与x轴有两个不同的交点,∴B选项不符合题意;C、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,∴二次函数图象的顶点坐标为(1,﹣1﹣a),当﹣1﹣a<0时,有a>﹣1,∴C选项不符合题意;D、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,∴二次函数图象的对称轴为x=1.若a>0,则当x≥1时,y随x的增大而增大,∴D选项符合题意.故选D.二、填空题(本大题共6小题,每小题4分,共24分)13.化简:÷= .【考点】6A:分式的乘除法.【分析】根据分式的乘除法的法则进行计算即可.【解答】解:÷=•=,故答案为:.14.已知关于x的一元二次方程ax2﹣2x﹣1=0有两个不相等的实数根,则a的取值范围是a>﹣1且a≠0 .【考点】AA:根的判别式.【分析】根据一元二次方程的定义和判别式的意义得到a≠0且△=(﹣2)2﹣4a(﹣1)>0,然后求出两不等式的公共部分即可.【解答】解:根据题意得a≠0且△=(﹣2)2﹣4a(﹣1)>0,解得a>﹣1且a≠0.故答案为a>﹣1且a≠0.15.已知是方程组的解,则a2﹣b2= 1 .【考点】97:二元一次方程组的解.【分析】根据是方程组的解,可以求得a+b和a﹣b的值,从而可以解答本题.【解答】解:∵是方程组的解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.16.如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则的长为π.【考点】MC:切线的性质;L5:平行四边形的性质;MN:弧长的计算.【分析】先连接OE、OF,再求出圆心角∠EOF的度数,然后根据弧长公式即可求出的长.【解答】解:如图连接OE、OF,∵CD是⊙O的切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,的长==π.故答案为:π.17.如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为4 .【考点】G5:反比例函数系数k的几何意义.【分析】可设D点坐标为(x,y),则可表示出B点坐标,从而可表示出矩形OABC的面积,利用xy=2可求得答案.【解答】解:设D(x,y),∵反比例函数y=的图象经过点D,∴xy=2,∵D为AB的中点,∴B(x,2y),∴OA=x,OC=2y,∴S矩形OABC=OA•OC=x•2y=2xy=2×2=4,故答案为:4.18.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)【考点】LB:矩形的性质;KI:等腰三角形的判定;S9:相似三角形的判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC 得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B的角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED的角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?【考点】C7:一元一次不等式的整数解.【分析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.【解答】解:根据题意解不等式组,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴﹣<x≤1,故满足条件的整数有﹣2、﹣1、0、1.20.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有50 人,在扇形统计图中,m的值是30% ;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由舞蹈的人数除以占的百分比求出调查学生总数,确定出扇形统计图中m的值;(2)求出绘画与书法的学生数,补全条形统计图即可;(3)列表得出所有等可能的情况数,找出恰好为一男一女的情况数,即可求出所求概率.【解答】解:(1)20÷40%=50(人),15÷50=30%;故答案为:50;30%;(2)50×20%=10(人),50×10%=5(人),如图所示:(3)∵5﹣2=3(名),∴选修书法的5名同学中,有3名男同学,2名女同学,所有等可能的情况有20种,其中抽取的2名同学恰好是1名男同学和1名女同学的情况有12种,则P(一男一女)==.21.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.【考点】SD:作图﹣位似变换;Q4:作图﹣平移变换;T7:解直角三角形.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==2,∴sin∠ACB===,即sin∠A2C2B2=.22.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).【考点】MB:直线与圆的位置关系;MO:扇形面积的计算.【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆的切线;(2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为圆的半径,求出圆心角的度数,直角三角形ODB的面积减去扇形DOF面积即可确定出阴影部分面积.【解答】解:(1)BC与⊙O相切.证明:连接OD.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.(2)设OF=OD=x,则OB=OF+BF=x+2,根据勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=OB,∴∠B=30°,∴∠DOB=60°,∴S扇形AOB==,则阴影部分的面积为S△ODB﹣S扇形DOF=×2×2﹣=2﹣.故阴影部分的面积为2﹣.23.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p ≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【考点】59:因式分解的应用.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.24.已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB 的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b 及∠AEC的度数.【考点】LO:四边形综合题.【分析】(1)根据正方形的性质证明△APE≌△CFE,可得结论;(2)分别证明∠PAE=45°和∠BAC=45°,则∠CAE=90°,即△ACE是直角三角形;(3)分别计算PG和BG的长,利用平行线分线段成比例定理列比例式得:,即,解得:a=b,得出a与b的比,再计算GH和BG的长,根据角平分线的逆定理得:∠HCG=∠BCG,由平行线的内错角得:∠AEC=∠ACB=45°.【解答】证明:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵,∴△APE≌△CFE,∴EA=EC;(2)△ACE是直角三角形,理由是:如图2,∵P为AB的中点,∴PA=PB,∵PB=PE,∴PA=PE,∴∠PAE=45°,又∵∠BAC=45°,∴∠CAE=90°,即△ACE是直角三角形;(3)设CE交AB于G,∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a,∵PE∥CF,∴,即,解得:a=b,∴a:b=:1,作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=(2b﹣2b)=(2﹣)b,又∵BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q 在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)由B、C的坐标,利用待定系数法可求得抛物线解析式,再求其顶点D即可;(2)过F作FG⊥x轴于点G,可设出F点坐标,利用△FBG∽△BDE,由相似三角形的性质可得到关于F点坐标的方程,可求得F点的坐标;(3)由于M、N两点关于对称轴对称,可知点P为对称轴与x轴的交点,点Q在对称轴上,可设出Q点的坐标,则可表示出M的坐标,代入抛物线解析式可求得Q点的坐标.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴=,当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点F在x轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F点的坐标为(﹣3,﹣);综上可知F点的坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对称轴MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6的图象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).2017年6月15日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年山东省枣庄市滕州市木石中学中考数学模拟试卷(一)一、选择题(共16小题,每小题3分,满分48分)1.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108 B.4.4×109C.4.4×108D.4.4×10102.(3分)下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4C.a2•a3=a5 D.(a﹣b)2=a2﹣b23.(3分)分式的值为零,则x的值为()A.﹣1 B.0 C.±1 D.14.(3分)方程x2+x=0的解是()A.x=±1 B.x=0 C.x1=0,x2=﹣1 D.x=15.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.7.(3分)你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为Y,下面能大致表示上面故事情节的图象是()A.B.C.D.8.(3分)如图,已知一次函数y=﹣x+2的图象与坐标轴分别交于A、B两点,⊙O的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PM,切点为M,则PM的最小值为()A.2 B.C.D.9.(3分)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A.1 B.2 C.3 D.410.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,=2,则k的值为()连接AO,若S△AOBA.2 B.3 C.4 D.511.(3分)如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB=6,DE=3,则AC的长是()A.8 B.6 C.5 D.412.(3分)如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个 B.1个 C.2个 D.3个13.(3分)如图,△ABC的三个顶点在正方形网格的格点上,则tan∠A的值是()A.B.C.D.14.(3分)如图,AB、AC是⊙O的两条弦,∠A=25°,过点C的切线与OB的延长线交于点D,则∠D的度数()A.25°B.30°C.40°D.50°15.(3分)已知:,那么下列式子中一定成立的是()A.2x=3y B.3x=2y C.x=6y D.xy=616.(3分)掷一枚质地均匀的硬币一次,反面朝上的概率是()A.1 B.C.D.二、填空题(共6小题,每小题3分,满分18分)17.(3分)分解因式:3x2﹣3y2=.18.(3分)关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是.19.(3分)如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是.20.(3分)如图,已知点A的坐标为(m,0),点B的坐标为(m﹣2,0),在x轴上方取点C,使CB⊥x轴,且CB=2AO,点C,C′关于直线x=m对称,BC′交直线x=m于点E,若△BOE的面积为4,则点E的坐标为.21.(3分)如图,在正方形ABCD中,点E为AD的中点,连接EC,过点E作EF⊥EC,交AB于点F,则tan∠ECF=.22.(3分)某中学随机调查了15名学生,了解他们一周在学校参加体育锻炼时间,列表如下:则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是;.三、解答题(共8小题,满分34分)23.(4分)计算:|﹣2|+20150﹣+3tan30°.24.(4分)先化简,再求值:(﹣),其中x=﹣2.25.(4分)根据图1,图2所提供的信息,解答下列问题:(1)2007年海南省城镇居民人均可支配收入为元,比2006年增长%;(2)求2008年海南省城镇居民人均可支配收入(精确到1元),并补全条形统计图;(3)根据图1指出:2005﹣2008年海南省城镇居民人均可支配收入逐年(填“增加”或“减少”).26.(4分)如图,四边形ABCD为平行四边形,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:△ABE≌△FCE;(2)过点D作DG⊥AE于点G,H为DG的中点.判断CH与DG的位置关系,并说明理由.27.(4分)如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A处测得电线杆上C处的仰角为30°,已知测角仪的高AB=1.5米,BE=2.3米,求拉线CE的长,(精确到0.1米)参考数据≈1.41,≈1.73.28.(4分)如图,AB是半圆O的直径,E是弧BC的中点,OE交弦BC于点D,点F为OE的延长线上一点且OC2=OD•OF.(1)求证:CF为⊙O的切线.(2)已知DE=2,tan∠BAC=.①求⊙O的半径;②求sin∠BAD的值.29.(5分)如图,反比例函数y=的图象与一次函数y=kx﹣3的图象在第一象限内相交于点A,且点A的横坐标为4.(1)求点A的坐标及一次函数的解析式;(2)若直线x=2与反比例函数和一次函数的图象分别交于点B、C,求线段BC 的长.30.(5分)在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C.(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点且在直线BC下方,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=﹣4a,连接KB并延长交抛物线于点Q,求PQ的长.2017年山东省枣庄市滕州市木石中学中考数学模拟试卷(一)参考答案与试题解析一、选择题(共16小题,每小题3分,满分48分)1.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108 B.4.4×109C.4.4×108D.4.4×1010【解答】解:4 400 000 000=4.4×109,故选:B.2.(3分)下列计算正确的是()A.2a﹣a=1 B.a2+a2=2a4C.a2•a3=a5 D.(a﹣b)2=a2﹣b2【解答】解:A.2a﹣a=a,故错误;B.a2+a2=2a2,故错误;C.a2•a3=a5,正确;D.(a﹣b)2=a2﹣2ab+b2,故错误;故选:C.3.(3分)分式的值为零,则x的值为()A.﹣1 B.0 C.±1 D.1【解答】解:由题意,得x2﹣1=0,且x+1≠0,解得,x=1.故选D.4.(3分)方程x2+x=0的解是()A.x=±1 B.x=0 C.x1=0,x2=﹣1 D.x=1【解答】解:由原方程得到:x(x+1)=0,解得,x1=0,x2=﹣1.故选:C.5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:由x>﹣1,得x>﹣1,由2x≤4,得x≤2,∴不等式组的解集是﹣1<x≤2,故选:B.6.(3分)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是()A.B.C.D.【解答】解:该班男生有x人,女生有y人.根据题意得:,故选:D.7.(3分)你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水.但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为Y,下面能大致表示上面故事情节的图象是()A.B.C.D.【解答】解:开始时的水位不是0,因而A错误;乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,因而选项D错误;乌鸦衔来一些小石子放入瓶中,水面上升,到达一定的高度,乌鸦开始喝水,因而水面下降,下降到的高度一定要高于原来,未放石子前的高度;故选B.8.(3分)如图,已知一次函数y=﹣x+2的图象与坐标轴分别交于A、B两点,⊙O的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PM,切点为M,则PM的最小值为()A.2 B.C.D.【解答】解:连结OM、OP,作OH⊥AB于H,如图,当x=0时,y=﹣x+2=2,则A(0,2),当y=0时,﹣x+2=0,解得x=2,则B(2,0),所以△OAB为等腰直角三角形,则AB=OA=4,OH=AB=2,因为PM为切线,所以OM⊥PM,所以PM==,当OP的长最小时,PM的长最小,而OP=OH=2时,OP的长最小,所以PM的最小值为=.故选D.9.(3分)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵b=2a,∴2a﹣b=0,所以③错误;∵抛物线开口向下,x=﹣1是对称轴,所以x=﹣1对应的y值是最大值,∴a﹣b+c>2,所以④正确.故选C.10.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S=2,则k的值为()△AOBA.2 B.3 C.4 D.5【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,=|k|=2,∴S△AOB解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.11.(3分)如图,在△ABC中,AD是角平分线,DE⊥AB于点E,△ABC的面积为15,AB=6,DE=3,则AC的长是()A.8 B.6 C.5 D.4【解答】解:如图,过D作DF⊥AC,∵AD是角平分线,DE⊥AB,∴DF=DE=3,=S△ABD+S△ACD,∵S△ABC∴15=×6×3+×AC×3,解得AC=4,故选D.12.(3分)如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个 B.1个 C.2个 D.3个【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△AEF∽△CBF,△AEF∽△DEC,∴与△AEF相似的三角形有2个.故选:C.13.(3分)如图,△ABC的三个顶点在正方形网格的格点上,则tan∠A的值是()A.B.C.D.【解答】解:利用三角函数的定义可知tan∠A=.故选A.14.(3分)如图,AB、AC是⊙O的两条弦,∠A=25°,过点C的切线与OB的延长线交于点D,则∠D的度数()A.25°B.30°C.40°D.50°【解答】解:连接OC,∵CD是切线,∴∠OCD=90°,∵∠A=25°,∴∠COD=2∠A=50°,∴∠D=90°﹣50°=40°.故选C.15.(3分)已知:,那么下列式子中一定成立的是()A.2x=3y B.3x=2y C.x=6y D.xy=6【解答】解:A、根据等式的性质2,等式两边同时乘以6,即可得2x=3y;B、根据等式性质2,等式两边都乘以9,应得3x=y;C、根据等式性质2,等式两边都乘以3,应得x=y;D、根据等式性质2,等式两边都乘以3y,应得xy=y2;故选A.16.(3分)掷一枚质地均匀的硬币一次,反面朝上的概率是()A.1 B.C.D.【解答】解:抛一枚质地均匀的硬币,正面朝上和反面朝上的可能性相等,都是,故选B二、填空题(共6小题,每小题3分,满分18分)17.(3分)分解因式:3x2﹣3y2=3(x+y)(x﹣y).【解答】解:原式=3(x2﹣y2)=3(x+y)(x﹣y),故答案为:3(x+y)(x﹣y)18.(3分)关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是0.【解答】解:根据题意得a﹣1≠0且△=(﹣2)2﹣4×(a﹣1)×3≥0,解得a≤且a≠1,所以整数a的最大值为0.故答案为0.19.(3分)如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是x<2.【解答】解:根据图象可得不等式﹣2x+b>ax﹣1的解集是x<2,故答案为:x<2.20.(3分)如图,已知点A的坐标为(m,0),点B的坐标为(m﹣2,0),在x轴上方取点C,使CB⊥x轴,且CB=2AO,点C,C′关于直线x=m对称,BC′交直线x=m于点E,若△BOE的面积为4,则点E的坐标为(﹣2,2).【解答】解:如图,设AE与CC′交于点D.∵点A的坐标为(m,0),在x轴上方取点C,使CB⊥x轴,且CB=2AO,∴CB=﹣2m.∵点C,C′关于直线x=m对称,∴CD=C′D,∵ABCD是矩形,AB=CD,∴AB=C′D.又∵∠BAE=∠C′DE=90°,∠AEB=DEC′,∴△ABE≌△DC′E,∴AE=DE,∴AE=AD=BC=﹣m.∵△BOE的面积为4,∴(2﹣m)(﹣m)=4,整理得,m2﹣2m﹣8=0,解得m=4或﹣2,∵在x轴上方取点C,∴﹣2m>0,∴m<0,∴m=4不合题意舍去,∵点E的坐标为(m,﹣m),∴点E的坐标为(﹣2,2).故答案为(﹣2,2).21.(3分)如图,在正方形ABCD中,点E为AD的中点,连接EC,过点E作EF⊥EC,交AB于点F,则tan∠ECF=.【解答】解:∵四边形ABCD是正方形,∴AD=DC,∠A=∠D=90°,∵AE=ED,∴CD=AD=2AE,∵∠FEC=90°,∴∠AEF+∠DEC=90°,∵∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∵∠A=∠D,∴△AEF∽△DCE,∴==,∴tan∠ECF==.故答案为.22.(3分)某中学随机调查了15名学生,了解他们一周在学校参加体育锻炼时间,列表如下:则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是6;6.【解答】解:∵共有15个数,最中间的数是8个数,∴这15名同学一周在校参加体育锻炼时间的中位数是6;6出现的次数最多,出现了6次,则众数是6;故答案为:6,6.三、解答题(共8小题,满分34分)23.(4分)计算:|﹣2|+20150﹣+3tan30°.【解答】解:原式=2﹣+1﹣3+=0.24.(4分)先化简,再求值:(﹣),其中x=﹣2.【解答】解:原式=•=•=,当x=﹣2时,原式=.25.(4分)根据图1,图2所提供的信息,解答下列问题:(1)2007年海南省城镇居民人均可支配收入为10997元,比2006年增长17.1%;(2)求2008年海南省城镇居民人均可支配收入(精确到1元),并补全条形统计图;(3)根据图1指出:2005﹣2008年海南省城镇居民人均可支配收入逐年增加(填“增加”或“减少”).【解答】解:(1)10997,17.1;(2)10997×(1+14.6%)≈12603(元)所补全的条形图如图所示;(3)增加.26.(4分)如图,四边形ABCD为平行四边形,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:△ABE≌△FCE;(2)过点D作DG⊥AE于点G,H为DG的中点.判断CH与DG的位置关系,并说明理由.【解答】解:(1)∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∴∠B=∠ECF∵E为BC的中点,∴BE=CE,在△ABE和△FCE中,∴△ABE≌△FCE.(2)结论:CH⊥DG.理由如下:∵△ABE≌△FCE,∴AB=CF,∵AB=CD,∴DC=CF,∵H为DG的中点,∴CH∥FG∵DG⊥AE,∴CH⊥DG.27.(4分)如图,电线杆CD上的C处引拉线CE,CF固定电线杆,在离电线杆6米的B处安置测角仪(点B,E,D在同一直线上),在A处测得电线杆上C处的仰角为30°,已知测角仪的高AB=1.5米,BE=2.3米,求拉线CE的长,(精确到0.1米)参考数据≈1.41,≈1.73.【解答】解:过点A作AM⊥CD于点M,则四边形ABDM为矩形,AM=BD=6米,在Rt△ACM中,∵∠CAM=30°,AM=6米,∴CM=AM•tan∠CAM=6×=2(米),∴CD=2+1.5≈4.96(米),在Rt△CDE中,ED=6﹣2.3=3.7(米),∴CE=≈6.2(米).28.(4分)如图,AB是半圆O的直径,E是弧BC的中点,OE交弦BC于点D,点F为OE的延长线上一点且OC2=OD•OF.(1)求证:CF为⊙O的切线.(2)已知DE=2,tan∠BAC=.①求⊙O的半径;②求sin∠BAD的值.【解答】解:(1)∵OC2=OE2=OD•OF,∠COD=∠FOC,∴△COD∽△COF,∴∠F=∠OCD,又E是弧BC的中点,∵OC=OB,∴OD⊥BC,∴∠F+∠FCD=90°,∴∠OCD+∠FCD=90°,即OC⊥CF,∴CF为⊙O的切线.(2)①∵Rt△ABC中,,∴可设BC=4x,则AC=3x,AB=5x,OE=2.5x,∵OD是△ABC的中位线,∴OD=1.5x,∴DE=x=2,∴OE=2.5x=5,∴⊙O的半径为5;②如图,作DG⊥OB于G,∵Rt△BOD中,DG=OD×BD÷OB,∴DG=3×4÷5=2.4,∵Rt△ABC中,AC=6,AB=10,∴BC=8,CD=4,∴Rt△ACD中,AD=,∴Rt△AGD中,sin∠BAD=DG÷AD=.29.(5分)如图,反比例函数y=的图象与一次函数y=kx﹣3的图象在第一象限内相交于点A,且点A的横坐标为4.(1)求点A的坐标及一次函数的解析式;(2)若直线x=2与反比例函数和一次函数的图象分别交于点B、C,求线段BC【解答】解:(1)∵点A (4,m)在反比例函数y=的图象上,∴m==1,∴A(4,1),把A(4,1)代入一次函数y=kx﹣3,得4k﹣3=1,∴k=1,∴一次函数的解析式为y=x﹣3;(2)∵直线x=2与反比例和一次函数的图象分别交于点B、C,∴当x=2时,y B==2,y C=2﹣3=﹣1,∴线段BC的长为|y B﹣y C|=2﹣(﹣1)=3.30.(5分)在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C.(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;(2)如图2,点P为第四象限抛物线上一点且在直线BC下方,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=﹣4a,连接KB并延长交抛物线于点Q,求PQ的长.【解答】解:(1)当y=0时,ax2﹣5ax+4a=0,解得x1=1,x2=4,则A(1,0),B (4,0),∴AB=3,∵△ABC的面积为3,∴•3•OC=3,解得OC=2,则C(0,﹣2),把C(0,﹣2)代入y=ax2﹣5ax+4a得4a=﹣2,解得a=﹣,∴抛物线的解析式为y=﹣x2+x﹣2;(2)过点P作PH⊥x轴于H,作CD⊥PH于点H,如图2,设P(x,ax2﹣5ax+4a),则PD=4a﹣(ax2﹣5ax+4a)=﹣ax2+5ax,∵AB∥CD,∴∠ABC=∠BCD,∵∠BCP=2∠ABC,∴∠PCD=∠ABC,∴Rt△PCD∽Rt△CBO,∴PD:OC=CD:OB,即(﹣ax2+5ax):(﹣4a)=x:4,解得x1=0,x2=6,∴点P的横坐标为6;(3)过点F作FG⊥PK于点G,如图3,∵AK=FK,∴∠KAF=∠KFA,而∠KAF=∠KAH+∠PAH,∠KFA=∠PKF+∠KPF,∵∠KAH=∠FKP,∴∠HAP=∠KPA,∴HA=HP,∴△AHP为等腰直角三角形,∵P(6,10a),∴﹣10a=6﹣1,解得a=﹣,在Rt△PFG中,∵PF=﹣4a=2,∠FPG=45°,∴FG=PG=PF=2,,∴△AKH≌△KFG,∴KH=FG=2,∴K(6,2),设直线KB的解析式为y=mx+n,把K(6,2),B(4,0)代入得,解得,∴直线KB的解析式为y=x﹣4,当a=﹣时,抛物线的解析式为y=﹣x2+x﹣2,解方程组,解得或,∴Q(﹣1,﹣5),而P(6,﹣5),∴PQ∥x 轴,∴QP=7.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

相关文档
最新文档