振荡器的频率稳定度
3.3LC振荡器的频率稳定度

外界因素:温度、湿度、大气压、
电源电压、周围磁场、机械振动及负载变化等,其中以温
度的影响最严重。
措施:减振、恒温、密封(湿度、大气压)、高稳定度
电源、屏蔽罩、振荡器与负载间插入跟随器。
2.提高振荡回路标准性 (1)标准性
振荡回路在外界因素变化时保持固有谐振频率不变的能 力。
标准性越高,0 就越小。
]2
f n f n osc
i 1
osc
fosc
式中,(fosc)i = fi - fosc ,第 i 个间隔内实测的绝对准确度;
Δfosc
lim
n
1
n
(
n i1
fi
fosc )
为绝对准确度的平均值 , Δf osc
越小,
频率准确度就越高。
(4)对频稳度的不同要求
用途
中波电台 信号发生器
电视发射机
高精度信号 发生器
由
Z (
)
arctan Qe
2( 0 ) 0
可知:影响振荡频率 osc 的参数是 0、Qe 和f 。故讨论频
稳度就是分析外界因素通过这三个参数对振荡频率变化的影
响。
(1)谐振频率 0 变化
若 L 、C 变化,0 产生 0 的变 化,则 z()曲线沿横坐标平移 0,
曲线形状不变。参看图 3-3-1(a)。
① A() 主要取决于并联谐振回路的相移 z() ,它在 谐振频率附近随 的变化十分剧烈;
② f() 随 的变化相对要缓慢得多,可近似认为它是
与频率无关的常数,用 f 表示。
得:
Z(osc) = f
故: Z() 曲线与高度为 f 水平线相交点上所对应的角频
率——振荡角频率 osc 。
压控振荡器的指标

压控振荡器(VCO)的主要指标包括:
1. 频率:振荡器的输出信号的重复率,以赫兹(Hz)为单位,即每秒所包含的周期数。
频率稳定性是振荡器的基本性能指标之一,参考额定输出频率通常以百万分率(parts per million,ppm)或十亿分率(parts per billion,ppb)计。
2. 调谐范围:调节输出频率的变化范围,即振荡器的最大调谐频率和最小调谐频率的差值。
压控振荡器要有足够大的调谐范围才能满足输出频率达到所需要的值。
3. 调谐增益:即压控振荡器的灵敏度,是指单位的输入电压与输出频率的变化,一般用Kv表示,单位是Hz/V。
在实际应用上讲,压控器的灵敏度越高,噪声响应在控制线路上越强,结果干扰输出频率就越大,就会使压控振荡器的噪声性能降低。
所以需要寻找VCO的增益和噪声性能的平衡。
除此之外,压控振荡器的中心频率指的是频率调节范围的中间值,即振荡器频率的最大值和最小值的中间值,中心频率的大小取决于振荡器的结构和元器件参数,而且还随着工艺和温度相应改变。
以上内容仅供参考,如需了解更多信息,建议咨询专业人士。
高频电子线路试题库

高频电子线路试题库一、单项选择题(每题 2 分,共20 分)第二章选频网络1、LC 串联电路处于谐振时,阻抗()。
A、最大B、最小C、不确定2、L C并联谐振电路中,当工作频率大于、小于、等于谐振频率时,阻抗分别呈()。
A、感性容性阻性B、容性感性阻性C、阻性感性容性D、感性阻性容性3、在LC并联电路两端并联上电阻,下列说法错误的是()A、改变了电路的谐振频率B、改变了回路的品质因数C、改变了通频带的大小D、没有任何改变第三章高频小信号放大器1、在电路参数相同的情况下,双调谐回路放大器的通频带与单调谐回路放大器的通频带相比较A、增大B减小C相同D无法比较2、三级相同的放大器级联,总增益为60dB,则每级的放大倍数为()。
A、10dB B 、20 C、20 dB D、103、高频小信号谐振放大器不稳定的主要原因是((A)增益太大(B)通频带太宽Cb' c的反馈作用(D)谐振曲线太尖锐。
第四章非线性电路、时变参量电路和混频器(C)晶体管集电结电容1、通常超外差收音机的中频为( )A) 465K B) 75KHZ ( C) 1605KHZ ( D) 10.7MHZ2、接收机接收频率为fc ,fL >( A) fc > fI fc+fI B) fL+fc C) fc+2fI( D)3、设混频器的fL >fC 产生的干扰称为( ,即fL =fC+fI )。
,若有干扰信号fn=fL+fI ,则可能(A)交调干扰(B)互调干扰(C)中频干扰(D)镜像干扰4、乘法器的作用很多,下列中不属于其作用的是(A、调幅B、检波C、变频D、调频5、混频时取出中频信号的滤波器应采用( )(A)带通滤波器(B)低通滤波器(C)高通滤波器(D)带阻滤波器(A)相加器(B)乘法器(C)倍频器(D)减法器7、在低电平调幅、小信号检波和混频中,非线性器件的较好特性是()A、i=b0+b1u+b2u2+b3u3 B 、i=b0+b1u+b3u3 C、i=b2u2 D、i=b3u38、我国调频收音机的中频为( )( A) 465KHZ ( B) 455KHZ ( C) 75KHZ ( D) 10.7MHZ9、在混频器的干扰中,组合副波道干扰是由于 ------- 造成的。
《高频电子技术(第2版)》电子教案 课程思政PPT 4.3 振荡器的频率和振幅稳定度

4.3 振荡器的频率和振幅稳定度
三、提高频率稳定度的主要措施
1. 减小外界因素变化的影响
将决定振荡频率的主要元件或整个振荡器置于恒温槽 采用高稳定度直流稳压电源 采用金属屏蔽罩
采用减震器 采用密封工艺减小大气压力和湿度的影响
在振荡器和负载之间加缓冲器
EXIT
高频电子线路
4.3 振荡器的频率和振幅稳定度
主要由于器件老化。
短期频率稳定度 一天之内振荡频率的相对变化量 主要由于温度、电源电压等外界因素变化
瞬时频率稳定度 秒或毫秒内振荡频率的相对变化量
由电路内部噪声或突发性干扰引起。
EXIT
高频电子线路
4.3 振荡器的频率和振幅稳定度
4.3.1 频率稳定度
一、频率稳定度的概念
中波广播电台发射机的频率稳定度为 105
三、提高频率稳定度的主要措施
1. 减小外界因素变化的影响 2. 提高谐振回路的标准性
谐振回路在外界因素变化时,保持其谐振频率不变 的能力,称为谐振回路的标准性。
回路标准性越高,频率稳定度越好。
EXIT
高频电子线路
4.3 振荡器的频率和振幅稳定度
三、提高频率稳定度的主要措施
1. 减小外界因素变化的影响
EXIT
高频电子线路
4.3 振荡器的频率和振幅稳定度
二、导致频率不稳定的因素
外因: 温度、电源电压和负载等外界因素的影响
主要利用谐振回路的相频特性实现。振荡频率 处相频特性曲线越陡,稳频效果越好。
内因: 振荡电路的稳频能力 1. 提高回路Q值;2. 使振荡频率接近回路谐振频率。
EXIT
高频电子线路
高频电子线路
4.3 振荡器的频率和振幅稳定度
振荡器频率稳定度

由图3.3.1(b)可以看到,
与谐振回路的接入系数:
C2C3
n
C1
C(2串C2C串3C3)
C2 C3
C1
C2C3 C2 C3
C1C2 C3
C2 C1 C2
和基本电容三点式电路中 Cce与谐振回路的接入系数
n C2 (C1 C2 ) 比较, 由于 C3 C1, C2 所以 n n
3.3.4
对频稳度的要求视用途不同而异。 例如:中波广播电台发射机 105 数量级;
电视发射机 107 数量级; 普通信号发生器 104 ~ 105 数量级; 高精度信号发生器107 ~ 109 数量级; 做频率标准用1011 数量级以上。
3.3.1
3.3.2 振荡器的稳频原理 已知相位平衡条件 gm z k 0
3.3.4
由图可以看到,晶体管c、b两端与回路A、B两 端之间的接入系数
n1
C3 C1C2 C1 C2
C3
1 C1C2 C3 (C1 C2 )
1
所以, A、B两端的等效电阻 RL RL Re0
折算到c、b两端为
2
RL
n12 RL
1 C1C2 C3 (C1 C2 )
1
RL RL
C1C2C3 C2C3 C1C3
C4
C3
C4
图3.3.3 西勒振荡电路
振荡频率
fosc 2
1 LC
2
1 L(C3 C4 )
3.3.4
在西勒电路中,C4 由于与L并联,所以C4的大小不影响
回路的接入系数,其共基电路等效负载 RL仍为
2
RL
n21RL
1 C1C2
1
RL RL
C3 (C1 C2 )
模拟电子技术基础知识振荡器的频率稳定性与调谐技巧

模拟电子技术基础知识振荡器的频率稳定性与调谐技巧模拟电子技术中的振荡器在电子系统中起到了非常重要的作用,它能够产生稳定的信号,用于时钟同步、频率合成等应用。
然而,在振荡器的设计和调试过程中,频率稳定性和调谐技巧是需要非常重视的方面。
本文将介绍振荡器频率稳定性的评估方法以及调谐技巧的一些基本原则。
一、频率稳定性的评估方法频率稳定性是指振荡器输出频率的变化程度,常用的评估方法有相对稳定度和绝对稳定度。
1. 相对稳定度相对稳定度是指振荡器频率变化相对于整个输出频率范围的百分比。
通常使用相对频率偏差(Relative Frequency Deviation,RFD)来进行评估。
RFD的计算公式如下所示:RFD = (f_max - f_min) / f_avg * 100%其中,f_max为振荡器输出频率的最大值,f_min为最小值,f_avg为平均值。
通过相对稳定度的评估,可以比较不同振荡器在频率稳定性方面的优劣。
2. 绝对稳定度绝对稳定度是指振荡器输出频率的变化程度与参考标准频率的偏差。
常用的评估指标有绝对频率偏差(Absolute Frequency Deviation,AFD)和位移调制指标(Displacement Modulation Index,DMI)。
AFD表示振荡器输出频率与参考标准频率之间的误差,常用单位为Hz。
AFD越小,说明振荡器的频率稳定性越好。
DMI衡量振荡器输出频率在不同幅度的调制信号作用下的变化程度。
一般来说,DMI越小,说明振荡器的频率稳定性越好。
二、调谐技巧的基本原则在实际振荡器的设计和调试中,为了获得稳定的输出频率,需要注意一些调谐技巧的基本原则。
1. 选择合适的振荡器结构振荡器结构的选择对频率稳定性有着直接的影响。
常见的振荡器结构包括LC振荡器、晶体振荡器、RC振荡器等。
不同结构的振荡器适用于不同的应用场景,需要根据实际需求选择合适的结构。
2. 使用稳定的元器件振荡器的频率稳定性还与使用的元器件的稳定性有关。
电路基础原理探究振荡器的稳定性和频率稳定度

电路基础原理探究振荡器的稳定性和频率稳定度在电路中,振荡器是一种生成连续信号的电路,它可以产生周期性的电信号波形。
在许多应用中,我们需要一个稳定且准确的振荡器,因此,振荡器的稳定性和频率稳定度成为了电路工程师们关注的核心问题。
一、振荡器的分类振荡器可以分为两类:正反馈振荡器和负反馈振荡器。
正反馈振荡器是由一组放大器和带有正反馈的反馈回路组成的,其输出信号会在反馈回路中被放大并重新输入到放大器中,从而形成周期性信号。
负反馈振荡器是由一个带有负反馈的放大器和适当的电路组成的,负反馈电路会使输出信号变得稳定,从而实现振荡。
本文主要讨论正反馈振荡器的稳定性和频率稳定度。
二、振荡器的基础原理正反馈振荡器的核心是正反馈回路,其中包含了一些被称为振荡器反馈回路的网络组件。
这些组件可以将一部分输出信号反馈到振荡器的输入端口,从而产生振荡。
正反馈回路具有放大系数大的特点,它可以为输入信号提供增益,使其保持稳定且连续。
三、稳定性的影响因素为了实现稳定的振荡,必须满足振荡器的增益和相位条件,否则就会出现不稳定的振荡。
而振荡器的增益和相位与反馈回路的频率有关,因此对于反馈回路的频率变化非常敏感。
1. 器件的非线性特性许多电子元器件在不同的工作条件下具有不同的电特性,这种非线性特性会影响到振荡器的性能。
例如,常用的集成电路中的放大器,在不同的电源电压和工作温度条件下,其放大倍数和特性都会发生变化,从而对整个振荡器的稳定性产生影响。
2. 外界的干扰振荡器可能受到来自外部电磁场的干扰,例如电源线或附近的电气设备,这些干扰会破坏振荡器反馈回路的稳定性。
四、频率稳定度的影响因素振荡器的频率稳定度是指它的输出频率与稳定的参考频率的差异。
频率稳定度取决于反馈回路的稳定性和振荡器的噪声特性。
1. 电容和电感正反馈振荡器通常使用电容和电感构成的反馈网络。
这两个元件的电性质和体积大小会影响反馈回路的频率响应,从而影响振荡器的稳定性和频率稳定度。
振荡器频率稳定度(精)

振荡器频率稳定度
3.3.1 频率稳定的表示方法
频率准确度又称频率精度:它表示振荡频率f osc偏离标 称频率 fo 的程度。有: 绝对频率准确度(绝对频率偏差) f fosc fo 相对频率准确度(相对频率偏差) f
fo f osc f o fo
频率稳定度:在一定时间间隔内,频率准确度 变化的程度,实际上是频率“不稳定度”。
后的等效电容
C1C2C3 C3 C C3 C1C2 C2C3 C1C3 1 C3 C3 C1 C2
于是,振荡角频率
osc
1 1 LC LC3
电路的振荡频率近似只与 C3 、 L有关。而几乎与
C1 C2 无关。
电路特点: 晶体管结电容、对振荡
频率的影响。
由图3.3.1(b)可以看到, 与谐振回路的接入系数:
o
tan ( gm k )
osc 0
0
2Qe
tan( gm k )
3.3.2
因而有
osc
osc osc osc 0 Qe (gm k ) 0 Qe (gm k )
o
考虑到 Qe 值较高,即 o sc 1 于是得到LC振荡器频率稳定度的一般表达式为
C2C3 C2串C3 C2 C3 C2 n C1C2 C1 (C2串C3) C C2C3 C1 C2 1 C3 C2 C3
和基本电容三点式电路中 Cce与谐振回路的接入系数
n
C2
(C1 C2 ) 比较, 由于 C3 C1 , C2 所以 n n
特点是在回路中增加
了一个与L串联的小 电容 C3 。 电路条件是:
C3 C1 , C3 C2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频域——单边相位噪声功率 时域——阿伦方差
f1 f1 f1 , f2 f2 ,f…2……..
f,N 1 fn fn
阿伦方差定义:
( ) 1 (f1 )2 (f 2 )2 ...... (f n )2
f0
2N
短期频率稳定度频域表示——用单边(SSB)相位噪声
单边相位噪声定义:
偏单离位载频频带内噪一声f定c功量率
处,f
相对于平均载波功率
的dB数
PSSB
PC
L(f ) 10 log PSSB PC
单位——dBc/Hz
dBc——相对于载波功率大小
10
log
P 标准信号功率
某振荡器工作在 1.0GHz 处的单边相位噪声功率谱举例
振荡器频谱 小结:
单边相位噪声功率谱
提高频率稳定度,减少相位噪声的最有效办法—— 提高选频回路的 Q 值
中频信号
i
i
上混频
LO
上混频器将本振噪声转移到了发射频带内, 发射信号不纯的频谱对邻道信号产生干扰。
接收机:
射频信号
RF
下混频
中频信号
IF LO RF
本振信号 LO
无本振噪声
BW 有本振噪声
① 下混频器将本振噪声转移到了中频段,降低了信噪比
② 倒易混频
7.5 振荡器的频率稳定度
7.5.1 概述
振荡器主要指标:频率准确度和稳定度
准确度
绝对频差
f f x f0
相对频差
f x f0 f
f0
f0
稳定度——在一定的时间间隔内,频率准确度的变化
长期频率稳定度 影响长期频率稳定度因素:
短期(瞬时)频率稳定度 元件老化、元件参数的慢变化 振荡器所处环境条件变化
现象:
射频信号
f RF、f M
若射频输入伴有强干扰
fM
只要本振纯,且
fLO fM fIF
fM 就不会对中频产生干扰
但当本振有噪声时
结果:
本振噪声与强干扰 进行倒易混频变成中频 ——降低中频信噪比
下混频
中频信号
fIF fLO fRF
本振信号 fLO
7.5.3 频率稳定度的表示方法 短期频率稳定度有两种表征法 阿伦方差的具体测量方法
v(t) Acos(ct n (t))
v(t) Acosn (t) cosct Asinn (t)sinct Acosct An (t)sinct
载波 相位噪声 载波
相乘,产生频谱搬移
0
带相位噪声的振荡器输出频谱
7.5.2 相位噪声的影响 振荡器在通信机中的用途——接收机、发射机的本振源 发射机:
(如温度,电源电压,磁场,负载等外界因素)
影响短期频率稳定度因素——电路中各种随机噪声
研究短期频率稳定度也就是研究振荡器的相位噪声
理想正弦波振荡器的输出信号为:
v(t) Acosct
实际正弦波振荡器的输出信号为:
v(t) A(1 a(t)) cos(ct n (t))
幅度调制
相位调制
为什么?
其次—— 减小由于非线性器件的作用使 幅度噪声向相位噪声的转换。
①电路存在固有噪声 ②振荡器是非线性电路
振荡器从起振
平衡,AF>1
可抑制幅度调制产生的幅度噪声
AF=1,自限幅功能,
v(t) Acos(ct n (t))
电路噪声——相位调制——相位噪声——对频率的影响如何?
频率是相位的微分
振荡频率 f在(t平)均值上下随机起伏
振荡器的频谱如何?
当 n (t) 1时ra:d