2015年暨南大学高等数学,考研真题,考研流程,考研笔记,真题解析
2015年全国硕士研究生入学统一考试数学(一)真题及解析

一、选择题
(1)设函数 在 连续,其2阶导函数 的图形如下图所示,则曲线 的拐点个数为()
(A)0(B)1 (C) 2 ( D) 3
(4)设D是第一象限中曲线 与直线 围成的平面区域,函数 在D上连续,则
(A) (B)
(C) ( D)
(5)设矩阵 , ,若集合 ,则线性方程组 有无穷多个解的充分必要条件为
其中 为未知参数, 为来自该总体的简单随机样本.
(Ⅰ)求 的矩估计.
(Ⅱ)求 的最大似然估计.
2015年全国硕士研究生入学统一考试数学(一)试题解析
一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
(1)【答案】(C)
(13)n阶行列式
(14)设二维随机变量服从正态分布,则.
三、解答题
(15)设函数 , ,若 与 在 是等价无穷小,求 , , 值。
(16)设函数 在定义域 上的导数大于零,若对任意的 ,曲线 在点 处的切线与直线 及 轴所围成的区域的面积为4,且 求 的表达式。
(17)已知函数 ,曲线 ,求 在曲线 上的最大方向导数.
【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由 的图形可得,曲线 存在两个拐点.故选(C).
(2)【答案】(A)
【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.
2015年考研数一真题及答案解析

2015年考研数学(一)试题解析一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c 【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数1∞=∑n n a 条件收敛,则 3=x 与3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质.【解析】因为1n n a ∞=∑条件收敛,即2x =为幂级数1(1)n n n a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2).而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2).因而3x =与3x =依次为幂级数1(1)n n n na x ∞=-∑的收敛点,发散点.故选(B ).(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,3y x =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A) ()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()1sin 23142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(C) ()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(D) ()1sin 23142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分 【解析】先画出D 的图形,所以(,)Df x y dxdy =⎰⎰1sin 23142sin 2(cos ,sin )d f r r rdr πθπθθθθ⎰⎰,故选(B )(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{}1,2Ω=,则线性方程组Ax b =有无穷多解的充分必要条件为 ( ) (A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ωxyo(D) ,a d ∈Ω∈Ω 【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫ ⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D )(6)设二次型()123,,f x x x 在正交变换为=x Py 下的标准形为2221232+-y y y ,其中()123,,=P e e e ,若()132,,=-Q e e e ,则()123,,f x x x 在正交变换=x Qy 下的标准形为( )(A) 2221232-+y y y (B) 2221232+-y y y (C) 2221232--y y y (D) 2221232++y y y 【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-.且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.由已知可得:100001010Q P PC ⎛⎫⎪== ⎪ ⎪-⎝⎭故有200()010001T T TQ AQ C P AP C ⎛⎫ ⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A )(7) 若A,B 为任意两个随机事件,则 ( ) (A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B(C) ()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()()()2P A P B P AB P A P B +≤⋅≤,选(C) .(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( ) (A) 3- (B) 3 (C) 5- (D) 5 【答案】(D)【解析】22[(2)](2)()()2()E X X Y E X XY X E X E XY E X +-=+-=+- 23221225=++⨯-⨯=,选(D) .二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.(9) 2ln cos lim_________.x xx→= 【答案】12-【分析】此题考查0型未定式极限,可直接用洛必达法则,也可以用等价无穷小替换.【解析】方法一:2000sin ln(cos )tan 1cos lim lim lim .222x x x xx x x x x x →→→--===- 方法二:2222200001ln(cos )ln(1cos 1)cos 112lim lim lim lim .2x x x x x x x x x x x x →→→→-+--====- (10) 22sin ()d ________.1cos xx x xππ-+=+⎰【答案】2π4【分析】此题考查定积分的计算,需要用奇偶函数在对称区间上的性质化简.【解析】22202sin 2.1cos 4x x dx xdx xππππ-⎛⎫+== ⎪+⎝⎭⎰⎰(11)若函数(,)=z z x y 由方程cos 2+++=x e xyz x x 确定,则(0,1)d ________.z =【答案】dx -【分析】此题考查隐函数求导.【解析】令(,,)cos 2z F x y z e xyz x x =+++-,则 又当0,1x y ==时1z e =,即0z =.所以(0,1)(0,1)(0,1,0)(0,1,0)1,0(0,1,0)(0,1,0)y x z z F F zz xF yF ''∂∂=-=-=-=''∂∂,因而(0,1).dzdx =-(12)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰【答案】14【分析】此题考查三重积分的计算,可直接计算,也可以利用轮换对称性化简后再计算.【解析】由轮换对称性,得1(23)66zD x y z dxdydz zdxdydz zdz dxdy ΩΩ++==⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中z D 为平面z z =截空间区域Ω所得的截面,其面积为21(1)2z -.所以112320011(23)66(1)3(2).24x y z dxdydz zdxdydz z z dz z z z dz ΩΩ++==⋅-=-+=⎰⎰⎰⎰⎰⎰⎰⎰ (13) n 阶行列式20021202___________.00220012-=-L L M M OM M L L【答案】122n +-【解析】按第一行展开得(14)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<= 【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而 11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=.三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分) 设函数()ln(1)sin =+++f x x a x bx x ,3()=g x kx ,若()f x 与()g x 在0→x 是等价无穷小,求,,a b k 的值.【答案】,,.a b k =-=-=-11123【解析】法一:原式()30ln 1sin lim1x x a x bx xkx→+++= 即10,0,123a aa b k+=-== 法二:()3ln 1sin lim1x x a x bx xkx→+++= 因为分子的极限为0,则1a =-()212cos sin 1lim16x b x bx x x kx→--+-+==,分子的极限为0,12b =-()022sin sin cos 13lim 16x b x b x bx xx k →----+==,13k =- (16)(本题满分10分) 设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,由线()=y f x 在点()()00,x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且()02f =,求()f x 的表达式.【答案】f x x=-8()4. 【解析】设()f x 在点()()00,x f x 处的切线方程为:()()()000,y f x f x x x '-=-令0y =,得到()()000f x x x f x =-+',故由题意,()()00142f x x x ⋅-=,即()()()000142f x f x f x ⋅=',可以转化为一阶微分方程, 即28y y '=,可分离变量得到通解为:118x C y =-+,已知()02y =,得到12C =,因此11182x y =-+;即()84f x x =-+.(17)(本题满分10分)已知函数(),=++f x y x y xy ,曲线C :223++=x y xy ,求(),f x y 在曲线C 上的最大方向导数. 【答案】3【解析】因为(),f x y 沿着梯度的方向的方向导数最大,且最大值为梯度的模.()()',1,',1x y f x y y f x y x =+=+,故(){},1,1gradf x y y x =++,模为()()2211y x +++,此题目转化为对函数()()()22,11g x y y x =+++在约束条件22:3C x y xy ++=下的最大值.即为条件极值问题.为了计算简单,可以转化为对()()22(,)11d x y y x =+++在约束条件22:3C x y xy ++=下的最大值.构造函数:()()()()2222,,113F x y y x x y xy λλ=++++++-()()()()222120212030x y F x x y F y y x F x y xy λλλ'⎧=+++=⎪'=+++=⎨⎪'=++-=⎩,得到()()()()12341,1,1,1,2,1,1,2M M M M ----. 所以最大值为93=. (18)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()()(II )设函数()()()12n u x ,u x ,,u x L 可导,n f x u x u x u x =L 12()()()(),写出()f x 的求导公式. 【解析】(I )0()()()()[()()]limh u x h v x h u x v x u x v x h→++-'=(II )由题意得(19)(本题满分 10 分)已知曲线L 的方程为222,,z x y z x ⎧=--⎪⎨=⎪⎩起点为()0,2,0A ,终点为()0,2,0-B ,计算曲线积分()()2222d d ()d L I y z x z x y y x y z =++-+++⎰. 【答案】2π2【解析】由题意假设参数方程cos 2sin cos x y z θθθ=⎧⎪=⎨⎪=⎩,ππ:22θ→-(20) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ. 【答案】【解析】(I)证明: 故123,,βββ为3R 的一个基.(II )由题意知,112233112233,0k k k k k k ξβββαααξ=++=++≠ 即()()()1112223330,0,1,2,3i k k k k i βαβαβα-+-+-=≠=即13213+2,,+0k k ααααα=即101010020k k=,得k=0(21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫⎪⎪ ⎪⎝⎭B =. (I)求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵.. 【解析】(I) ~()()311A B tr A tr B a b ⇒=⇒+=++(II)023100123133010123123001123A E C ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭C 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T 5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫⎪==- ⎪ ⎪⎝⎭P , (22) (本题满分11 分) 设随机变量X 的概率密度为()2ln 2,0,0,0.xx f x x -⎧>⎪=⎨≤⎪⎩对X 进行独立重复的观测,直到2个大于3的观测值出现的停止.记Y 为观测次数. (I)求Y 的概率分布; (II)求EY【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰,从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n =L 为Y 的概率分布; (II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生. 则M Ge n p ~(,),N Ge k n p -(,):(注:Ge 表示几何分布)所以11221618E Y E M N E M E N p p p =+=+=+===()()()(). 法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记212111()()n n S x n n xx ∞-==⋅--<<∑,则2113222211n n n n n n S x n n xn xx x ∞∞∞--==='''=⋅-=⋅==-∑∑∑()()()()(),12213222111()()()()()n n n n xS x n n xx n n x xS x x ∞∞--===⋅-=⋅-==-∑∑, 2222313222111()()()()()nn n n x S x n n x xn n xx S x x ∞∞-===⋅-=⋅-==-∑∑, 所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--, 从而7168E Y S ==()().(23) (本题满分 11 分)设总体X 的概率密度为:其中θ为未知参数,12n x ,x ,,x L 为来自该总体的简单随机样本. (I)求θ的矩估计量.(II)求θ的最大似然估计量.【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得$1121ni i X X X n θ==-=∑,为θ的矩估计量;(II) 似然函数11110,()(;),nni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--. 从而dln d 1L nθθθ=-(),关于θ单调增加, 所以$12min nX X X θ={,,,}L 为θ的最大似然估计量. 文档内容由经济学金融硕士考研金程考研网 整理发布。
2015年暨南大学电磁学考研真题,心得分享,考研笔记,复试真题

1/14【育明教育】中国考研考博专业课辅导第一品牌官方网站: 12015年暨南大学考研指导育明教育,创始于2006年,由北京大学、中国人民大学、中央财经大学、北京外国语大学的教授投资创办,并有北京大学、武汉大学、中国人民大学、北京师范大学复旦大学、中央财经大学、等知名高校的博士和硕士加盟,是一个最具权威的全国范围内的考研考博辅导机构。
更多详情可联系育明教育孙老师。
考查范围电磁学一、静电场(一)库仑定律(二)电场强度1.电场强度定义2.点电荷的电场强度3.电场强度叠加原理(三)电场强度通量及高斯定理(四)静电场的环路定理电势能(五)电势1.点电荷电场的电势2.电势的叠加原理(六)电场强度与电势梯度2/14【育明教育】中国考研考博专业课辅导第一品牌官方网站: 2(七)静电场中的电偶极子1.外电场对电偶极子的力矩和取向作用2.电偶极子在电场中的电势能和平衡位置二、静电场中的导体与电介质(一)静电场中的导体1.静电感应静电平衡条件2.静电平衡时导体上电荷的分布3.静电屏蔽(二)电容和电容器(三)静电场中的电介质1.电介质对电容的影响相对电容率2.电介质的极化3.电极化强度4.电介质中的电场强度极化电荷与自由电荷的关系(四)电位移及有介质时的高斯定理(五)静电场的能量三、恒定电流(一)电流及电流密度(二)电阻率及欧姆定律的微分形式(三)电源电动势全电路欧姆定律3/14【育明教育】中国考研考博专业课辅导第一品牌官方网站: 3四、稳恒磁场(一)磁场及磁感强度(二)毕奥—萨伐尔定律1.毕奥—萨伐尔定律及应用2.磁偶极子3.运动电荷的电场(三)磁通量及磁场的高斯定理(四)安培环路定理及应用(五)带电粒子在电场和磁场中的运动(六)载流导线及载流线圈在磁场中所受的力和力矩五、磁场中的磁介质(一)磁介质磁化强度(二)磁介质中的安培环路定理磁场强度(三)铁磁质1.磁畴2.磁化曲线及磁滞回线3.铁磁性材料及磁屏蔽六、电磁感应电磁场(一)电磁感应定律1.电磁感应现象及电磁感应定律4/14【育明教育】中国考研考博专业课辅导第一品牌官方网站: 42.楞次定律(二)动生电动势和感生电动势(三)自感和互感1.自感电动势自感2.互感电动势互感(四)磁场的能量及能量密度(五)位移电流电磁场基本方程的积分形式光学一、光的干涉(一)相干光(二)杨氏双缝干涉实验、双镜、劳埃德镜(三)光程薄膜干涉(四)劈尖牛顿环(五)迈克耳孙干涉仪时间相干性二、光的衍射(一)光的衍射现象1.惠更斯—菲涅耳原理2.菲涅耳衍射和夫琅禾费衍射(二)单缝衍射5/14【育明教育】中国考研考博专业课辅导第一品牌官方网站: 5(三)圆孔衍射光学仪器的分辨本领(四)衍射光栅(五)X 射线的衍射(六)全息照相简介三、光的偏振(一)光的偏振性马吕斯定律(二)反射光和折射光的偏振(三)双折射偏振棱镜1.双折射的寻常光和非常光2.尼科耳棱镜3.惠更斯原理对双折射现象的解释4.1/4波片和半波片(四)旋光现象(五)偏振光的干涉量子物理(一)黑体辐射普朗克能量子假设1.黑体黑体辐射2.斯特藩—玻耳兹曼定律维恩位移定律3.黑体辐射的瑞利—金斯公式经典物理的困难4.普朗克假设普朗克黑体辐射公式6/14【育明教育】中国考研考博专业课辅导第一品牌官方网站: 6(二)光电效应光的波粒二象性1.光电效应实验的规律2.光子爱恩斯坦方程3.光电效应在近代技术中的应用4.光的波粒二象性(三)康普顿效应(四)氢原子的波尔理论(五)弗兰克—赫兹实验(六)德布罗意波实物粒子的二象性(七)不确定关系(八)量子力学简介1.波函数概率密度2.薛定谔方程3.一维势阱问题4.对应原理5.一维方势垒隧道效应(九)激光1.自发辐射受激辐射2.激光原理3.激光器7/14【育明教育】中国考研考博专业课辅导第一品牌官方网站: 74.激光的特性和应用考研政治每年平均分在4,50分,不是很高,政治取得高分除了靠记忆力还要有一定的技巧,今天我就考研政治中的一些答题技巧,来和同学们分享一下。
暨南大学数学分析考研真题试题2015—2020(缺2016)年

********************************************************************************************
招生专业:基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制论、统计学 研究方向:各方向 考试科目名称及代码:709 数学分析
********************************************************************************* 题目结束
考试科目: 709 数学分析
共 2 页,第 2 页
2019cçÂôÖa¬Æ ïÄ)\Æ•ÁÁK£Aò¤
*************************************************************************************** Ɖ! ;’¶¡µÄ:êÆ! OŽêÆ! VÇØ†ênÚO! A^êÆ! $ÊÆ†››Ø! ÚOÆ ïÄ••µˆ•• •Á‰8¶¡µ709êÆ©Û
n1 n
2.
(10 分)证明:第二型曲线积分
L
xdx ydy ( x2 y2 )3/2
在区域
D
:
x
0
上与路径无关.
3. (11 分)设函数 f (x) 在 [0, 3] 上连续,在 (0, 3) 内可导,且满足 f (0) f (1) f (2) 3 ,
f (0) 1, f (3) 1 ,证明:存在 (0,3) ,使得 f ( ) 0 .
•)5¿µ¤k‰Y7L 3‰K’£ò¤þ§ 3 ÁKþ˜ÆØ‰©" ˜!OŽK£ 3 K§z K8©§ 24©¤
2015年暨南大学电磁学真题解析,考研心态,考研真题,考研经验

1/11【育明教育】中国考研考博专业课辅导第一品牌官方网站: 12015年暨南大学考研指导育明教育,创始于2006年,由北京大学、中国人民大学、中央财经大学、北京外国语大学的教授投资创办,并有北京大学、武汉大学、中国人民大学、北京师范大学复旦大学、中央财经大学、等知名高校的博士和硕士加盟,是一个最具权威的全国范围内的考研考博辅导机构。
更多详情可联系育明教育孙老师。
考查范围电磁学一、静电场(一)库仑定律(二)电场强度1.电场强度定义2.点电荷的电场强度3.电场强度叠加原理(三)电场强度通量及高斯定理(四)静电场的环路定理电势能(五)电势1.点电荷电场的电势2.电势的叠加原理(六)电场强度与电势梯度2/11【育明教育】中国考研考博专业课辅导第一品牌官方网站: 2(七)静电场中的电偶极子1.外电场对电偶极子的力矩和取向作用2.电偶极子在电场中的电势能和平衡位置二、静电场中的导体与电介质(一)静电场中的导体1.静电感应静电平衡条件2.静电平衡时导体上电荷的分布3.静电屏蔽(二)电容和电容器(三)静电场中的电介质1.电介质对电容的影响相对电容率2.电介质的极化3.电极化强度4.电介质中的电场强度极化电荷与自由电荷的关系(四)电位移及有介质时的高斯定理(五)静电场的能量三、恒定电流(一)电流及电流密度(二)电阻率及欧姆定律的微分形式(三)电源电动势全电路欧姆定律3/11【育明教育】中国考研考博专业课辅导第一品牌官方网站: 3四、稳恒磁场(一)磁场及磁感强度(二)毕奥—萨伐尔定律1.毕奥—萨伐尔定律及应用2.磁偶极子3.运动电荷的电场(三)磁通量及磁场的高斯定理(四)安培环路定理及应用(五)带电粒子在电场和磁场中的运动(六)载流导线及载流线圈在磁场中所受的力和力矩五、磁场中的磁介质(一)磁介质磁化强度(二)磁介质中的安培环路定理磁场强度(三)铁磁质1.磁畴2.磁化曲线及磁滞回线3.铁磁性材料及磁屏蔽六、电磁感应电磁场(一)电磁感应定律1.电磁感应现象及电磁感应定律4/11【育明教育】中国考研考博专业课辅导第一品牌官方网站: 42.楞次定律(二)动生电动势和感生电动势(三)自感和互感1.自感电动势自感2.互感电动势互感(四)磁场的能量及能量密度(五)位移电流电磁场基本方程的积分形式光学一、光的干涉(一)相干光(二)杨氏双缝干涉实验、双镜、劳埃德镜(三)光程薄膜干涉(四)劈尖牛顿环(五)迈克耳孙干涉仪时间相干性二、光的衍射(一)光的衍射现象1.惠更斯—菲涅耳原理2.菲涅耳衍射和夫琅禾费衍射(二)单缝衍射5/11【育明教育】中国考研考博专业课辅导第一品牌官方网站: 5(三)圆孔衍射光学仪器的分辨本领(四)衍射光栅(五)X 射线的衍射(六)全息照相简介三、光的偏振(一)光的偏振性马吕斯定律(二)反射光和折射光的偏振(三)双折射偏振棱镜1.双折射的寻常光和非常光2.尼科耳棱镜3.惠更斯原理对双折射现象的解释4.1/4波片和半波片(四)旋光现象(五)偏振光的干涉量子物理(一)黑体辐射普朗克能量子假设1.黑体黑体辐射2.斯特藩—玻耳兹曼定律维恩位移定律3.黑体辐射的瑞利—金斯公式经典物理的困难4.普朗克假设普朗克黑体辐射公式6/11【育明教育】中国考研考博专业课辅导第一品牌官方网站: 6(二)光电效应光的波粒二象性1.光电效应实验的规律2.光子爱恩斯坦方程3.光电效应在近代技术中的应用4.光的波粒二象性(三)康普顿效应(四)氢原子的波尔理论(五)弗兰克—赫兹实验(六)德布罗意波实物粒子的二象性(七)不确定关系(八)量子力学简介1.波函数概率密度2.薛定谔方程3.一维势阱问题4.对应原理5.一维方势垒隧道效应(九)激光1.自发辐射受激辐射2.激光原理3.激光器7/11【育明教育】中国考研考博专业课辅导第一品牌官方网站:74.激光的特性和应用对于第一次参加考研的同学来说,考研是一件摸不清头绪的事儿。
2015年考研数学一真题及解析

考研数学真题及解析与 x = 3 依次为幂级数∑ n a (x -1) 的2015 年全国硕士研究生入学统一考试数学(一)试题一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上. (1) 设函数 f (x ) 在(-∞, +∞) 内连续,其中二阶导数 f ''(x ) 的图形如图所示,则曲线 y = f (x ) 的拐点的个数为() (A) 0(B) 1(C) 2(D) 3(2) 设 y =1 e2 x + (x - 1)e x 是二阶常系数非齐次线性微分方程 2 3y '' + ay ' + by = ce x 的一个特解,则()(A) a = -3, b = 2, c = -1(B) a = 3, b = 2, c = -1(C) a = -3, b = 2, c = 1(D) a = 3, b = 2, c = 1(3) 若级数∑ a n 条件收敛,则 x = n =1∞nn n =1()(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点(4) 设 D 是第一象限由曲线2xy = 1, 4xy = 1与直线 y = x , y =面区域,函数 f ( x , y ) 在 D 上连续,则 ⎰⎰ f ( x , y ) dxdy =D3x 围成的平()∞ 3⎰π ⎰⎰π ⎰π ⎰⎰π 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3(A)π3d θ 1 sin 2θ 1 f (r cos θ , r sin θ )rdr42 s in 2θ(B)π3 d θ ⎰sin 2θ 1 f (r cos θ , r sin θ )rdr42 s in 2θ(C)π3 d θ 1 sin 2θ 1 f (r cos θ , r sin θ )dr42 s in 2θ(D)π3d θ ⎰sin 2θ 1 f (r cos θ , r sin θ )dr42 s in 2θ⎛1 1 1 ⎫ ⎛1 ⎫ (5) 设矩阵 A =1 2 a ⎪ , b = d ⎪ ,若集合Ω= {1, 2},则线性方程组⎪ ⎪ 1 4 a 2 ⎪ d 2 ⎪⎝ ⎭ ⎝ ⎭ Ax = b 有无穷多解的充分必要条件为()(A) a ∉Ω, d ∉Ω (B) a ∉Ω, d ∈Ω (C) a ∈Ω, d ∉Ω (D) a ∈Ω, d ∈Ω(6) 设二次型 f( x 1 , x 2 , x 3 ) 在正交变换为 x = Py 下的标准形为2 y 2 + y 2 - y 2,其中 P = (e 1 , e 2 , e 3 ) 下的标准形为( ),若Q = (e 1 , -e 3 , e 2 ) ,则 f ( x 1 , x 2 , x 3 ) 在正交变换 x = Qy (A) 2 y 2 - y 2 + y 2(B) 2 y 2+ y 2- y 2(C) 2 y 2- y 2- y 2(D) 2 y 2+ y 2+ y 2(7) 若 A,B 为任意两个随机事件,则()(A)(C) P ( A B ) ≤ P ( A ) P ( B ) P ( A B ) ≤P ( A ) P ( B ) 2(B)(D) P ( A B ) ≥ P ( A ) P (B ) P ( A B ) ≥P ( A ) P ( B )2(0,1) (8) 设随机变量 X ,Y 不相关,且 EX = 2, EY = 1, DX = 3 ,则 () E ⎡⎣ X( X + Y - 2)⎤⎦ =(A) -3(B) 3(C) -5(D) 5二、填空题:9 14 小题,每小题 4 分,共 24 分.请将答案写在答.题.纸.指定位置上. (9) (9) lim ln cos x= .x →0x 2π -πsin x1+ cos x (10) 2 ( 2+ x )d x =.(11) 若函数 z = z (x , y ) 由方程ex+ xyz + x + cos x = 2 确定,则d z = .(12) 设Ω 是由平面 x + y + z = 1 与三个坐标平面平面所围成的空间区域,则⎰⎰⎰ (x + 2 y + 3z )dxdydz =.Ω2 0 0 2 -1 20 2 (13)n 阶行列式= .0 00 02 2 -1 2(14)设二维随机变量(x , y ) 服从正态分布N (1,0;1,1,0),则 P {XY - Y < 0} = .三、解答题:15~23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分 10 分) 设函数 f ( x ) = x + a ln(1+ x ) + bx sin x , g (x ) = kx 3 ,若 fg ( x ) 在 x → 0 是等价无穷小,求 a , b , k 的值.( x ) 与L1 2 3 (16)(本题满分 10 分) 设函数 f ( x ) 在定义域 I 上的导数大于零,若对任意的 x 0 ∈ I ,由线y =f ( x ) 在点(x 0 , f ( x 0 ))处的切线与直线 x = x 0 及 x 轴所围成区域的面积恒为 4,且 f (0) = 2 ,求 f ( x ) 的表达式.(17)(本题满分 10 分)已知函数 f ( x , y ) = x + y + xy ,曲线 C : x 2 + y 2 + xy = 3 ,求 f (x , y )在曲线 C 上的最大方向导数.(18)(本题满分 10 分)(I ) 设函数u (x ), v (x ) 可导,利用导数定义证明[u (x )v (x )]'= u '(x )v (x ) + u (x )v '(x )(I I ) 设函数u 1 (x ), u 2 (x ), , u n (x ) 可导, f (x ) =导公式.u 1(x )u 2(x ) u n (x ),写出f (x )的求(19)(本题满分 10 分)⎧⎪z = 2 - x 2- y 2,已知曲线 L 的方程为⎨ ⎪⎩z = x ,起点为 A (0, 2, 0),终点为 B (0, -2, 0),计算曲线积分 I =⎰ ( y + z )d x + (z2- x 2 + y )d y + (x 2 + y 2 )d z .(20) (本题满 11 分)设向量组 α1 , α2 , α3 内R 3 的一个基, β =2α +2k α , β =2α , β =α + (k +1)α .11322(I ) 证明向量组 β β β 为R 3的一个基;313α , α 1 2 3( ) = (I I ) 当 k 为何值时,存在非 0 向量 ξ 在基 1 有的 ξ .2 , α3 与基 β β β 下的坐标相同,并求所(21) (本题满分 11 分)⎛ 0 2-3⎫⎛ 1 -2 0 ⎫ 设矩阵 A = -1 3 -3⎪ 相似于矩阵 B=0 b 0 ⎪ .⎪ ⎪ 1 -2 a ⎪ 0 3 1 ⎪ ⎝ ⎭ ⎝ ⎭(I )求 a , b 的值;(II )求可逆矩阵 P ,使 P -1AP 为对角矩阵..⎧⎪2-x ln 2, x > 0,(22) (本题满分 11 分) 设随机变量 X 的概率密度为 f x ⎨⎪⎩0,x ≤ 0. 对 X 进行独立重复的观测,直到 2 个大于 3 的观测值出现的停止.记Y 为观测次数. (I)求Y 的概率分布; (I ) 求 EY(23) (本题满分 11 分)设总体 X 的概率密度为:⎧ 1,θ ≤ x ≤ 1,f (x ,θ ) = ⎪⎨1 - θ⎪⎩0,其他.其中θ 为未知参数, x 1 , x 2 , , x n 为来自该总体的简单随机样本. (I)求θ 的矩估计量.(II) 求θ 的最大似然估计量.导函数异号。
2015年考研数学一试题及完全解析(Word版)(word文档良心出品)
2015年全国硕士研究生入学统一考试数学一试题及答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答题纸...指定位置上. 1、设函数()f x 在∞∞(-,+)连续,其2阶导函数()f x ''的图形如下图所示,则曲线()y f x =的拐点个数为()(A )0 (B )1 (C )2 (D )3 【答案】(C)【考点】拐点的定义 【难易度】★★【详解】拐点出现在二阶导数等于0,或二阶导数不存在的点上,并且在这点的左右两侧二阶导数异号,因此,由()f x ''的图形可知,曲线()y f x =存在两个拐点,故选(C).2、设21123x x y e x e ⎛⎫=+- ⎪⎝⎭是二阶常系数非齐次线性微分方程x y ay by ce "+'+=的一个特解,则()(A )3,1, 1.a b c =-=-=- (B )3,2, 1.a b c ===- (C )3,2, 1.a b c =-== (D )3,2, 1.a b c === 【答案】(A)【考点】常系数非齐次线性微分方程的解法 【难易度】★★ 【详解】211,23x xe e -为齐次方程的解,所以2、1为特征方程2+0a b λλ+=的根,从而()123,122,a b =-+=-=⨯=再将特解x y xe =代入方程32x y y y ce "-'+=得: 1.c =-3、若级数1n n a ∞=∑条件收敛,则x =3x =依次为幂级数()11nn n na x ∞=-∑的:(A )收敛点,收敛点 (B )收敛点,发散点 (C )发散点,收敛点 (D )发散点,发散点 【答案】(B)【考点】级数的敛散性 【难易度】★★★ 【详解】因为1n n a ∞=∑条件收敛,故2x =为幂级数()11nn n a x ∞=-∑的条件收敛点,进而得()11nn n a x ∞=-∑的收敛半径为1,收敛区间为()0,2,又由于幂级数逐项求导不改变收敛区间,故()11nn n na x ∞=-∑的收敛区间仍为()0,2,因而x =3x =依次为幂级数()11nn n na x ∞=-∑的收敛点、发散点.4、设D 是第一象限中曲线21,41xy xy ==与直线,y x y ==围成的平面区域,函数(,)f x y 在D 上连续,则(,)Df x y dxdy =⎰⎰(A )12sin 2142sin 2(cos ,sin )d f r r rdr πθπθθθθ⎰⎰(B )24(cos ,sin )d f r r rdr ππθθθ⎰(C )13sin 2142sin 2(cos ,sin )d f r r dr πθπθθθθ⎰⎰(D )34(cos ,sin )d f r r dr ππθθθ⎰【答案】(D)【考点】二重积分的极坐标变换 【难易度】★★★【详解】由y x =得,4πθ=;由y =得,3πθ=由21xy =得,22cos sin 1,r r θθ==由41xy =得,24cos sin 1,r r θθ==所以34(,)(cos ,sin )Df x y dxdy d f r r rdr ππθθθ=⎰⎰⎰5、设矩阵21111214A a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{1,2}Ω=,则线性方程组Ax b =有无穷多个解的充分必要条件为(A ),a d ∉Ω∉Ω (B ),a d ∉Ω∈Ω (C ),a d ∈Ω∉Ω (D ),a d ∈Ω∈Ω 【答案】(D)【考点】非齐次线性方程组的解法 【难易度】★★【详解】[]()()()()2211111111,12011114001212A b a d a d a d a a d d ⎡⎤⎡⎤⎢⎥⎢⎥=−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦Ax b =有无穷多解()(,)3R A R A b ⇔=< 1a ⇔=或2a =且1d =或2d =6、设二次型123(,,)f x x x 在正交变换x Py =下的标准形为2221232y y y +-,其中123(,,)P e e e =,若132(,,)Q e e e =-,则123(,,)f x x x 在正交变换x Qy =下的标准形为(A )2221232y y y -+ (B )2221232y y y +- (C )2221232y y y -- (D )2221232y y y ++ 【答案】(A) 【考点】二次型 【难易度】★★【详解】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-且:200010001T P AP ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦100200001,()010010001T T T Q P PC Q AQ C P AP C ⎡⎤⎡⎤⎢⎥⎢⎥====-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦所以222123()2T T T f x Ax y Q AA y y y y ===-+,故选(A)7、若,A B 为任意两个随机事件,则(A )()()()P AB P A P B ≤ (B )()()()P AB P A P B ≥(C )()()()2P A P B P AB +≤(D )()()()2P A P B P AB +≥【答案】(C)【考点】【难易度】★★【详解】)()(),()(AB P B P AB P A P ≥≥)(2)()(AB P B P A P ≥+∴ ()()()2P A P B P AB +∴≤故选(C )8、设随机变量X,Y 不相关,且2,1,3,EX EY DX ===则()2E X X Y +-=⎡⎤⎣⎦ (A )-3 (B )3 (C )-5 (D )5 【答案】(D) 【考点】【难易度】★★★ 【详解】()()()()()()()()()22222225E X X Y E X XY X E X E XY E X D X EX E X E Y E X ⎡⎤+-=+-=+-⎡⎤⎣⎦⎣⎦=++-=二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. 9、20ln cos limx xx →=【答案】12-【考点】极限的计算【难易度】★★【详解】2222200001ln cos ln(1cos 1)cos 112lim lim lim lim 2x x x x x x x x x x x x →→→→-+--====- 10、2-2sin ()1cos xx dx xππ+=+⎰【答案】24π【考点】积分的计算 【难易度】★★【详解】2220-2sin ()21cos 4x x dx xdx xππππ+==+⎰⎰ 11、若函数(,)z z x y =由方程+cos 2ze xyz x x ++=确定,则(0,1)dz =.【答案】【考点】隐函数求导 【难易度】★★【详解】令(,,)cos 2zF x y z e xyz x x =+++-,则1sin x F yz x '=+-,y F xz '=,z F xy '=,又当0,1x y ==时,0z =,所以(0,1)1x z F zx F '∂=-=-'∂,(0,1)0y z F z y F '∂=-='∂,因而(0,1)dz dx =-12、设Ω是由平面1x y z ++=与三个坐标平面所围成的空间区域,则(23)x y z dxdydz Ω++⎰⎰⎰=【答案】14【考点】三重积分的计算 【难易度】★★★【详解】由轮换对称性,得x +2y +3z ()dx dydz Wòòò=6zdx dydz Wòòò=6zdz 01òdx dy D zòò其中D z 为平面z =z 截空间区域W 所得的截面,其面积为121-z ()2.所以 x +2y +3z ()dx dydz Wòòò=6z dx dydz Wòòò=6z ×121-z ()2dz =01ò3z 3-2z 2+z ()dz =01ò1413、n 阶行列式2002-1202002200-12=【答案】122n +-【考点】行列式的计算 【难易度】★★★【详解】按第一行展开得=2n +1-214、设二维随机变量(,)X Y 服从正态分布(1,0,1,1,0)N ,则(0)P XY Y -<=.【答案】12【考点】【难易度】★★ 【详解】(,)~(1,0,1,1,0)X Y N ,~(1,1),~(0,1),X N Y N ∴且,X Y 独立1~(0,1)X N ∴-,}{}{0(1)0P XY Y P X Y -<=-<}{}{10,0100P X Y P X Y =-<>+-><,1111122222=⨯+⨯=三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. 15、(本题满分10分)设函数()ln(1)sin f x x a x bx x =+++⋅,3()g x kx =,若()f x 与()g x 在0x →是等价无穷小,求a ,b ,k 值。
2015考研数学一真题及答案解析
2015年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ).(2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c 【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解xy xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则 3=x 与3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点(C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质. 【解析】因为1nn a∞=∑条件收敛,即2x =为幂级数1(1)nn n a x ∞=-∑的条件收敛点,所以1(1)nn n a x ∞=-∑的收敛半径为1,收敛区间为(0,2).而幂级数逐项求导不改变收敛区间,故1(1)nnn na x ∞=-∑的收敛区间还是(0,2).因而x =3x =依次为幂级数1(1)n n n na x ∞=-∑的收敛点,发散点.故选(B ).(4) 设D 是第一象限由曲线21xy =,41xy =与直线y x =,y =围成的平面区域,函数(),f x y 在D 上连续,则(),Df x y dxdy =⎰⎰ ( )(A)()13sin 2142sin 2cos ,sin d f r r rdr πθπθθθθ⎰⎰(B)()34cos ,sin d f r r rdr ππθθθ⎰ (C)()13sin 2142sin 2cos ,sin d f r r dr πθπθθθθ⎰⎰(D)()34cos ,sin d f r r dr ππθθθ⎰【答案】(B )【分析】此题考查将二重积分化成极坐标系下的累次积分 【解析】先画出D 的图形,所以(,)Df x y dxdy =⎰⎰34(cos ,sin )d f r r rdr ππθθθ⎰故选(B )(5) 设矩阵21111214A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,21b d d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,若集合{}1,2Ω=,则线性方程组有无穷多解的充分必要条件为 ( )x(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D )(6)设二次型()123,,f x x x 在正交变换为=x Py 下的标准形为2221232+-y y y ,其中()123,,=P e e e ,若()132,,=-Q e e e ,则()123,,f x x x 在正交变换=x Qy 下的标准形为( )(A) 2221232-+y y y (B) 2221232+-y y y (C) 2221232--y y y (D) 2221232++y y y【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-. 且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.由已知可得:100001010Q P PC ⎛⎫⎪== ⎪ ⎪-⎝⎭故有200()010001T T TQ AQ C P AP C ⎛⎫⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A ) (7) 若A,B 为任意两个随机事件,则 ( )(A) ()()()≤P AB P A P B (B) ()()()≥P AB P A P B (C) ()()()2≤P A P B P AB (D) ()()()2≥P A P B P AB【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()2P A P B P AB +≤≤,选(C) .(8)设随机变量,X Y 不相关,且2,1,3===EX EY DX ,则()2+-=⎡⎤⎣⎦E X X Y ( )(A) 3- (B) 3 (C) 5- (D) 5 【答案】(D)【解析】22[(2)](2)()()2()E X X Y E X XY X E X E XY E X +-=+-=+- 2()()()()2()D X E X E X E Y E X =++⋅- 23221225=++⨯-⨯=,选(D) . 二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln cos lim_________.x xx →= 【答案】12-【分析】此题考查0型未定式极限,可直接用洛必达法则,也可以用等价无穷小替换.【解析】方法一:2000sin ln(cos )tan 1cos lim lim lim .222x x x xx x x x x x →→→--===- 方法二:2222200001ln(cos )ln(1cos 1)cos 112lim lim lim lim .2x x x x x x x x x x x x →→→→-+--====- (10)22sin ()d ________.1cos x x x x ππ-+=+⎰【答案】2π4【分析】此题考查定积分的计算,需要用奇偶函数在对称区间上的性质化简.【解析】22202sin 2.1cos 4x x dx xdx x ππππ-⎛⎫+== ⎪+⎝⎭⎰⎰(11)若函数(,)=z z x y 由方程cos 2+++=xe xyz x x 确定,则(0,1)d ________.z =【答案】dx -【分析】此题考查隐函数求导.【解析】令(,,)cos 2zF x y z e xyz x x =+++-,则(,,)1sin ,,(,,)z x y z F x y z yz x F xz F x y z e xy '''=+-==+又当0,1x y ==时1z e =,即0z =.所以(0,1)(0,1)(0,1,0)(0,1,0)1,0(0,1,0)(0,1,0)y x z z F F z z xF yF ''∂∂=-=-=-=''∂∂,因而(0,1).dzdx =-(12)设Ω是由平面1++=x y z 与三个坐标平面平面所围成的空间区域,则(23)__________.x y z dxdydz Ω++=⎰⎰⎰【答案】14【分析】此题考查三重积分的计算,可直接计算,也可以利用轮换对称性化简后再计算. 【解析】由轮换对称性,得1(23)66zD x y z dxdydz zdxdydz zdz dxdy ΩΩ++==⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中z D 为平面z z =截空间区域Ω所得的截面,其面积为21(1)2z -.所以 112320011(23)66(1)3(2).24x y z dxdydz zdxdydz z z dz z z z dz ΩΩ++==⋅-=-+=⎰⎰⎰⎰⎰⎰⎰⎰ (13) n 阶行列式20021202___________.00220012-=-【答案】122n +-【解析】按第一行展开得111120021222(1)2(1)220022012n n n n n D D D +----==+--=+-221222(22)2222222n n n n D D ---=++=++=+++122n +=-(14)设二维随机变量(,)x y 服从正态分布(1,0;1,1,0)N ,则{0}________.P XY Y -<=【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而{0}{(1)0}{10,0}{10,0}P XY Y P X Y P X Y P X Y -<=-<=-><+-<>11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分) 设函数()ln(1)sin =+++f x x a x bx x ,3()=g x kx ,若()fx 与()g x 在0→x 是等价无穷小,求,,a b k 的值.【答案】,,.a b k =-=-=-11123【解析】法一:原式()3ln 1sin lim1x x a x bx xkx→+++= ()()2333330236lim 1x x x x x a x o x bx x o x kx →⎛⎫⎛⎫+-+++-+ ⎪ ⎪⎝⎭⎝⎭==()()234331236lim1x a a b a x b x x x o x kx→⎛⎫++-+-+ ⎪⎝⎭== 即10,0,123a aa b k +=-== 111,,23a b k ∴=-=-=-法二:()3ln 1sin lim1x x a x bx xkx →+++=201sin cos 1lim 13x ab x bx xx kx →++++== 因为分子的极限为0,则1a =-()212cos sin 1lim16x b x bx x x kx→--+-+==,分子的极限为0,12b =-()022sin sin cos 13lim 16x b x b x bx xx k →----+==,13k =- 111,,23a b k ∴=-=-=-(16)(本题满分10分) 设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,由线()=y f x 在点()()0,x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且()02f =,求()f x 的表达式.【答案】f x x=-8()4. 【解析】设()f x 在点()()00,x f x 处的切线方程为:()()()000,y f x f x x x '-=- 令0y =,得到()()000f x x x f x =-+',故由题意,()()00142f x x x ⋅-=,即()()()000142f x f x f x ⋅=',可以转化为一阶微分方程,即28y y '=,可分离变量得到通解为:118x C y =-+,已知()02y =,得到12C =,因此11182x y =-+;即()84f x x =-+.(17)(本题满分10分)已知函数(),=++fx y x y xy ,曲线C :223++=x y xy ,求(),f x y 在曲线C 上的最大方向导数.【答案】3【解析】因为(),f x y 沿着梯度的方向的方向导数最大,且最大值为梯度的模.()()',1,',1x y f x y y f x y x =+=+,故(){},1,1gradf x y y x =++此题目转化为对函数(),g x y =在约束条件22:3C x y xy ++=下的最大值.即为条件极值问题.为了计算简单,可以转化为对()()22(,)11d x y y x =+++在约束条件22:3C x y xy ++=下的最大值.构造函数:()()()()2222,,113F x y y x x y xy λλ=++++++-()()()()222120212030x y F x x y F y y x F x y xy λλλ'⎧=+++=⎪'=+++=⎨⎪'=++-=⎩,得到()()()()12341,1,1,1,2,1,1,2M M M M ----. ()()()()12348,0,9,9d M d M d M d M ====3=. (18)(本题满分 10 分)(I )设函数()()u x ,v x 可导,利用导数定义证明u x v x u x v x u x v x '''=+[()()]()()()() (II )设函数()()()12n u x ,u x ,,u x 可导,n f x u x u x u x =12()()()(),写出()f x 的求导公式.【解析】(I )0()()()()[()()]lim h u x h v x h u x v x u x v x h→++-'=0()()()()()()()()lim h u x h v x h u x h v x u x h v x u x v x h→++-+++-=00()()()()lim ()lim ()h h v x h v x u x h u x u x h v x h h→→+-+-=++()()()()u x v x u x v x ''=+ (II )由题意得12()[()()()]n f x u x u x u x ''=121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++(19)(本题满分 10 分)已知曲线L的方程为,z z x ⎧=⎪⎨=⎪⎩起点为()A,终点为()0,B ,计算曲线积分()()2222d d ()d LI y z x z x y y x y z =++-+++⎰.【答案】π2【解析】由题意假设参数方程cos cos x y z θθθ=⎧⎪=⎨⎪=⎩,ππ:22θ→-π22π2[cos )sin 2sin cos (1sin )sin ]d θθθθθθθθ--++++⎰π222π2sin cos (1sin )sin d θθθθθθ-=+++⎰π220sin d θθ==(20) (本题满11分)设向量组1,23,ααα内3R 的一个基,113=2+2k βαα,22=2βα,()313=++1k βαα.(I )证明向量组1β2β3β为3R 的一个基;(II )当k 为何值时,存在非0向量ξ在基1,23,ααα与基1β2β3β下的坐标相同,并求所有的ξ.【答案】 【解析】(I)证明:()()()()12313213123,,2+2,2,+1201,,020201k k k k βββαααααααα=+⎛⎫⎪= ⎪ ⎪+⎝⎭20121224021201k k kk ==≠++故123,,βββ为3R 的一个基. (II )由题意知,112233112233,0k k k k k k ξβββαααξ=++=++≠即()()()1112223330,0,1,2,3i k k k k i βαβαβα-+-+-=≠=()()()()()()()11312223133113223132+22++10+2+0k k k k k k k k k k ααααααααααααα-+-+-=++=有非零解即13213+2,,+0k k ααααα=即10110020k k=,得k=011223121300,0k k k k k k ααα++=∴=+=11131,0k k k ξαα=-≠(21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫ ⎪⎪ ⎪⎝⎭B =.(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵..【解析】(I) ~()()311A B tr A tr B a b ⇒=⇒+=++23120133001231--=⇒--=-A B b a14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b (II)023100123133010123123001123A E C ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T 5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫ ⎪∴= ⎪ ⎪⎝⎭P AP(22) (本题满分11 分) 设随机变量X 的概率密度为()2ln 2,0,0,0.xx f x x -⎧>⎪=⎨≤⎪⎩对X 进行独立重复的观测,直到2个大于3的观测值出现的停止.记Y 为观测次数. (I)求Y 的概率分布; (II)求EY【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰,从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n=为Y 的概率分布; (II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生.则M Ge n p ~(,),NGe k n p -(,)(注:Ge 表示几何分布)所以11221618E Y E M N E M E N p p p =+=+=+===()()()(). 法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记212111()()n n S x n n xx ∞-==⋅--<<∑,则2113222211n n n n n n S x n n xn xx x ∞∞∞--==='''=⋅-=⋅==-∑∑∑()()()()(), 12213222111()()()()()n n n n xS x n n xx n n x xS x x ∞∞--===⋅-=⋅-==-∑∑,2222313222111()()()()()nn n n x S x n n x xn n xx S x x ∞∞-===⋅-=⋅-==-∑∑, 所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--,从而7168E Y S ==()().(23) (本题满分 11 分)设总体X 的概率密度为:x f x θθθ⎧≤≤⎪=-⎨⎪⎩1,1,(,)10,其他. 其中θ为未知参数,12n x ,x ,,x 为来自该总体的简单随机样本.(I)求θ的矩估计量. (II)求θ的最大似然估计量. 【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得1121ni i X X X n θ==-=∑,为θ的矩估计量;(II) 似然函数11110,()(;),nni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--. 从而dln d 1L nθθθ=-(),关于θ单调增加, 所以12min n X X X θ={,,,}为θ的最大似然估计量.。
2015年考研数学一真题及答案解析
2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数()f x 在(),-∞+∞内连续,其中二阶导数()''f x 的图形如图所示,则曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.故选(C ). (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,则 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,所以2,1为特征方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变为32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.故选(A )(3) 若级数1∞=∑nn a条件收敛,则=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的 ( )(A) 收敛点,收敛点(B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。
2015年考研数二真题
2015年考研数二真题考研数学二对于很多考生来说,是一场具有挑战性的考试。
2015 年的考研数二真题更是在知识点的考查、题型的设计以及难度的把控上有着独特的特点。
从整体上看,2015 年考研数二真题涵盖了高等数学和线性代数两大部分。
高等数学部分,重点考查了函数、极限、连续、一元函数微积分学、多元函数微积分学等核心知识点。
比如,在函数极限的计算中,出题方式灵活多变,不仅要求考生熟练掌握常见的求极限方法,如洛必达法则、等价无穷小替换等,还需要考生具备较强的分析问题和灵活运用知识的能力。
就一元函数微积分学而言,对导数和积分的应用考查较为深入。
通过设置各种实际问题的情境,要求考生能够准确地建立数学模型,并运用所学的导数和积分知识进行求解。
例如,一道关于利用导数求函数最值的题目,就需要考生对函数的单调性和极值点有清晰的认识和准确的判断。
多元函数微积分学部分,重点考查了偏导数、全微分、二重积分等内容。
在这部分的题目中,往往需要考生熟练掌握相关的计算方法和技巧,并且能够清晰地理解多元函数的概念和性质。
线性代数部分,矩阵、向量、线性方程组等是考查的重点。
矩阵的运算、矩阵的秩、向量组的线性相关性等知识点在真题中均有体现。
线性方程组的求解是一个常考的考点,要求考生能够熟练运用高斯消元法等方法求解线性方程组。
在题型方面,2015 年考研数二真题包括选择题、填空题和解答题。
选择题注重考查对基本概念和基本定理的理解,需要考生能够准确地辨析和判断。
填空题则侧重于考查计算能力,要求考生在短时间内准确地得出计算结果。
解答题的分值较大,对考生的综合能力要求较高,不仅要能够正确地解题,还要有清晰的解题思路和规范的书写格式。
从难度上来说,2015 年考研数二真题难度适中,但也有一些具有一定挑战性的题目。
对于基础扎实、复习全面的考生来说,大部分题目都能够顺利解答。
然而,对于一些知识点掌握不够牢固或者缺乏解题技巧的考生,可能会在某些题目上遇到困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1/9【育明教育】中国考研考博专业课辅导第一品牌官方网站: 12015年暨南大学考研指导育明教育创始于2006年,由北京大学、中国人民大学、中央财经大学、北京外国语大学的教授投资创办,并有北京大学、武汉大学、中国人民大学、北京师范大学复旦大学、中央财经大学、等知名高校的博士和硕士加盟,是一个最具权威的全国范围内的考研考博辅导机构。
更多详情可联系育明教育孙老师。
暨南大学硕士研究生入学考试自命题科目601《高等数学》考试大纲一、考试性质暨南大学硕士研究生入学高等数学考试是为招收理学非数学专业硕士研究生而设置的选拔考试。
它的主要目的是测试考生的数学素质,包括对高等数学各项内容的掌握程度和应用相关知识解决问题的能力。
考试对象为参加全国硕士研究生入学考试、并报考凝聚态物理、光学、生物物理学、环境科学(理学)、生物医学工程(理学)等专业的考生。
二、考试方式和考试时间高等数学考试采用闭卷笔试形式,试卷满分为150分,考试时间为3小时。
三、试卷结构(一)微积分与线性代数所占比例微积分约占总分的120分左右,线性代数约占总分的30分左右。
(二)试卷的结构1、填空、选择题:占总分的50分左右,内容为概念和基本计算,主要覆盖本门课程的各部分知识点。
2、计算或解答题:占总分的80分左右,主要为各部分的重要计算题、应用题3、证明题:占总分的20分左右。
主要参考文献1.《高等数学》(上、下册),同济大学应用数学系主编,高等教育出版社,第五版,2002。
2.《线性代数》,同济大学应用数学系编,高等教育出版社,第四版,2003。
2/9【育明教育】中国考研考博专业课辅导第一品牌官方网站: 2一、考研路上的十大拦路虎:1.背了又忘的英语单词解决办法:最好是每天抽出一点零碎时间比如,饭前背单词,也推荐睡前记单词,然后早晨起来之后马上复习一遍,很灵的喔。
2.喜欢给自己找不去自习的借口(这点很危险)解决办法:在心里狠狠的骂自己一顿——怎么这么多借口啊!还想不想考研了?多上一次自习,到时候又可以多考几分,成功又多了一份把握啊!3.缺乏一定要考上的决心与斗志解决办法:多想想考上之后是如何衣锦还乡的,多想想考不上是如何吃苦受累的^_^哈哈,自己要学会安慰自己啊!4.自习室里静不下心来,缺乏效率(这点很危险)解决办法:这个主要还是一个要钻进去的问题,“一心只读圣贤书”是必须的。
5.早晨7点钟还起不来解决办法:把闹钟放到桌子上,远离自己手臂所能控制的范围。
6.忽视真题狂做模拟题(这点很危险)真题永远是最值得我们下苦功研究的,不管是数学真题、英语真题、政治真题还是专业课真题,因为模拟题的命题思路永远跟真题是有很大差别的,你做了就知道。
7.盲目跟风缺乏主见(一定要注意)解决办法:制订一个好的计划,严格按照计划执行。
再不行的话,放弃研伴,找一个没人的教室一个人自习。
8.不注重劳逸结合(一定要注意)解决办法:硬性规定每周的休息时间(以半天为宜,这半天你想干啥就干啥,千万别去复习,千万别想复习)。
9.对考研期间将会遇到的困难估计不足(心态调整好)解决办法:有句话说:考研的人过的是猪狗不如的生活。
虽然我不那么认为,甚至还有点怀念那段很单纯的生活,但是这句话至少说明了作为一个考研的人,压力是很大的,困难是很多3/9【育明教育】中国考研考博专业课辅导第一品牌官方网站: 3的,生活是很单调的,总的来说是很吃力的。
10.不舍得放弃一些看似有用其实没用的东西(这点很危险)解决办法:想一下你为什么要考研,考研需要哪些东西?其实考研只需要2样东西:1.认认真真的复习2.大学毕业证(据说学位证都可以没有)。
怎么样?很简单吧。
二、公共课复习(一)数学1.先说一下复习过程(我只用了李永乐的系列)我在9月开学前看了1.5遍课本+复习全书(效率真低~~),9月份开学之后每天上午所有的时间均用来复习数学,看复习全书的时候我把我认为很可能会考到但是又不会做的题都整理到了一个本子上,后面再看的时候就快了。
大概是10月中旬的时候看完了3遍复习全书,然后就开始看《真题解析》,我想说的是李永乐系列最经典的一本书就是这本《真题分类解析》,每道真题后面的点评真的是很经典。
记得看多元函数积分学的高斯公式部分的时候,老李在点评中来了这么一句:这种类型的题目前为止还从未考过。
这句话引起了我的注意,于是我认真的思考了一下怎么解这种题目,结果今年高数的压轴题正好就是这个类型的题目……^_^再说下《经典400题》,其实就是10套模拟题,我大概用了一个月时间做了2遍,认真做完会有高屋建瓴的感觉,不过没时间的同学不看也可以,数学关键还是要狠抓基础题,不怕难的题不会,就怕会的题做不对。
2.再说一下我复习心得数学一定要打牢基础(靠什么打基础?至少认真看2遍以上的复习全书!把书上的核心章节真正做懂,吃透!对于每一章的内容都要形成一个知识框架!即:这一章都有那些内容?会出哪种题型?)数学一定要善于总结(如何总结?每种题型的解题方法有哪些,什么条件下用哪种方法,一定要总结出来并烂熟于心。
比如说:什么情况下用柱坐标变换?什么情况下用极坐标变换?什么情况下用球坐标变换?)数学一定要把似曾相识但做不对的题反复研究(因为这些题是你提分的关键,而且如果你真的经历过考研考场那紧张气氛的话,你就会充分理解我为什么这么强调这一点。
)数学一定要练高压下的做题速度与正确率(因为考场上时间是很紧的,压力是很大的,而且要相信教育部命题专家的水平,他们一定会让你在某个题上卡壳的,如果一道题花了5分钟没做出来,是继续思考还是直接做下一道?什么情况下继续思考?什么情况下跳过这个题?连续2~3道都是这情况的话应该怎么办?如果平时不练的话,到了考场上会越做越急,四顾茫然,继而心理崩溃,我周围同学的教训已经充分证明了这一点。
建议就从你开始做《400题》开始,4/9【育明教育】中国考研考博专业课辅导第一品牌官方网站: 4每天上午严格的卡时间做,中间不要上厕所什么的,尽力营造一种考场气氛)。
数学一定要天天练习,一天不练很容易生疏,即使到了最后你时间很紧的时候(我今年就吃亏在这方面,其实最后一个月之前我已经复习的不错了,《400题》赶上运气好的时候能得110分,一般都在95分~100分左右,而当时专业课那边进度有点慢,我就调了点时间过去,结果在考场上我发现我手生了,有几道题卡了我几下,时间不够了,继而大脑短路……结果白白丢了15分,同志们,一定要吸取我的教训啊!!!数学一定要自己在考前对考题进行预测(我当时花了一个晚上的时间把12年数学真题每个题的考点都整理出来了,然后对照一下,嘿嘿,是不是很有规律啊?今年数学9道大题的考点我至少预测对了6道,信不信由你,注意是考点不是考题)3.考研数学的最高境界:(考名牌大学的同志们必备,一定不能离这个境界差得太远啊,不然……)做题时看到题目能迅速的锁定解题方法,确定正确的解题思路,并快速算出正确结果!(二)英语PS:英语才68分,不敢过多的误导大家,少写一点吧,以下英语部分仅做参考。
1.先说一下复习过程(我用的是郭崇兴的《真题解析》+肖克的《词汇宝典》+王若平的《阅读手记》)英语复习开始的比较晚,暑假上完辅导班就没看了,9月份开始背的真题里的单词,把那些记不住的整理到了小本子上,每天都拿出来温习一下,最好每天都能抽出半小时到一小时的时间记单词。
10月份才开始做真题阅读,阅读前后做了3遍,掌握了命题人的出题思路与常见陷阱的设置,顺便也练习了长难句的翻译。
11月中旬开始练了一些新题型、翻译(都是真题里的),同时开始试着写英语作文,这段时间我每天的复习模式基本上是今天做阅读,第二天就写作文+新题型+单词。
2.再说一下我复习心得:英语单词一定要及时温习,不仅要背新单词,复习以前的更为重要英语过线主要是靠阅读+作文的70分,但别的题型也要了解并练习(阅读40分,作文30分,已经占了总分的70%了,而且相对来说翻译的10分是最难拿的,完形跟7选5考前用真题练练手熟悉熟悉就OK)英语最好的资料就是《历年真题解析》!要一做再做!仔细领悟其中命题角度、陷阱设置、语境等的奥妙!(做考研英语的阅读是最让人头疼的一件事,个人认为有很多题目都有2个答案是可以选的,一个语气稍微重点,一个稍微轻点,靠什么选到正确答案?就靠反复练习把命题5/9【育明教育】中国考研考博专业课辅导第一品牌官方网站: 5者的陷阱设置方法完全吃透)英语复习时间可以灵活掌握,但一定每天都要看(学习英语最忌“三天打鱼,两天晒网”,不能严格要求自己,放任自流,必然半途而废,没有刻苦学习的精神和不可动摇的毅力,一定会前功尽弃!)英语作文一定要自己写模板出来(大概在考前半个月,这时候你也应该看了一段时间的作文了,收集一些优美的句子,特别是结尾发表议论的万能句型,总结一到两个模板出来,不用特意的去背模板,每篇作文都用自己总结的模板去写,写上4、5次你应该就能把模板熟练的背诵下来了,我当时总结了2个模板,一个针对哲理型的图片---适宜发表议论;一个针对社会现象的图片---适宜描述并引申,每个模板都有150词左右,尤其是发表议论的第三段,模板上我只留了半句空白,其余的都是事先背好的,考场上我只是在模板的基础上填了几个空而已,节省了大量时间去做阅读啊)英语做题顺序:考场上一定把作文跟阅读这两大块先做了,翻译一定是最后做(我个人是先写的大小作文,然后做的阅读,然后是7选5,然后是完形,最后是翻译,这样做的好处就是刚上考场脑子比较清醒,时间也比较充足,先把最容易拿分的作文写好(前提是你按我的方法准备了只需要填几个空的模板),然后做阅读跟7选5,这两项归根结底都是阅读,在一起做比较有感觉,而且万一你阅读花的时间多,后面的完形填空可以全蒙同一个选项,分数上也不会吃太多亏(注意:全蒙可以得2.5分,你花10分钟认真做一遍有时候不会超过4分)。
翻译(尤其是09年的翻译)完全是给75分以上的牛人准备的,一般人稍微浏览浏览,拣会写的写一点就行了。
但是要注意某些年份的翻译也有很简单的,不要白白丢分。
3.考研英语的最高境界:(朝70分以上努力的同志们必备,一定不能离这个境界差得太远啊,不然……)有快速的长难句翻译能力,看到阅读题目能迅速破解掉出题人的陷阱并选到正确答案,能正确把握图画的含意并利用模板迅速构造出一篇句式较为复杂、单词不常见但又用的恰到好处、书法漂亮、卷面整洁的作文。
(三)政治1.先说一下复习过程(我先后用了辅导班的讲义,肖秀荣的《1000题》、《讲真题》,《形势与政策》,最后四套卷,总之他的全套书)我是从10月份开始看的政治,先上的国庆辅导班,又花了3个星期的时间看完了第一遍讲义。
然后做《1000题》时发现前面的又忘光了,于是只好又花了一个月的时间一边看书一边做题。