初中奥数28条知识点总结

合集下载

奥数知识点汇总初二

奥数知识点汇总初二

奥数知识点汇总初二初二阶段的奥数学习,对于提升数学思维和解决问题的能力有着重要作用。

以下为大家汇总初二奥数常见的知识点。

一、二次根式1、二次根式的定义:形如\(\sqrt{a}(a\geq0)\)的式子叫做二次根式。

2、二次根式的性质:\(\sqrt{a^2}=|a|\)\(\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}(a\geq0,b\geq0)\)\(\dfrac{\sqrt{a}}{\sqrt{b}}=\sqrt{\dfrac{a}{b}}(a\geq0,b>0)\)3、二次根式的运算:二次根式的加减:先将二次根式化为最简二次根式,然后合并同类二次根式。

二次根式的乘除:乘法法则为\(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}(a\geq0,b\geq0)\),除法法则为\(\dfrac{\sqrt{a}}{\sqrt{b}}=\sqrt{\dfrac{a}{b}}(a\geq0,b>0)\)二、勾股定理1、勾股定理:如果直角三角形的两条直角边长分别为\(a\)、\(b\),斜边长为\(c\),那么\(a^2 + b^2 = c^2\)。

2、勾股定理的逆定理:如果三角形的三边长\(a\)、\(b\)、\(c\)满足\(a^2 + b^2 = c^2\),那么这个三角形是直角三角形。

3、勾股数:满足\(a^2 + b^2 = c^2\)的三个正整数,称为勾股数。

三、平行四边形1、平行四边形的性质:平行四边形的对边平行且相等。

平行四边形的对角相等,邻角互补。

平行四边形的对角线互相平分。

2、平行四边形的判定:两组对边分别平行的四边形是平行四边形。

两组对边分别相等的四边形是平行四边形。

一组对边平行且相等的四边形是平行四边形。

对角线互相平分的四边形是平行四边形。

两组对角分别相等的四边形是平行四边形。

四、特殊的平行四边形1、矩形:性质:矩形的四个角都是直角;矩形的对角线相等。

奥数初一知识点归纳总结

奥数初一知识点归纳总结

奥数初一知识点归纳总结初一奥数知识点归纳总结
一、整数与小数
1. 整数的定义和运算规则
2. 小数的定义和运算规则
3. 整数和小数在实际生活中的应用
二、幂与根
1. 正整数幂的定义和运算规则
2. 零次幂和负整数幂的特殊性质
3. 平方根和立方根的概念与性质
4. 幂与根在几何中的应用
三、分数与比例
1. 分数的定义和基本性质
2. 分数的四则运算规则
3. 比例的概念和运算规则
4. 分数和比例在实际问题中的应用
四、图形的性质与计算
1. 线段、角度、多边形的基本性质
2. 图形的周长与面积的计算公式
3. 利用图形的性质解题的思路和方法
五、方程与不等式
1. 一元一次方程的概念和解法
2. 一元一次不等式的概念和解法
3. 方程和不等式在实际问题中的应用
六、概率与统计
1. 随机事件的概念和基本性质
2. 概率的计算和相关概念的理解
3. 数据收集、整理和表示的方法
4. 统计图表的解读和分析
七、数学推理与证明
1. 数学推理的基本方法和常见形式
2. 数论和几何中的证明方法和技巧
3. 数学思维和解题策略的培养
这些奥数初一知识点是学习数学的基础,对于未来的学习和发展起着重要的作用。

在学习过程中,我们要注重理解概念,熟练掌握运算
规则,并在实际问题中积极运用所学知识。

通过努力学习和不断练习,我们能够在奥数竞赛中取得优异的成绩,也能够培养出良好的数学思
维和解题能力,为将来的学习和职业发展打下坚实的基础。

初中奥数知识点梳理

初中奥数知识点梳理

初中奥数知识点梳理一、数论(Number Theory)1.最大公约数和最小公倍数:-欧几里得算法(辗转相除法)-最大公约数(GCD)和最小公倍数(LCM)的性质-素因数分解-GCD和LCM之间的关系2.约数和倍数:-约数和倍数的性质-奇数和偶数的性质-素数和合数的性质3.质数与合数:-质数判定方法-质因数的个数-定理:任意一个大于1的合数,都有一个小于等于它的正因数4.同余与模运算:-同余关系的性质-模运算的性质-同余方程5.数字性质与规律:-数字根与数根-奇偶性的性质-间隔的性质-数字交换与翻转的性质6.数列与递推:-等差数列-等比数列-斐波那契数列-递推关系式二、代数(Algebra)1.等式和不等式:-方程和算式的性质-一元一次方程-一元二次方程-不等式的性质2.多项式和因式分解:-多项式的定义和性质-一元多项式的加减乘除-因式分解-最大公因式和最小公倍式3.代数式和恒等式:-代数式的性质-恒等式的性质-公式和公式的推导4.方程组和不等式组:-二元一次方程组-二元二次方程组-三元一次方程组-不等式组的解集5.平方与立方:-平方数和立方数的性质-平方根和立方根的性质三、几何(Geometry)1.尺规作图:-作图基础知识-常见作图题目-作图题目的证明2.几何关系与性质:-直线与平面的性质-角的性质-三角形的性质-长方形、正方形和正三角形的性质3.图形的计算:-面积与周长的计算-体积与表面积的计算-平移、旋转和对称的性质4.相似和全等:-两个图形相似的条件-相似三角形的性质-两个图形全等的条件-全等三角形的性质5.圆与圆相关问题:-圆的性质-弧与弦的性质-切线与切线的性质四、概率与统计(Probability and Statistics)1.排列与组合:-排列的概念与计算-组合的概念与计算-常见排列组合问题2.概率的基本概念:-样本空间与事件的关系-事件发生的概率-互斥事件与相互独立事件3.统计的基本概念:-数据的收集与整理-数据的统计量(平均数、中位数、众数)-抽样与调查方法4.投掷与随机:-投掷问题的概率分析-随机事件与概率-机会、偶然和必然事件的关系以上就是初中奥数知识点的梳理,包括数论、代数、几何和概率与统计四个部分。

初中奥数知识点总结

初中奥数知识点总结

初中奥数知识点总结一、数论1. 除法1.1 除法的定义1.2 除数与余数1.3 质数、合数1.4 基本除法术、乘除结合定理、除法定理、余数定理1.5 素数分解、最大公约数、最小公倍数1.6 除法算术规律1.7 余数的性质1.8 基本除法术1.9 素数分解与最大公因式、最小公倍式2. 基本数论概念2.1 正整数2.2 自然数2.3 偶数和奇数2.4 素数与合数2.5 因数和倍数2.6 基本数论规律3. 数系3.1 自然数系3.2 整数系3.3 有理数系3.4 实数系3.5 数系的性质4. 等差数列与等比数列4.1 等差数列的概念和性质4.2 等比数列的概念和性质4.3 等比数列的通项公式4.4 等比中项4.5 等差数列的通项公式4.6 等差数列与等比数列的基本变形4.7 数列的基本性质4.8 数列的和5. 整除性质5.1 整除的定义5.2 整除的性质5.3 整数的公倍式和公因式5.4 最大公因式、最小公倍式5.5 题解方法5.6 同余式5.7 数论问题的一般性质5.8 等式与不等式5.9 分数和小数6. 习题数论中积淀着大量的基本规律,再加上数论问题一般简单、直观,因此非常适于作为启蒙学习的第一步。

二、代数1. 一元一次方程1.1 简单的一元一次方程1.2 一元一次方程的解法及应用1.3 一元一次方程的重要等式变形1.4 解一元一次方程的三性质1.5 无理方程2. 一元二次方程2.1 一元二次方程的概念和性质2.2 一元二次方程的解法2.3 分判别式2.4 一元二次方程的应用3. 二元一次方程组3.1 二元一次方程组的概念和性质3.2 二元一次方程组的解法3.3 二元一次方程组的应用3.4 三元一次方程组4. 代数的基本概念4.1 代数式4.2 方程4.3 多项式4.4 一元多项式的基本概念4.5 代数式间的基本变形5. 多项式的加减与系数5.1 同类项5.2 多项式的加减5.3 系数5.4 系数间的基本关系5.5 代数式的加减6. 习题代数问题属于在数学思维能力中进一步强化的阶段。

七年级数学奥数知识点归纳

七年级数学奥数知识点归纳

七年级数学奥数知识点归纳数学奥数是近年来备受重视的学科之一,它对学生的逻辑思维和算术运算能力都有着很好的锻炼作用。

而在七年级的学习中,数学奥数所涉及到的知识点也不少。

下面就为大家归纳整理了七年级数学奥数知识点,希望能够帮助各位同学更好地掌握这门学科。

一、平面几何
1. 直线、射线、线段的概念及其符号表示;
2. 直线、平行线、垂直线的关系及其特征;
3. 三角形的内角和及其特征(锐角三角形、直角三角形、钝角三角形);
4. 几何图形的对称性、轴对称和中心对称的概念;
5. 圆的概念及其符号表示,圆与周长、面积的关系;
6. 一次函数的基本概念及其图像。

二、代数
1. 整式的概念,包括同类项、次数和系数;
2. 简单的代数式的加减乘除运算法则;
3. 一元一次方程的概念,以及解一元一次方程的基本方法;
4. 分式的概念及其运算法则;
5. 多步骤解决含变量的简单实际问题。

三、数论
1. 最小公倍数与最大公约数的概念及其求法;
2. 质数、合数、素数的概念及其基本性质;
3. 分数的概念,分数在数轴上的表示;
4. 通分和约分的基本方法;
5. 有理数的概念及其四则运算。

四、概率统计
1. 样本与总体的概念;
2. 频率和概率的概念,并能够进行简单的计算;
3. 排列和组合的概念及其计算方法;
4. 数据的集中趋势和离散程度的度量。

以上就是七年级数学奥数知识点的简要归纳,相信大家都会发现,这些内容和我们平常所学的数学知识是不同的,在此建议大家加强奥数的练习,提高自己的数学水平。

初一奥数题知识点总结归纳

初一奥数题知识点总结归纳

初一奥数题知识点总结归纳初一阶段是数学学习的重要阶段,奥数作为数学学习中的一项重要内容,对学生的数学思维能力和解题能力起到了很大的促进作用。

在初一奥数题中,有一些知识点是我们需要特别关注和掌握的。

本文将对初一奥数题中常见的知识点进行总结归纳,以帮助同学们更好地备战奥数考试。

一、方程与不等式1. 一元一次方程初一阶段学习的一元一次方程主要是形如ax+b=c的方程。

解一元一次方程的基本步骤是化简、移项和系数化为1,最后得到方程的唯一解。

要注意减法运算的变换和系数为0时的特殊情况。

例题:已知2x+3=7,求解x的值。

2. 一元一次不等式初一阶段学习的一元一次不等式主要是形如ax+b<c或ax+b>c的不等式。

解一元一次不等式的基本步骤是化简、移项和系数化为1。

需要注意不等号的方向在乘法运算中的反转和系数为0时的特殊情况。

例题:已知3x-2<10,求解x的范围。

二、图形与空间几何1. 平面几何(1) 点、线、面的概念初一阶段学习的平面几何主要是点、线、面的基本概念和性质。

需要掌握直线的基本性质:两点确定一条直线,两条相交直线只有一个公共点等;以及平行线和垂直线的概念和判定方法等。

(2) 三角形的性质初一阶段学习的三角形主要包括等边三角形、等腰三角形和直角三角形的性质。

要熟悉三角形的内角和为180度,以及勾股定理和解直角三角形的基本方法。

例题:在直角三角形ABC中,已知∠A=90度,AC=3,BC=4,求解AB的长度。

2. 空间几何初一阶段学习的空间几何主要是立体图形的认识和计算。

需要掌握正方体、长方体、棱柱、棱锥和球体等几何体的概念和性质,以及它们的体积和表面积的计算方法。

例题:已知底面为正方形的棱柱的底面边长为2,高为3,求解棱柱的体积和表面积。

三、数与运算1. 整数和有理数的计算初一阶段学习的整数和有理数的计算主要包括加减乘除及其混合运算。

需要掌握正整数、负整数和零的加减法运算规则,以及有理数的乘除运算规则。

七年级奥数知识点汇总

七年级奥数知识点汇总

七年级奥数知识点汇总奥数,全称为奥林匹克数学,是一项重点培养优秀中小学生创新思维和解决问题的能力的活动。

作为中小学生竞技数学活动的重要组成部分,奥数需要学生掌握一定的数学知识和解题技巧。

作为七年级学生,你或许已经接触到了不少奥数知识点,下面就为大家汇总一些常见的七年级奥数知识点。

一、基础知识1.数的分类:自然数、整数、有理数、无理数、正数和负数。

2.数的性质:比较大小、约数与倍数、质数与合数等。

如何分解整数因式?3.数列:等差数列、等比数列、斐波那契数列等。

4.常见的代数式:多项式、分式、指数与对数、函数与方程等。

二、几何知识1.基础几何概念:点、线、面等基本概念与相关公理。

2.几何运动:旋转、反射、平移等几何变换。

3.几何实体:平面图形、立体图形等相关概念。

4.三角形:等腰三角形、等边三角形、直角三角形等相关概念与性质。

5.圆:圆的周长和面积等计算方法。

三、概率知识1.概率的基本概念:样本空间、事件、频率与位相概率、条件概率等概念。

2.概率的运算:事件的并、交、差,并集和交集的概率计算等。

3.概率的应用:伯努利实验、排列与组合、随机事件等运用概率来解决实际问题。

四、计数问题1.排列组合:基本的排列组合、允许重复的排列组合等。

2.鸽巢原理:介绍鸽巢原理的基本概念,如何应用鸽巢原理解决实际问题?3.递归:递归的概念、递推公式等相关知识点。

五、阅读理解读题是解题的关键,掌握好阅读理解技巧,将会大大提高奥数解题的准确率。

质量不重于数量,一定要把题目读懂,缺少的解题策略可以在学习的过程中逐渐加强。

以上就是七年级奥数的主要知识点的汇总。

希望同学们能够在学习中有所收获,掌握好这些知识点,不断提升自己的数学思维水平。

奥数数学知识点总结初中

奥数数学知识点总结初中

奥数数学知识点总结初中一、数与代数1. 整数s- 质数与合数- 完全数、亲和数、阿姆斯特朗数- 整数的性质与运算技巧- 方程与不等式的解法- 二次方程的求解与韦达定理- 不等式的解集表示与基本性质2. 有理数与无理数- 有理数的性质与运算- 无理数的概念与常见类型- 实数的四则运算与性质3. 代数表达式- 整式的加减乘除- 因式分解的技巧- 分式的运算与方程- 二次根式的化简与运算4. 多项式- 多项式的基本概念与运算- 多项式的因式分解- 多项式函数与最值问题5. 等差数列与等比数列- 数列的概念与表示- 等差数列的性质与求和公式 - 等比数列的性质与求和公式 - 数列的实际应用问题二、几何1. 平面几何- 点、线、面的基本性质- 三角形的分类与性质- 四边形的分类与性质- 圆的性质与圆的方程- 相似与全等的判定与应用2. 空间几何- 空间图形的基本概念- 立体图形的表面积与体积计算 - 空间直线与平面的位置关系 - 空间几何体的构造与切割3. 解析几何- 坐标系的建立与应用- 直线与圆的解析表达式- 圆锥曲线的性质与方程- 曲线与方程的综合问题三、组合与概率1. 组合数学- 排列组合的基本概念与公式 - 二进制数与应用- 容斥原理与应用- 图论的初步知识与问题解决2. 概率论- 概率的基本概念与计算方法 - 条件概率与独立事件- 随机事件的概率分布- 期望值与方差的计算四、数论1. 素数与整数的性质- 素数的分布与筛法- 整数的可除性与素因数分解 - 最大公约数与最小公倍数2. 同余与模运算- 同余的定义与性质- 费马小定理与欧拉定理- 同余方程的解法3. 整数的分解与组合- 分解质因数的应用- 整数的组合与排列问题五、逻辑与证明1. 证明方法- 直接证明与间接证明- 归纳法与反证法- 证明题的常见类型与解题技巧2. 逻辑推理- 命题逻辑的基本概念- 逻辑运算与逻辑公式- 逻辑推理题的解法六、数学思想与方法1. 数学思想- 数学归纳法的思想与应用- 转化与化归的思想方法- 数学建模与问题解决2. 解题策略- 题目的分析与理解- 策略的选择与运用- 常见错误与误区的避免以上是对初中奥数数学知识点的一个总结,每个部分都包含了该领域的核心概念和解题技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【导语】今天为大家整理了一篇有关初中数学知识点总结:奥数30条知识点总结的相关内容,以供大家阅读。

28大奥数知识点回顾:1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个"单一量",题目一般用"照这样的速度"......等词语来表示。

关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。

基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。

6.盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。

关键问题:确定对象总量和总的组数。

7.牛吃草问题基本思路:假设每头牛吃草的速度为"1"份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。

基本公式:生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);总草量=较长时间×长时间牛头数-较长时间×生长量;8.周期循环与数表规律周期现象:事物在运动变化的过程中,某些特征有规律循环出现。

周期:我们把连续两次出现所经过的时间叫周期。

关键问题:确定循环周期。

闰年:一年有366天;①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;平年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;9.平均数基本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数基本算法:①求出总数量以及总份数,利用基本公式①进行计算.②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②。

10.抽屉原理抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:①4=4+0+0②4=3+1+0③4=2+2+0④4=2+1+1观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:①k=[n/m]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:[X]表示不超过X的整数。

例[4.351]=4;[0.321]=0;[2.9999]=2;关键问题:构造物体和抽屉。

也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

11.定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:正确理解定义的运算符号的意义。

注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

12.数列求和等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1,an,d,n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:an=a1+(n-1)d;通项=首项+(项数一1)×公差;数列和公式:sn,=(a1+an)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n=(an+a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d=(an-a1))÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;13.二进制及其应用十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。

所以234=200+30+4=2×102+3×10+4。

=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+......+A3×102+A2×101+A1×100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。

(2)=An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7+......+A3×22+A2×21+A1×20注意:An不是0就是1。

十进制化成二进制:①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。

②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。

14.加法乘法原理和几何计数加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法......,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+m2.......+mn种不同的方法。

关键问题:确定工作的分类方法。

基本特征:每一种方法都可完成任务。

乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法......不管前面n-1步用哪种方法,第n步总有mn 种方法,那么完成这件任务共有:m1×m2.......×mn种不同的方法。

关键问题:确定工作的完成步骤。

基本特征:每一步只能完成任务的一部分。

直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:没有端点,没有长度。

线段:直线上任意两点间的距离。

这两点叫端点。

线段特点:有两个端点,有长度。

射线:把直线的一端无限延长。

射线特点:只有一个端点;没有长度。

①数线段规律:总数=1+2+3+...+(点数一1);②数角规律=1+2+3+...+(射线数一1);③数长方形规律:个数=长的线段数×宽的线段数:④数长方形规律:个数=1×1+2×2+3×3+...+行数×列数15.质数与合数质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。

通常用短除法分解质因数。

任何一个合数分解质因数的结果是的。

分解质因数的标准表示形式:N=,其中a1、a2、a3......an都是合数N的质因数,且a1<a2<a3<......<an。

求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×......×(rn+1)互质数:如果两个数的公约数是1,这两个数叫做互质数。

16.约数与倍数约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

公约数:几个数公有的约数,叫做这几个数的公约数;其中的一个,叫做这几个数的公约数。

相关文档
最新文档