课时跟踪检测(五十四) 定点、定值、探索性问题(选用)

合集下载

第8章 第8节 第3课时 定点、定值、探索性问题

第8章 第8节 第3课时 定点、定值、探索性问题

第3课时 定点、定值、探索性问题考点1 定点问题——综合性(2020·全国卷Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG →·GB →=8.P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求椭圆E 的方程; (2)证明:直线CD 过定点.(1)解:由题设得A (-a,0),B (a,0),G (0,1). 则AG →=(a,1),GB →=(a ,-1). 由AG →·GB →=8得a 2-1=8,即a =3. 所以椭圆E 的方程为x 29+y 2=1.(2)证明:设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知-3<n <3. 由于直线P A 的方程为y =t9(x +3), 所以y 1=t9(x 1+3).直线PB 的方程为y =t3(x -3), 所以y 2=t3(x 2-3). 可得3y 1(x 2-3)=y 2(x 1+3).由于x 229+y 22=1, 故y 22=-(x 2+3)(x 2-3)9,可得27y 1y 2=-(x 1+3)(x 2+3),即(27+m 2)y 1y 2+m (n +3)(y 1+y 2)+(n +3)2=0.①将x =my +n 代入x 29+y 2=1得 (m 2+9)y 2+2mny +n 2-9=0. 所以y 1+y 2=-2mnm 2+9,y 1y 2=n 2-9m 2+9.代入①式得(27+m 2)(n 2-9)-2m (n +3)mn +(n +3)2(m 2+9)=0. 解得n 1=-3(舍去),n 2=32.故直线CD 的方程为x =my +32,即直线CD 过定点⎝ ⎛⎭⎪⎫32,0.若t =0,则直线CD 的方程为y =0,过点⎝ ⎛⎭⎪⎫32,0.综上,直线CD 过定点⎝ ⎛⎭⎪⎫32,0.直线过定点问题的解题模型设参数—依题意条件设出相关的参数,如设出直线的斜率↓求直线 —利用题设条件,求直线系方程 ↓ 建联系 —联立直线与圆锥曲线,利用根与系数的关系,求出定点的坐标↓ 得结论—判断定点的坐标满足所求的直线系方程,即可证出直线经过该定点(2020·石嘴山市第三中学高三模拟)已知F 是抛物线C :y 2=2px (p >0)的焦点,点M (x 0,4)在抛物线上,且|MF |=54x 0.(1)求抛物线C 的标准方程;(2)若A ,B 是抛物线C 上的两个动点,且OA ⊥OB ,O 为坐标原点,求证:直线AB 过定点.(1)解:由题意得,|MF |=x 0+p 2=54x 0,解得x 0=2p . 因为点M (x 0,4)在抛物线C 上, 所以42=2px 0=4p 2,解得p 2=4. 又p >0,所以p =2,即拋物线C 的标准方程为y 2=4x . (2)证明:设A (x 1,y 1),B (x 2,y 2). 因为OA ⊥OB ,所以OA →·OB →=0,即x 1x 2+y 1y 2=0. 因为点A ,B 在抛物线C 上,所以y 21=4x 1,y 22=4x 2,代入得(y 1y 2)216+y 1y 2=0. 因为y 1y 2≠0,所以y 1y 2=-16. 设直线AB 的方程为x =my +n ,联立⎩⎪⎨⎪⎧x =my +n ,y 2=4x ,得y 2-4my -4n =0,则y 1y 2=-4n ,所以n =4,所以直线AB 的方程为x =my +4,过定点(4,0).考点2 定值问题——综合性(2020·新高考全国卷Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求椭圆C 的方程.(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.(1)解:由题意得4a 2+1b 2=1,e 2=a 2-b 2a 2=12, 解得a 2=6,b 2=3.所以椭圆C 的方程为x 26+y 23=1. (2)证明:设M (x 1,y 1),N (x 2,y 2).若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m ,代入x 26+y 23=1得(1+2k 2)x 2+4kmx +2m 2-6=0,于是x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k2.① 由AM ⊥AN 知AM →·AN →=0,故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,可得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0.将①代入上式可得(k 2+1)2m 2-61+2k 2-(km -k -2)·4km1+2k 2+(m -1)2+4=0. 整理得(2k +3m +1)(2k +m -1)=0.因为A (2,1)不在直线MN 上,所以2k +m -1≠0, 故2k +3m +1=0,k ≠1.于是MN 的方程为y =k ⎝ ⎛⎭⎪⎫x -23-13(k ≠1).所以直线MN 过点P ⎝ ⎛⎭⎪⎫23,-13.若直线MN 与x 轴垂直,可得N (x 1,-y 1). 由AM →·AN →=0得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 216+y 213=1,可得3x 21-8x 1+4=0.解得x 1=2(舍去)或x 1=23.此时直线MN 过点P ⎝ ⎛⎭⎪⎫23,-13.令Q 为AP 的中点,即Q ⎝ ⎛⎭⎪⎫43,13.若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ |=12|AP |=223.若D 与P 重合,则|DQ |=12|AP |.综上,存在点Q ⎝ ⎛⎭⎪⎫43,13,使得|DQ |为定值.解答圆锥曲线定值问题的技法(1)从特殊入手,求出定值,再证明这个值与变量无关; (2)引进变量法:其解题流程为变量—选择适当的动点坐标或动直线中系数为变量↓ 函数—把要证明为定值的量表示成上述变量的函数↓定值—把得到的函数化简,消去变量得到定值(2020·太原五中高三月考)已知椭圆C 的对称中心为原点O ,焦点在x 轴上,焦距为26,点(2,1)在该椭圆上.(1)求椭圆C 的方程.(2)直线x =2与椭圆交于P ,Q 两点,点P 位于第一象限,A ,B 是椭圆上位于直线x =2两侧的动点.当点A ,B 运动时,满足∠APQ =∠BPQ ,直线AB 的斜率是否为定值,请说明理由.解:(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0). 因为焦距为26,所以c =6,焦点F 1(6,0),F 2(-6,0).又因为点(2,1)在该椭圆上,代入椭圆方程得4a 2+1b 2=1,即4a 2+1a 2-6=1,解得a 2=8或a 2=3(舍),所以b 2=2, 所以椭圆C 的方程为x 28+y 22=1.(2)将x =2代入椭圆方程得48+y 22=1, 解得y =±1,则P (2,1),Q (2,-1).因为当点A ,B 运动时,满足∠APQ =∠BPQ , 所以直线P A 与直线PB 的斜率互为相反数. 不妨设k P A =k >0,则k PB =-k (k ≠0), A (x 1,y 1),B (x 2,y 2),所以直线P A 的方程为y -1=k (x -2).联立⎩⎨⎧y -1=k (x -2),x 28+y 22=1,得(1+4k 2)x 2+(8k -16k 2)x +16k 2-16k -4=0. 因为2,x 1是该方程的两根, 所以2x 1=16k 2-16k -41+4k2,即x 1=8k 2-8k -21+4k2.同理,直线PB 的方程为y =-kx +2k +1,且x 2=8k 2+8k -21+4k 2.所以x 1+x 2=16k 2-41+4k 2,x 1-x 2=-16k1+4k 2, 所以k AB =y 1-y 2x 1-x 2=k (x 1+x 2)-4k x 1-x 2=12,即直线AB 的斜率为定值.考点3 探索性问题——综合性(2020·绵阳四诊)已知椭圆C :x 22+y 2=1,直线l :y =x +m 交椭圆C于A ,B 两点,O 为坐标原点.(1)若直线l 过椭圆C 的右焦点F ,求△AOB 的面积.(2)若OM→=tOB →(t >0),试问椭圆C 上是否存在点P ,使得四边形OAPM 为平行四边形?若存在,求出t 的取值范围;若不存在,请说明理由.解:(1)设A (x 1,y 1),B (x 2,y 2).直线l 过椭圆C 的右焦点F ,则m =-1, 直线l 的方程为x =y +1.联立⎩⎪⎨⎪⎧x 2+2y 2=2,x =y +1,得3y 2+2y -1=0,解得y 1=13,y 2=-1.所以S △AOB =12|OF ||y 1-y 2|=12×1×⎪⎪⎪⎪⎪⎪13-(-1)=23.(2)联立⎩⎪⎨⎪⎧x 2+2y 2=2,y =x +m ,得3x 2+4mx +2m 2-2=0,所以Δ=(4m )2-12(2m 2-2)>0, 解得0≤m 2<3.所以x 1+x 2=-4m3,x 1x 2=2m 2-23.所以y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2=m 2-23. 因为四边形OAPM 为平行四边形, 所以m ≠0,且OP →=OA →+OM →.又OM→=tOB →(t >0),所以OP→=OA→+tOB→=(x1+tx2,y1+ty2),所以点P的坐标为(x1+tx2,y1+ty2).又点P在椭圆上,即(x1+tx2)2+2(y1+ty2)2=2,整理得(x21+2y21)+t2(x22+2y22)+2tx1x2+4ty1y2=2.又x21+2y21=2,x22+2y22=2,即x1x2+2y1y2=-t,所以2m2-23+2×m2-23=-t,解得t=6-4m23.因为t>0,0≤m2<3,所以0<t≤2.综上所述,t的取值范围是(0,2].解决存在性问题的注意事项存在性问题,先假设存在,推证满足条件的结论.若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都未知,按常规方法解题很难时,要开放思维,采取另外的途径.(2020·衡水中学高三月考)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为32,直线l:x-y+2=0与以原点为圆心、椭圆C的短半轴长为半径的圆O相切.(1)求椭圆C的方程.(2)是否存在直线与椭圆C 交于A ,B 两点,交y 轴于点M (0,m ),使|OA →+2OB →|=|OA →-2OB →|成立?若存在,求出实数m 的取值范围;若不存在,请说明理由.解:(1)由已知得⎩⎪⎨⎪⎧a 2=b 2+c 2,b =2,c a =32,解方程组得a =22,b =2,c =6,所以椭圆C 的方程为x 28+y 22=1.(2)假设存在这样的直线.由已知条件,可知直线的斜率存在. 设直线方程为y =kx +m ,由⎩⎨⎧y =kx +m ,x 28+y 22=1,得(4k 2+1)x 2+8kmx +4m 2-8=0,Δ=16(8k 2-m 2+2)>0(*). 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-84k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=m 2-8k 24k 2+1.由|OA →+2OB →|=|OA →-2OB →|,得OA →⊥OB →,即OA →·OB →=0, 即x 1x 2+y 1y 2=0.故8k 2=5m 2-8≥0,得m 2≥85.将8k 2=5m 2-8代入(*)式,解得m 2>32,所以m >2105或m <-2105.11/11 所以实数m 的取值范围是⎝⎛⎭⎪⎫-∞,-2105∪⎝ ⎛⎭⎪⎫2105,+∞.。

高考数学一轮总复习 课时跟踪检测(六十) 定点、定值、探索性问题 理 新人教版

高考数学一轮总复习 课时跟踪检测(六十) 定点、定值、探索性问题 理 新人教版

课时跟踪检测(六十) 定点、定值、探索性问题一保高考,全练题型做到高考达标1.(2016·百校联盟模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴端点到焦点的距离为2.(1)求椭圆C 的方程;(2)设A ,B 为椭圆C 上任意两点,O 为坐标原点,且OA ⊥OB .求证:原点O 到直线AB 的距离为定值,并求出该定值.解:(1)由题意知,e =ca =32,b 2+c 2=2,又a 2=b 2+c 2,所以a =2,c =3,b =1,所以椭圆C 的方程为x 24+y 2=1.(2)证明:当直线AB 的斜率不存在时,直线AB 的方程为x =±255,此时,原点O 到直线AB 的距离为255.当直线AB 的斜率存在时,设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m得(1+4k 2)x 2+8kmx +4m 2-4=0.则Δ=(8km )2-4(1+4k 2)(4m 2-4)=16(1+4k 2-m 2)>0,x 1+x 2=-8km1+4k2,x 1x 2=4m 2-41+4k2, 则y 1y 2=(kx 1+m )(kx 2+m )=m 2-4k 21+4k2,由OA ⊥OB 得k OA ·k OB =-1,即y 1x 1·y 2x 2=-1, 所以x 1x 2+y 1y 2=5m 2-4-4k 21+4k 2=0,即m 2=45(1+k 2), 所以原点O 到直线AB 的距离为|m |1+k2=255. 综上,原点O 到直线AB 的距离为定值255.2.(2015·大庆模拟)椭圆的两焦点坐标分别为F 1(-3,0),F 2(3,0),且椭圆过点P ⎝ ⎛⎭⎪⎫1,-32. (1)求椭圆方程.(2)若A 为椭圆的左顶点,作AM ⊥AN 与椭圆交于两点M ,N ,试问:直线MN 是否恒过x 轴上的一个定点?若是,求出该点坐标;若不是,请说明理由.解:(1)设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),由题意得c =3,且椭圆过点P ⎝ ⎛⎭⎪⎫1,-32, ∴⎩⎪⎨⎪⎧a 2-b 2=3,1a 2+34b2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴椭圆方程为x 24+y 2=1.(2)由已知直线MN 与y 轴不垂直,假设其过定点T (a,0)设其方程为x =my +a .由⎩⎪⎨⎪⎧x =my +a ,x 24+y 2=1,得(m 2+4)y 2+2amy +a 2-4=0.设M (x 1,y 1),N (x 2,y 2),则 y 1+y 2=-2am m 2+4,y 1y 2=a 2-4m 2+4.∴x 1+x 2=my 1+a +my 2+a =m (y 1+y 2)+2a ,x 1x 2=(my 1+a )(my 2+a )=m 2y 1y 2+am (y 1+y 2)+a 2.∵AM ⊥AN ,∴AM ·AN =0, 即(x 1+2,y 1)·(x 2+2,y 2)=0, ∴x 1x 2+2(x 1+x 2)+4+y 1y 2=0.∴(m 2+1)y 1y 2+m (a +2)(y 1+y 2)+(a +2)2=0, 即m 2+a +a -m 2+4-2am 2a +m 2+4+(a +2)2=0.若a =-2,则T 与A 重合,不合题意,∴a +2≠0, 整理得a =-65.综上,直线MN 过定点T ⎝ ⎛⎭⎪⎫-65,0. 3.(2016·大庆模拟)已知抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(1)若AF =2FB ,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.解:(1)依题意知F (1,0),设直线AB 的方程为x =my +1. 将直线AB 的方程与抛物线的方程联立, 消去x 得y 2-4my -4=0. 设A (x 1,y 1),B (x 2,y 2), 所以y 1+y 2=4m ,y 1y 2=-4.① 因为AF =2FB , 所以y 1=-2y 2. ②联立①和②,消去y 1,y 2,得m =±24. 所以直线AB 的斜率是±2 2.(2)由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2S △AOB .因为2S △AOB =2·12·|OF |·|y 1-y 2|=y 1+y 22-4y 1y 2=41+m 2,所以当m =0时,四边形OACB 的面积最小,最小值是4.4.(2015·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线PA 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.解:(1)由题意得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2,解得a 2=2.故椭圆C 的方程为x 22+y 2=1. 设M (x M,0).因为m ≠0,所以-1<n <1, 直线PA 的方程为y -1=n -1mx . 所以x M =m 1-n ,即M ⎝ ⎛⎭⎪⎫m1-n ,0.(2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ).设N (x N,0),则x N =m1+n.“存在点Q (0,y Q )使得∠OQM =∠ONQ ”等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|x M ||x N |.因为x M =m 1-n ,x N =m 1+n ,m 22+n 2=1,所以y 2Q =|x M ||x N |=m 21-n 2=2.所以y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ ,且点Q 的坐标为(0,2)或(0,-2).二上台阶,自主选做志在冲刺名校如图,过x 轴上动点A (a,0)引抛物线y =x 2+1的两条切线AP ,AQ .切线斜率分别为k 1和k 2,切点分别为P ,Q .(1)求证:k 1·k 2为定值,并且直线PQ 过定点;(2)记S 为面积,当S △APQ|PQ | 最小时,求AP ·AQ 的值.解:(1)证明:法一: 设过A 点的直线为y =k (x -a ),与抛物线联立得⎩⎪⎨⎪⎧y =k x -a,y =x 2+1,整理得x 2-kx +ka +1=0,Δ=k 2-4ak -4=0,所以k 1+k 2=4a ,k 1·k 2=-4为定值. 抛物线方程y =x 2+1,求导得y ′=2x , 设切点P ,Q 的坐标分别为(x P ,y P ),(x Q ,y Q ),k 1=2x P ,k 2=2x Q ,所以x P +x Q =2a ,x P ·x Q =-1.直线PQ 的方程:y -y P =y P -y Qx P -x Q(x -x P ), 由y P =x 2P +1,y Q =x 2Q +1, 得到y =(x P +x Q )x -x P x Q +1,整理可得y =2xa +2,所以直线PQ 过定点(0,2). 法二:设切点P ,Q 的坐标分别为(x P ,y P ),(x Q ,y Q ). 对抛物线方程求导得y ′=2x , 所以l AP :y =2x P (x -a ),又(x P ,y P )在直线上, 即y P =2x P (x P -a ),由P (x P ,y P )在抛物线上得y P =x 2P +1, 整理可得y P =2x P a +2, 同理y Q =2x Q a +2, 所以l QP :y =2xa +2, 所以直线PQ 过定点(0,2).联立PQ 的直线方程l QP :y =2xa +2和抛物线方程y =x 2+1, 可得x 2-2xa -1=0, 所以x P x Q =-1,x P +x Q =2a , 所以k 1·k 2=2x P ×2x Q =-4为定值. (2)设A 到PQ 的距离为d .S △APQ =|PQ |×d2,所以S △APQ|PQ |=d2=2a 2+224a 2+1=a 2+14a 2+1, 设t =4a 2+1≥1,所以S △APQ|PQ |=t 2+34t =14⎝ ⎛⎭⎪⎫t +3t ≥32,当且仅当t =3时取等号,即a =±22. 因为AP ·AP =(x P -a ,y P )·(x Q -a ,y Q ) =x P x Q -a (x P +x Q )+a 2+y P y Q ,y P y Q =(2x P a +2)(2x Q a +2)=4a 2x P x Q +4+4a (x P +x Q )=4a 2+4,所以AP ·AP =3a 2+3=92.。

课时跟踪检测(五十四) 定点、定值、探索性问题

课时跟踪检测(五十四) 定点、定值、探索性问题
x0x-2y-2y0=0, 联立方程 2 x =4y
数学
质量铸就品牌 品质赢得未来
课时跟踪检测(五十四) 定点、定值、探索性 结束 问题
2 消去 x 整理得 y2+(2y0-x2 0)y+y0=0, 2 由根与系数的关系可得 y1+y2=x2 - 2 y , y y = y 0 0 1 2 0, 2 所以|AF|· |BF|=y1y2+(y1+y2)+1=y2 0+x0-2y0+1.
2 2
4
数学
质量铸就品牌 品质赢得未来
课时跟踪检测(五十四) 定点、定值、探索性 结束 问题
1 2.解:(1)抛物线 C 的方程为 x2=4y,即 y=4x2, 1 求导得 y′=2x. 设
2 x2 x 1 2 A(x1,y1),B(x2,y2)其中y1= 4 ,y2= 4 ,
1 1 则切线 PA,PB 的斜率分别为2x1,2x2, x1 所以切线 PA 的方程为 y-y1= 2 (x-x1), x1 x2 1 即 y= 2 x- 2 +y1,即 x1x-2y-2y1=0.
数学
质量铸就品牌 品质赢得未来
课时跟踪检测(五十四) 定点、定值、探索性 结束 问题
同理 y2y4=-16, 1 y1y2 所以 k2= =-4· . -16 -16 y1+ y2 y1 + y2 设 AB 所在直线的方程为 x=my+1,与 y2=4x 联立, 得 y2-4my-4=0,所以 y1y2=-4, 1 y1y2 1 所以 k2=-4· = , y1+y2 y1+y2 k1 k1 所以k 是定值,且k =4.
1 3 又 N(0,3),所以圆心 C4x0+x ,3,
0

1 3 1 x + 半径 r=2|MN|= 4 0 x , 0 |AB|= |AC|2-r2 1 1 1 3 2 3 2 2 x0- 4x0+x +3 - 4x0+x = 6. = 2 0 0 所以点 P 在曲线 Γ 上运动时,线段 AB 的长度不变.

《三维设计》高考数学(苏教,理科)大一轮配套课时跟踪检测53 定点、定值、探索性问题

《三维设计》高考数学(苏教,理科)大一轮配套课时跟踪检测53 定点、定值、探索性问题

课时跟踪检测(五十三) 定点、定值、探索性问题(分Ⅰ、Ⅱ卷,共2页) 第Ⅰ卷:夯基保分卷1.(2013·连云港调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点为A ,左、右焦点分别为F 1,F 2,且椭圆C 过点P ⎝⎛⎭⎫43,b 3,以AP 为直径的圆恰好过右焦点F 2.(1)求椭圆C 的方程;(2)若动直线l 与椭圆C 有且只有一个公共点,试问:在x 轴上是否存在两定点,使其到直线l 的距离之积为1?若存在,请求出两定点坐标;若不存在,请说明理由.2.(2014·镇江模拟)已知椭圆O 的中心在原点,长轴在x 轴上,右顶点A (2,0)到右焦点的距离与它到右准线的距离之比为32.不经过点A 的动直线y =12x +m 交椭圆O 于P ,Q 两点.(1)求椭圆的标准方程;(2)求证:P ,Q 两点的横坐标的平方和为定值;(3)过点A ,P ,Q 的动圆记为圆C ,动圆C 过不同于A 的定点,请求出该定点坐标.3.(2013·盐城二模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点P ⎝⎛⎭⎫22,12,记椭圆的左顶点为A .(1)求椭圆的方程;(2)设垂直于y 轴的直线l 交椭圆于B ,C 两点,试求△ABC 面积的最大值;(3)过点A 作两条斜率分别为k 1,k 2的直线交椭圆于D ,E 两点,且k 1k 2=2,求证:直线DE 恒过一个定点.第Ⅱ卷:提能增分卷1.(2014·苏北四市一调)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)过点P ⎝⎛⎭⎫1,32,其左、右焦点分别为F 1,F 2,离心率e =12,M ,N 是椭圆右准线上的两个动点,且1F M ·2F N =0. (1)求椭圆的方程; (2)求MN 的最小值;(3)求以MN 为直径的圆C 是否过定点?请证明你的结论.2.(2014·盐城摸底)如图,在平面直角坐标系xOy 中,已知F 1(-4,0),F 2(4,0),A (0,8),直线y =t (0<t <8)与线段AF 1,AF 2分别交于点P ,Q .(1)当t =3时,求以F 1,F 2为焦点,且过PQ 中点的椭圆的标准方程; (2)过点Q 作直线QR ∥AF 1交F 1F 2于点R ,记△PRF 1的外接圆为圆C . ①求证:圆心C 在定直线7x +4y +8=0上;②圆C 是否恒过异于点F 1的一个定点?若是,求出该点的坐标;若不是,请说明理由.答 案第Ⅰ卷:夯基保分卷1.解:(1)因为椭圆过点P ⎝⎛⎭⎫43,b 3,所以169a 2+19=1, 解得a 2=2.又以AP 为直径的圆恰好过右焦点F 2, 所以AF 2⊥F 2P ,即-bc ·b 343-c =-1,化简得b 2=c (4-3c ).而b 2=a 2-c 2=2-c 2,解得c =1,b =1. 故椭圆C 的方程为x 22+y 2=1.(2)①当直线l 的斜率存在时, 设直线l 的方程为y =kx +p , 代入椭圆方程得(1+2k 2)x 2+4kpx +2p 2-2=0.因为直线l 与椭圆C 有且只有一个公共点,所以Δ=16k 2p 2-4(1+2k 2)(2p 2-2)=8(1+2k 2-p 2)=0,即1+2k 2=p 2. 设在x 轴上存在两点(s,0),(t,0),使其到直线l 的距离之积为1,则|ks +p |k 2+1·|kt +p |k 2+1=|k 2st +kp (s +t )+p 2|k 2+1=1, 即(st +1)k +p (s +t )=0,(*) 或(st +3)k 2+(s +t )kp +2=0.(**)由(*)恒成立得⎩⎪⎨⎪⎧ st +1=0,s +t =0,解得⎩⎪⎨⎪⎧s =1,t =-1或⎩⎪⎨⎪⎧s =-1,t =1.但(**)不恒成立;②当直线l 斜率不存在时,直线l 的方程为x =±2, 定点(-1,0),(1,0)到直线l 的距离之积为 d 1·d 2=(2-1)(2+1)=1.综上,存在两个定点(1,0),(-1,0),使其到直线l 的距离之积为定值1. 2.解:(1)设椭圆的标准方程为 x 2a 2+y 2b 2=1(a >b >0).由题意得a =2,e =32,所以c =3,b =1. 所以椭圆的标准方程为x 24+y 2=1.(2)证明:设点P (x 1,y 1),Q (x 2,y 2), 将y =12x +m 代入椭圆,化简得x 2+2mx +2(m 2-1)=0.①所以x 1+x 2=-2m ,x 1x 2=2(m 2-1),所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4,所以P ,Q 两点的横坐标的平方和为定值4. (3)法一:设圆的一般方程为 x 2+y 2+Dx +Ey +F =0,则圆心为⎝⎛⎭⎫-D 2,-E 2,PQ 的中点M ⎝⎛⎭⎫-m ,m2, PQ 的垂直平分线的方程为 y =-2x -32m ,圆心⎝⎛⎭⎫-D 2,-E 2满足y =-2x -32m , 所以-E 2=D -32m .② 圆过定点(2,0),所以4+2D +F =0.③圆过P (x 1,y 1),Q (x 2,y 2),则⎩⎪⎨⎪⎧x 21+y 21+Dx 1+Ey 1+F =0,x 22+y 22+Dx 2+Ey 2+F =0,两式相加得x 21+x 22+y 21+y 22+Dx 1+Dx 2+Ey 1+Ey 2+2F =0, 即x 21+x 22+⎝⎛⎭⎫1-x 214+⎝⎛⎭⎫1-x 224+D (x 1+x 2)+E (y 1+y 2)+2F =0.因为x 21+x 22=4,x 1+x 2=-2m ,y 1+y 2=m ,所以5-2mD +mE +2F =0.④因为动直线y =12x +m 不过点A ,所以m ≠-1.由②③④解得D =3(m -1)4,E =32m +32,F =-32m -52.代入圆的方程得x 2+y 2+3(m -1)4x +⎝⎛⎭⎫32m +32y -32m -52=0, 即⎝⎛⎭⎫x 2+y 2-34x +32y -52+m ⎝⎛34x +⎭⎫32y -32=0,所以⎩⎨⎧x 2+y 2-34x +32y -52=0,34x +32y -32=0,解得⎩⎪⎨⎪⎧ x =0,y =1或⎩⎪⎨⎪⎧x =2,y =0(舍去).所以圆过定点(0,1). 法二:设圆的一般方程为 x 2+y 2+Dx +Ey +F =0, 将y =12x +m 代入圆的方程得54x 2+⎝⎛⎭⎫m +D +E 2x +m 2+mE +F =0. ⑤因为方程①与方程⑤为同解方程, 所以154=2m m +D +E 2=2(m 2-1)m 2+mE +F .圆过定点(2,0),所以4+2D +F =0,因为动直线y =12x +m 不过点A ,所以m ≠-1.解得D =3(m -1)4,E =32m +32,F =-32m-52.(以下同法一). 3.解:(1)由题意得⎩⎪⎨⎪⎧c a =22,12a 2+14b 2=1,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =1,b =22,c =22.所以椭圆的方程为x 2+2y 2=1. (2)设B (m ,n ),C (-m ,n ), 则S △ABC =12·2|m |·|n |=|mn |.又1=m 2+2n 2≥22m 2n 2=22|mn |,所以|mn |≤24, 当且仅当|m |=2|n |时取等号,从而S △ABC ≤24. 所以△ABC 面积的最大值为24. (3)证明:因为A (-1,0),所以直线AD : y =k 1(x +1),直线AE :y =k 2(x +1).联立⎩⎪⎨⎪⎧y =k 1(x +1),x 2+2y 2=1消去y ,得(1+2k 21)x 2+4k 21x +2k 21-1=0,解得x =-1或x =1-2k 211+2k 21,故点D ⎝ ⎛⎭⎪⎫1-2k 211+2k 21,2k 11+2k 21. 同理,E ⎝ ⎛⎭⎪⎫1-2k 221+2k 22,2k 21+2k 22.又k 1k 2=2,故E ⎝⎛⎭⎪⎫k 21-88+k 21,4k 18+k 21. 故直线DE 的方程为y -2k 11+2k 21= 4k 18+k 21-2k 11+2k 21k 21-88+k 21-1-2k 211+2k 21· ⎝⎛⎭⎪⎫x -1-2k 211+2k 21, 即y -2k 11+2k 21=3k 12(k 21+2)·⎝⎛⎭⎪⎫x -1-2k 211+2k 21, 即y =3k 12(k 21+2)x +5k 12(k 21+2).所以2yk 21-(3x +5)k 1+4y =0.则令⎩⎪⎨⎪⎧y =0,3x +5=0得直线DE 恒过定点⎝⎛⎭⎫-53,0. 第Ⅱ卷:提能增分卷1.解:(1)因为e =c a =12,且过点P ⎝⎛⎭⎫1,32, 所以⎩⎪⎨⎪⎧1a 2+94b2=1,a =2c ,a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =2,b = 3.所以椭圆方程为x 24+y 23=1.(2)由题可设点M (4,y 1),N (4,y 2). 又知F 1(-1,0),F 2(1,0),则1F M =(5,y 1),2F N =(3,y 2).所以1F M ·2F N =15+y 1y 2=0, y 1y 2=-15,y 2=-15y 1.又因为MN =|y 2-y 1|=⎪⎪⎪⎪-15y 1-y 1=15|y 1|+|y 1|≥215,当且仅当|y 1|=|y 2|=15时取等号, 所以MN 的最小值为215.(3)设点M (4,y 1),N (4,y 2),所以以MN 为直径的圆的圆心C 的坐标为⎝⎛⎭⎪⎫4,y 1+y 22,半径r =|y 2-y 1|2,所以圆C 的方程为(x -4)2+⎝⎛⎭⎪⎫y -y 1+y 222=(y 2-y 1)24,整理得x 2+y 2-8x -(y 1+y 2)y +16+y 1y 2=0.由(2)得y 1y 2=-15,所以x 2+y 2-8x -(y 1+y 2)y +1=0,令y =0得x 2-8x +1=0,所以x =4±15,所以圆C 过定点(4±15,0). 2.解:(1)设椭圆的标准方程为 x 2a 2+y 2b 2=1(a >b >0). 当t =3时,PQ 的中点为(0,3),所以b =3. 而a 2-b 2=16,所以a 2=25,b 2=9. 故椭圆的标准方程为x 225+y 29=1.(2)①证明:法一:易得直线AF 1: y =2x +8, AF 2:y =-2x +8, 所以P ⎝⎛⎭⎪⎫t -82,t ,Q ⎝ ⎛⎭⎪⎫8-t 2,t .由QR ∥AF 1,得R (4-t,0).则线段F 1R 的中垂线的方程为x =-t2,线段PF 1的中垂线的方程为y =-12x +5t -168.联立⎩⎪⎨⎪⎧y =-12x +5t -168,x =-t 2,解得⎩⎨⎧x =-t2,y =7t8-2,所以△PRF 1的外接圆的圆心坐标为⎝⎛⎭⎫-t 2,7t8-2. 经验证,该圆心在定直线7x +4y +8=0上. 法二:易得直线AF 1:y =2x +8;AF 2: y =-2x +8, 所以P ⎝⎛⎭⎪⎫t -82,t ,Q ⎝ ⎛⎭⎪⎫8-t 2,t . 由QR ∥AF 1,得R (4-t,0). 设△PRF 1的外接圆C 的方程为 x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧(4-t )2+(4-t )D +F =0,(-4)2-4D +F =0,⎝ ⎛⎭⎪⎫t -822+t 2+t -82D +tE +F =0,解得⎩⎪⎨⎪⎧D =t ,E =4-7t 4,F =4t -16.所以圆心的坐标为⎝⎛⎭⎫-t 2,7t8-2. 经验证,该圆心在定直线7x +4y +8=0上. ②由①可得圆C 的方程为 x 2+y 2+tx +⎝⎛⎭⎫4-7t4y +4t -16=0,该方程可整理为(x 2+y 2+4y -16)+t ⎝⎛⎭⎫x -74y +4=0. 联立⎩⎪⎨⎪⎧x 2+y 2+4y -16=0,x -74y +4=0,解得⎩⎨⎧x =413,y =3213或⎩⎪⎨⎪⎧x =-4,y =0.所以圆C 恒过异于点F 1的一个定点,该点的坐标为⎝⎛⎭⎫413,3213.。

2017届苏教版 定点、定值、探索性问题 课时跟踪检测

2017届苏教版           定点、定值、探索性问题       课时跟踪检测

课时跟踪检测(五十四) 定点、定值、探索性问题 一保高考,全练题型做到高考达标1.如图,已知A 1,A 2,B 1,B 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的四个顶点,△A 1B 1B 2是一个边长为2的等边三角形,其外接圆为圆M.(1)求椭圆C 及圆M 的方程;(2)若点D 是圆M 劣 12A B 上一动点(点D 异于端点A 1,B 2),直线B 1D 分别交线段A 1B 2,椭圆C 于点E ,G ,直线B 2G 与A 1B 1交于点F .①求GB 1EB 1的最大值; ②试问:E ,F 两点的横坐标之和是否为定值?若是,求出该定值;若不是,请说明理由.解:(1)由题意知B 2(0,1),A 1(-3,0),所以b =1,a =3,所以椭圆C 的方程为x 23+y 2=1. 易得圆心M ⎝⎛⎭⎫-33,0,A 1M =233, 所以圆M 的方程为⎝⎛⎭⎫x +332+y 2=43. (2)设直线B 1D 的方程为y =kx -1⎝⎛⎭⎫k <-33,与直线A 1B 2的方程y =33x +1联立, 解得点E ⎝ ⎛⎭⎪⎫233k -1,3k +13k -1. 联立⎩⎪⎨⎪⎧y =kx -1,x 23+y 2=1 消去y 并整理,得(1+3k 2)x 2-6kx =0,解得点G ⎝ ⎛⎭⎪⎫6k 3k 2+1,3k 2-13k 2+1. ①GB 1EB 1=||x G ||x E =⎪⎪⎪⎪6k 3k 2+1⎪⎪⎪⎪⎪⎪233k -1=3k 2-3k 3k 2+1=1-3k +13k 2+1=1+1-(3k +1)+2-(3k +1)+2≤1+122+2=2+12, 当且仅当k =-6+33时等号成立. 所以GB 1EB 1的最大值为2+12. ②易得直线B 2G 的方程为y =3k 2-13k 2+1-16k 3k 2+1x +1=-13k x +1,与直线A 1B 1的方程y =-33x -1联立,解得点F ⎝ ⎛⎭⎪⎫-6k 3k -1,3k +13k -1, 所以E ,F 两点的横坐标之和为233k -1+-6k 3k -1=-2 3. 故E ,F 两点的横坐标之和为定值,该定值为-2 3.2.(2016·盐城二模)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点P ⎝⎛⎭⎫22,12,记椭圆的左顶点为A .(1)求椭圆的方程;(2)设垂直于y 轴的直线l 交椭圆于B ,C 两点,试求△ABC 面积的最大值;(3)过点A 作两条斜率分别为k 1,k 2的直线交椭圆于D ,E 两点,且k 1k 2=2,求证:直线DE 恒过一个定点.解:(1)由题意得⎩⎨⎧c a =22,12a 2+14b 2=1,a 2=b 2+c 2,解得⎩⎨⎧ a =1,b =22,c =22. 所以椭圆的方程为x 2+2y 2=1. (2)设B (m ,n ),C (-m ,n ), 则S △ABC =12·2|m |·|n |=|mn |. 又1=m 2+2n 2≥22m 2n 2=22|mn |, 所以|mn |≤24, 当且仅当|m |=2|n |时取等号,从而S △ABC ≤24.所以△ABC 面积的最大值为24. (3)证明:因为A (-1,0),所以直线AD :y =k 1(x +1),直线AE :y =k 2(x +1).联立⎩⎪⎨⎪⎧y =k 1(x +1),x 2+2y 2=1消去y , 得(1+2k 21)x 2+4k 21x +2k 21-1=0, 解得x =-1或x =1-2k 211+2k 21, 故点D ⎝ ⎛⎭⎪⎫1-2k 211+2k 21,2k 11+2k 21.同理,E ⎝ ⎛⎭⎪⎫1-2k 221+2k 22,2k 21+2k 22. 又k 1k 2=2,故E ⎝ ⎛⎭⎪⎫k 21-88+k 21,4k 18+k 21. 故直线DE 的方程为y -2k 11+2k 21=4k 18+k 21-2k 11+2k 21k 21-88+k 21-1-2k 211+2k 21· ⎝ ⎛⎭⎪⎫x -1-2k 211+2k 21, 即y -2k 11+2k 21=3k 12(k 21+2)·⎝ ⎛⎭⎪⎫x -1-2k 211+2k 21, 即y =3k 12(k 21+2)x +5k 12(k 21+2). 所以2yk 21-(3x +5)k 1+4y =0.则令⎩⎪⎨⎪⎧y =0,3x +5=0得直线DE 恒过定点⎝⎛⎭⎫-53,0. 3.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =12,直线l :x -my -1=0(m ∈R)过椭圆C 的右焦点F 交椭圆C 于A ,B 两点.(1)求椭圆C 的标准方程.(2)已知点D ⎝⎛⎭⎫52,0,连结BD ,过点A 作垂直于y 轴的直线l 1,设直线l 1与直线BD交于点P ,试探索当m 变化时,是否存在一条定直线l 2,使得点P 恒在直线l 2上?若存在,请求出直线l 2的方程;若不存在,请说明理由.解:(1)在x -my -1=0中,令y =0,则x =1,所以F (1,0).由题设,得⎩⎪⎨⎪⎧ c =1,c a =12,解得⎩⎪⎨⎪⎧c =1,a =2,从而b 2=a 2-c 2=3, 所以椭圆C 的标准方程为x 24+y 23=1.(2)令m =0,则A ⎝⎛⎭⎫1,32,B ⎝⎛⎭⎫1,-32或A ⎝⎛⎭⎫1,-32,B ⎝⎛⎭⎫1,32. 当A ⎝⎛⎭⎫1,32,B ⎝⎛⎭⎫1,-32时,P ⎝⎛⎭⎫4,32; 当A ⎝⎛⎭⎫1,-32,B ⎝⎛⎭⎫1,32时,P ⎝⎛⎭⎫4,-32. 所以满足题意的定直线l 2只能是x =4.下面证明点P 恒在直线x =4上.设A (x 1,y 1),B (x 2,y 2).由于PA 垂直于y 轴,所以点P 的纵坐标为y 1,从而只要证明P (4,y 1)在直线BD 上.由⎩⎪⎨⎪⎧x -my -1=0,x 24+y 23=1消去x ,得(4+3m 2)y 2+6my -9=0. 因为Δ=144(1+m 2)>0,所以y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m 2.① 因为k DB -k DP =y 2-0x 2-52-y 1-04-52=y 2my 2+1-52-y 132=32y 2-y 1⎝⎛⎭⎫my 2-3232⎝⎛⎭⎫my 2-32=y 1+y 2-23my 1y 2my 2-32. 将①式代入上式,得k DB -k DP =0,所以k DB =k DP .所以点P (4,y 1)在直线BD 上,从而直线l 1、直线BD 与直线l 2:x =4三线恒过同一点P ,所以存在一条定直线l 2:x =4,使得点P 恒在直线l 2上.4. 如图,已知椭圆C :x 24+y 2=1,A ,B 是四条直线x =±2,y =±1所围成的两个顶点.(1)设P 是椭圆C 上任意一点,若OP =m OA +n OB ,求证:动点Q (m ,n )在定圆上运动,并求出定圆的方程;(2)若M ,N 是椭圆C 上两个动点,且直线OM ,ON 的斜率之积等于直线OA ,OB 的斜率之积,试探求△OMN 的面积是否为定值,说明理由.解:(1)证明:易求A (2,1),B (-2,1).设P (x 0,y 0),则x 204+y 20=1. 由OP =m OA +n OB ,得⎩⎪⎨⎪⎧x 0=2(m -n ),y 0=m +n ,所以4(m -n )24+(m +n )2=1,即m 2+n 2=12. 故点Q (m ,n )在定圆x 2+y 2=12上. (2)设M (x 1,y 1),N (x 2,y 2),则y 1y 2x 1x 2=-14. 平方得x 21x 22=16y 21y 22=(4-x 21)(4-x 22),即x 21+x 22=4.因为直线MN 的方程为(x 2-x 1)y -(y 2-y 1)x +x 1y 2-x 2y 1=0,所以O 到直线MN 的距离为d =||x 1y 2-x 2y 1(x 2-x 1)2+(y 2-y 1)2, 所以△OMN 的面积S =12MN ·d =12|x 1y 2-x 2y 1|=12x 21y 22+x 22y 21-2x 1x 2y 1y 2 =12x 21⎝⎛⎭⎫1-x 224+x 22⎝⎛⎭⎫1-x 214+12x 21x 22=12x 21+x 22=1. 故△OMN 的面积为定值1.二上台阶,自主选做志在冲刺名校(2015·苏锡常镇、宿迁一调)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且经过点⎝⎛⎭⎫1,62,过椭圆的左顶点A 作直线l ⊥x 轴,点M 为直线l 上的动点(点M 与点A 不重合),点B 为椭圆右顶点,直线BM 交椭圆C 于点P . (1)求椭圆C 的方程;(2)求证:AP ⊥OM ; (3)试问OP ·OM 是否为定值?若是定值,请求出该定值;若不是,请说明理由. 解:(1)因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,所以a 2=2c 2,又c 2=a 2-b 2,所以a 2=2b 2.又椭圆C 过点⎝⎛⎭⎫1,62,所以12b 2+32b 2=1. 所以a 2=4,b 2=2.所以椭圆C 的方程为x 24+y 22=1. (2)证明:法一:设直线BM 的斜率为k ,则直线BM 的方程为y =k (x -2).设P (x 1,y 1),将y =k (x -2)代入椭圆C 的方程x 24+y 22=1中并化简得(2k 2+1)x 2-8k 2x +8k 2-4=0, 解得x 1=4k 2-22k 2+1,x 2=2,所以y 1=k (x 1-2)=-4k 2k 2+1,从而P ⎝ ⎛⎭⎪⎫4k 2-22k 2+1,-4k 2k 2+1. 令x =-2,得y =-4k , 所以M (-2,-4k ), OM =(-2,-4k ).又AP =⎝ ⎛⎭⎪⎫4k 2-22k 2+1+2,-4k 2k 2+1=⎝⎛⎭⎫8k 22k 2+1,-4k 2k 2+1, 所以AP · OM =-16k 22k 2+1+16k 22k 2+1=0,所以AP ⊥OM .法二:设P (x 0,y 0).因为A (-2,0),B (2,0).所以k PA ·k PB =y 0x 0+2·y 0x 0-2=y 20x 20-4. 又因为点P 在椭圆上,所以x 204+y 202=1, 所以y 20=2⎝⎛⎭⎫1-x 204. 所以k PA ·k PB =12(4-x 20)x 20-4=-12. 因为k PB =k MB =-tan ∠MBA =-MA AB, k MO =-tan ∠MOA =-MA AO ,所以k PB =12k MO . 因为k PB =-12k PA,所以k MO ·k PA =-1,即AP ⊥MO . (3)设M (-2,t ),P (x 0,y 0).由(2)得AP ⊥MO .所以k AP =y 0x 0+2,k OM =t -2. 所以k AP ·k OM =ty 0-2(x 0+2)=-1.所以t =2(x 0+2)y 0. 所以OP · OM =(x 0,y 0)·⎝⎛⎭⎫-2,2(x 0+2)y 0=-2x 0+y 0·2x 0+4y 0=4. 所以OP ·OM 为定值4.。

定点、定值、探索性问题

定点、定值、探索性问题

第三课时定点、定值、探索性问题A组基础巩固一、选择题1.(2021·北京延庆统测)设抛物线y2=4x的焦点为F,准线为l.P是抛物线上的一点,过P作PQ⊥x轴于Q,若|PF|=3,则线段PQ的长为(C)A.2B.2C.22D.32[解析]抛物线的准线方程为x=-1,由于|PF|=3,根据抛物线的定义可知x P=2,将x P=2代入抛物线方程得y2P=8,y P=±22,所以|PQ|=2 2.故选C.2.(2021·云南文山州质检)已知双曲线x2a2-y2=1(a>0)上关于原点对称的两个点P,Q,右顶点为A,线段AP的中点为E,直线QE交x轴于M(1,0),则双曲线的离心率为(D)A.5B.5 3C.10D.10 3[解析]由已知得M为△APQ的重心,∴a=3|OM|=3,又b=1,∴c=a2+b2=10,即e=ca=103,故选D.3.(2021·湖北宜昌部分示范高中协作体联考)椭圆x2a2+y2b2=1(a>b>0)的离心率32,则双曲线x2a2-y2b2=1的离心率为(D)A.2B.3C.2D.52[解析]椭圆离心率e1=ca=32,∴e21=1-b2a2=34,即b2a2=14,∴双曲线的离心率e=ca=1+b2a2=52.故选D.4.已知椭圆和双曲线有共同的焦点F1,F2,P是它们的一个交点,且∠F1PF2=2π3,记椭圆和双曲线的离心率分别为e 1,e 2,则3e 21+1e 22=( A )A .4B .23C .2D .3[解析] 设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,不妨设点P 在第一象限,根据椭圆和双曲线的定义,得|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,所以|PF 1|=a 1+a 2,|PF 2|=a 1-a 2.又|F 1F 2|=2c ,∠F 1PF 2=2π3,所以在△F 1PF 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos∠F 1PF 2,即4c 2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cos 2π3,化简得3a 21+a 22=4c 2,两边同除以c 2,得3e 21+1e 22=4.故选A .5.直线l 与抛物线C :y 2=2x 交于A ,B 两点,O 为坐标原点,若直线OA ,OB 的斜率分别为k 1,k 2,且满足k 1k 2=23,则直线l 过定点( A )A .(-3,0)B .(0,-3)C .(3,0)D .(0,3)[解析] 设A (x 1,y 1),B (x 2,y 2),因为k 1k 2=23,所以y 1x 1·y 2x 2=23.又y 21=2x 1,y 22=2x 2,所以y 1y 2=6.将直线l :x =my +b 代入抛物线C :y 2=2x 得y 2-2my -2b =0,所以y 1y 2=-2b =6,得b =-3,即直线l 的方程为x =my -3,所以直线l 过定点(-3,0).6.(2021·安徽皖江名校联考)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为P ,任意一条平行于x 轴的直线交C 于A ,B 两点,总有P A ⊥PB ,则双曲线C 的离心率为( A )A .2B .3C .62D .233[解析] 设A (x 0,y 0),B (-x 0,y 0),则y 20=b2⎝⎛⎭⎫x 2a 2-1,又P (a,0),P A →=(x 0-a ,y 0),PB →=(-x 0-a ,y 0),由已知P A ⊥PB ,则P A →·PB →=-x 20+a 2+y 20=0,即(a 2-b 2)⎝⎛⎭⎫x 20a 2-1=0,对于x 0≥a 或x 0≤-a 恒成立,故a 2=b 2,即a =b ,所以e =1+b 2a2= 2.故选A . 7.(2021·河南洛阳期中)已知F 1F 2是双曲线C :x 22-y 2=1的两个焦点,过点F 1且垂直于x 轴的直线与C 相交于A ,B 两点,则△ABF 2的内切圆的半径为( B )A .23B .33C .223D .233[解析] 由题意知F 1(-3,0),F 2(3,0), 当x =-3时,y =±22, ∴|AB |=2,∴|AF |=|BF |=522, ∴l △ABF =62,S △ABF =6,∴所求内切圆半径r =2S △ABF l △ABF=33.故选B .8.(2020·安徽1号卷A10联盟联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)上存在两点M 、N 关于直线2x -3y -1=0对称,且线段MN 中点的纵坐标为23,则椭圆C 的离心率是( B )A .13B .33C .23D .223[解析] 设M (x 1,y 1),N (x 2,y 2),则x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1,两式相减可得 (x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,即y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.∵线段MN 中点的纵坐标为23,∴2x -3×23-1=0,解得x =32,于是-32=-b 2a 2·94,解得b 2a 2=23,∴椭圆C 的离心率e =1-b 2a 2=33,故选B . (或直接利用性质k MN ·k OP =-b 2a2,其中P 为线段MN 的中点).9.(2021·福建莆田质检)已知直线l 过抛物线C :x 2=6y 的焦点F ,交C 于A ,B 两点,交C 的准线于点P ,若AF →=FP →,则|AB |=( A )A .8B .9C .11D .16[解析] 过A 作准线的垂线,垂足为H ,则|AF |=|AH |, 又AF →=FP →,∴|AH |=12|AP |,∴k AP =33,又F ⎝⎛⎭⎫0,32, ∴AB 的方程为y =33x +32, 由⎩⎪⎨⎪⎧y =33x +32x 2=6y,得y 2-5y +94=0,∴y A +y B =5, ∴|AB |=y A +y B +p =5+3=8,故选A .10.(2021·山东青岛调研)在平面直角坐标系xOy 中,动点P 与两个定点F 1(-3,0)和F 2(3,0)连线的斜率之积等于13,记点P 的轨迹为曲线E ,直线l :y =k (x -2)与E 交于A ,B两点,则下列结论中正确的个数为( B )①E 的方程为x 23-y 2=1(x ≠±3)②E 的离心率为3③E 的渐近线与圆(x -2)2+y 2=1相切 ④满足|AB |=23的直线l 仅有1条 A .1 B .2 C .3D .4[解析] 设点P (x ,y ),由已知得y x +3·y x -3=13,整理得x 23-y 2=1,所以点P 的轨迹为曲线E 的方程为x 23-y 2=1(x ≠±3),故①正确;又离心率e =23=233,故②不正确;圆(x-2)2+y 2=1的圆心(2,0)到曲线E 的渐近线为y =±33x 的距离为d =212+(±3)2=1,又圆(x -2)2+y 2=1的半径为1,故③正确;∵(2,0)为双曲线x 23-y 2=1的右焦点,且x =2时,y =±33,∴过右焦点的双曲线最短的弦(通径)为233,又两顶点间距离为23,∴满足|AB |=23的直线有3条,故④错.故选B .二、填空题11.(2021·华东师大附中期中)若点Q (4,1)是抛物线y 2=8x 的弦AB 的中点,则直线AB 的方程为__4x -y +15=0__.[解析] 解法一:点差法,设A (x 1,y 1),B (x 2,y 2),则y 21=8x 1,y 22=8x 2,两式相减,得y 21-y 22=8(x 1-x 2),所以直线AB 的斜率k =y 1-y 2x 1-x 2=8y 1+y 2=82=4,所以直线AB 的方程为y -1=4(x -4), 即4x -y +15=0.解法二:斜率法:设直线AB 的方程为y -1=k (x -4), 代入y 2=8x ,得(kx )2-(8k 2-2k +8)x +(1-4k )2=0, 设A (x 1,y 1),B (x 2,y 2),Q (4,1), 所以x 1+x 2=8k 2-2k +8k 2=8,解得k =4,所以直线AB 的方程为4x -y +15=0.12.(2021·山西重点中学联考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =2,过双曲线上一点M 作直线MA ,MB 交双曲线于A ,B 两点,且斜率分别为k 1,k 2,若直线AB 过原点,则k 1·k 2的值为__3__.[解析] 由题意知,e =ca=1+b 2a2=2⇒b 2=3a 2, 则双曲线方程可化为3x 2-y 2=3a 2,设A (m ,n ),M (x ,y )(x ≠±m ),则B (-m ,-n ), k 1·k 2=y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=3x 2-3a 2-3m 2+3a 2x 2-m 2=3.13.(2021·河北石家庄模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右顶点分别为A ,B ,点P 是双曲线上一点,若△P AB 为等腰三角形,∠P AB =120°[解析] 如图所示:过点P 作PD ⊥x 轴,垂足为D .因为△P AB 为等腰三角形,所以|P A |=|AB |=2a , 又因为∠P AB =120°,所以∠P AD =60°.|PD |=|P A |·sin 60°=3a ,|AD |=|P A |·cos 60°=a ,故P (-2a ,3a ). 因为点P (-2a ,3a )在双曲线x 2a 2-y 2b 2=1上,所以4a 2a 2-3a 2b 2=1,即a 2b2=1.e =c 2a 2=a 2+b 2a 2=1+b 2a2= 2. 故答案为2 三、解答题14.(2021·河北唐山质检)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :x =ty+1交E 于A ,B 两点;当t =0时,|AB |=263. (1)求E 的方程;(2)设A 在直线x =3上的射影为D ,证明:直线BD 过定点,并求定点坐标. [解析] (1)由题意得e 2=c 2a 2=a 2-b 2a 2=23, 整理得a 2=3b 2, 由t =0时,|AB |=263得1a 2+23b 2=1, 因此a =3,b =1.故E 的方程是x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),则D (3,y 1),将x =ty +1代入x 23+y 2=1得(t 2+3)y 2+2ty -2=0,y 1+y 2=-2t t 2+3,y 1·y 2=-2t 2+3,从而ty 1·y 2=y 1+y 2.①直线BD :y =y 2-y 1x 2-3(x -3)+y 1,设直线BD 与x 轴的交点为(x 0,0), 则y 2-y 1x 2-3(x 0-3)+y 1=0, 所以x 0=y 1(3-x 2)y 2-y 1+3=y 1(2-ty 2)y 2-y 1+3=2y 1-ty 1y 2y 2-y 1+3,将①式代入上式可得x 0=2, 故直线BD 过定点(2,0).15.(2021·山西运城调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,F 1、F 2分别是椭圆的左、右焦点,P 是椭圆上一点,且△PF 1F 2的周长是6.(1)求椭圆C 的方程;(2)设直线l 经过椭圆的右焦点F 2且与C 交于不同的两点M ,N ,试问:在x 轴上是否存在点Q ,使得直线QM 与直线QN 的斜率的和为定值?若存在,请求出点Q 的坐标;若不存在,请说明理由.[解析] (1)设椭圆C 的焦距为2c (c >0), 由椭圆的定义知△PF 1F 2的周长为2a +2c , 所以2a +2c =6,①又因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =c a =12,所以a =2c ,②联立①②解得a =2,c =1, 所以b =a 2-c 2=3, 所求椭圆C 的方程为x 24+y 23=1.(2)若存在满足条件的点Q (t,0).当直线l 的斜率k 存在时,设y =k (x -1), 联立x 24+y 23=1,消y 得(3+4k 2)x 2-8k 2x +4k 2-12=0, 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,∵k QM +k QN =y 1x 1-t +y 2x 2-t=k (x 1-1)(x 2-t )+k (x 2-1)(x 1-t )(x 1-t )(x 2-t )=2kx 1x 2-k (1+t )(x 1+x 2)+2ktx 1x 2-t (x 1+x 2)+t 2=k ·8k 2-243+4k 2-8k 2(1+t )3+4k 2+2t4k 2-123+4k 2-8k 23+4k 2t +t 2=k ·8k 2-24-8k 2(1+t )+2t (3+4k 2)4k 2-12-8k 2t +t 2(3+4k 2)=6k (t -4)4(t -1)2k 2+3t 2-12∴要使对任意实数k ,k QM +k QN 为定值,则只有t =4,此时,k QM +k QN =0. 当直线l 与x 轴垂直时,若t =4,也有k QM +k QN =0.故在x 轴上存在点Q (4,0),使得直线QM 与直线QN 的斜率的和为定值0.B 组能力提升1.(2021·吉林长春模拟)双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)被斜率为4的直线截得的弦AB的中点为(2,1),则双曲线E 的离心率为( B )A .2B .3C .2D .5[解析] 设A (x 1,y 1),B (x 2,y 2)代入双曲线方程作差有(x 1-x 2)(x 1+x 2)a 2=(y 1-y 2)(y 1+y 2)b 2,有b 2a 2=(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=2,所以c 2a2=3,e =3,故选B . 2.如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( A )A .5+12B .5-12C .5-1D .5+1[解析] 椭圆中“和”对应双曲线中“差”,故选A .事实上,设“黄金双曲线”方程为x 2a 2-y 2b2=1, 则B (0,b ),F (-c,0),A (a,0). 在“黄金双曲线”中, 因为FB →⊥AB →,所以FB →·AB →=0. 又FB →=(c ,b ),AB →=(-a ,b ).所以b 2=ac .而b 2=c 2-a 2,所以c 2-a 2=ac . 在等号两边同除以a 2,解得e =5+12. 3.(2021·陕西省渭南市模拟)抛物线y 2=4x 的焦点为F ,点P (x ,y )为该抛物线上的动点,又点A (-1,0),则|PF ||P A |的最小值是( B )A .12B .22C .32D .233[解析] 由题意可知,抛物线的准线方程为x =-1,A (-1,0),过P 作PN 垂直直线x =-1于N , 由抛物线的定义可知PF =PN ,连接P A ,|PF ||P A |=|PN ||P A |最小⇔∠NAP 最小⇔∠P AF 最大⇔P A 与抛物线y 2=4x 相切. 设P A 的方程为:y =k (x +1),所以⎩⎪⎨⎪⎧y =k (x +1)y 2=4x,解得:k 2x 2+(2k 2-4)x +k 2=0,所以Δ=(2k 2-4)2-4k 4=0,解得k =±1, 所以∠NP A =45°,|PF ||P A |=cos ∠NP A =22,故选B . 4.(2021·河南中原名校联考)直线l 与抛物线y 2=4x 交于两不同点A ,B ,其中A (x 1,y 1),B (x 2,y 2),若y 1y 2=-36,则直线l 恒过点的坐标是__(9,0)__.[解析] 设直线l 的方程为x =my +n ,则由⎩⎪⎨⎪⎧x =my +n ,y 2=4x ,得y 2-4my -4n =0,∴⎩⎪⎨⎪⎧y 1+y 2=4m ,y 1y 2=-4n .又y 1y 2=-36,∴-4n =-36,∴n =9,∴直线l 方程为x =my +9,恒过(9,0). 5.(2021·山东质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),且该椭圆的一个短轴端点与两焦点F 1,F 2为等腰直角三角形的三个顶点.(1)求椭圆C 的方程;(2)设直线l 不经过P 点且与椭圆C 相交于A ,B 两点.若直线P A 与直线PB 的斜率之积为1,证明:直线l 过定点.[解析] (1)由题意4a 2+1b 2=1,b =c ,结合a 2-b 2=c 2,解得a =6,b =3, ∴椭圆方程为x 26+y 23=1.(2)证明:①当直线l 斜率不存在时, 设直线l :x =m ,A (m ,y m ),B (m ,-y m ),k P A ·k PB =y m -1m -2·-y m -1m -2=1,解得m =2(舍)或m =6(舍),故不满足. ②当直线l 斜率存在时,设l :y =kx +t , A (x 1,y 1),B (x 2,y 2), 联立⎩⎪⎨⎪⎧y =kx +t x 26+y 23=1,整理得(2k 2+1)x 2+4ktx +2t 2-6=0. Δ=8(6k 2-t 2+3)>0,x 1+x 2=-4kt 2k 2+1,x 1x 2=2t 2-62k 2+1.①则k P A ·k PB =y 1-1x 1-2·y 2-1x 2-2=y 1y 2-(y 1+y 2)+1x 1x 2-2(x 1+x 2)+4=1, ∴(k 2-1)x 1x 2+(tk -k +2)(x 1+x 2)+t 2-2t -3=0, 将①代入上式可得12k 2+8kt +t 2+2t -3=0, ∴(2k +t -1)·(6k +t +3)=0, 若2k +t -1=0,t =1-2k , 直线l 经过P 点与已知矛盾, 若6k +t +3=0,t =-3-6k ,Δ=-48(5k 2+6k +1)存在k 使得Δ>0成立. ∴直线l 的方程为y =k (x -6)-3, 故直线l 过定点(6,-3).6.(2021·广东汕头模拟)在平面直角坐标系xOy 中,O 为坐标原点,F (0,1),N (t ,-1)(t ∈R ),已知△MFN 是以FN 为底边,且边MN 平行于y 轴的等腰三角形.(1)求动点M 的轨迹C 的方程;(2)已知直线l 交x 轴于点P ,且与曲线C 相切于点A ,点B 在曲线C 上,且直线PB ∥y 轴,点P 关于点B 的对称点为点Q ,试判断点A 、Q 、O 三点是否共线,并说明理由.[解析] (1)设动点M (x ,y ),因为MN ∥y 轴, 所以MN 与直线y =-1垂直,则|MN |=|y +1|, ∵△MFN 是以FN 为底边的等腰直角三角形, 故|MN |=|MF |,即x 2+(y -1)2=|y +1|,即x 2+(y -1)2=(y +1)2,化简得x 2=4y .因为当点M 为坐标原点时,M 、F 、N 三点共线,无法构成三角形,第 11 页 共 11 页 因此,动点M 的轨迹C 的方程为x 2=4y (y ≠0);(2)A 、Q 、O 三点共线,理由如下:因为直线l 与曲线C 相切,所以直线l 的斜率必存在且不为零,设直线l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧x 2=4y y =kx +m ,消y 得x 2-4kx -4m =0,Δ=16k 2+16m =0,得m =-k 2. 所以,直线l 的方程为y =kx -k 2,令y =0,得x =k ,则点P ()k ,0,∴B ⎝⎛⎭⎫k ,k 24,故Q ⎝⎛⎭⎫k ,k 22, 又由x 2-4kx +4k 2=0,得x =2k ,则点A (2k ,k 2),∵k AO =k 22k =k 2,k OQ =k 22k =k 2,∴k AO =k OQ , 因此,A 、Q 、O 三点共线.。

2020年高中数学课时跟踪检测含解析(全一册)新人教A版

2020年高中数学课时跟踪检测含解析新人教A版课时跟踪检测一变化率问题导数的概念课时跟踪检测二导数的几何意义课时跟踪检测三几个常用函数的导数基本初等函数的导数公式及导数的运算法则课时跟踪检测四复合函数求导及应用课时跟踪检测五函数的单调性与导数课时跟踪检测六函数的极值与导数课时跟踪检测七函数的最大小值与导数课时跟踪检测八生活中的优化问题举例课时跟踪检测九定积分的概念课时跟踪检测十微积分基本定理课时跟踪检测十一定积分的简单应用课时跟踪检测十二合情推理课时跟踪检测十三演绎推理课时跟踪检测十四综合法和分析法课时跟踪检测十五反证法课时跟踪检测十六数学归纳法课时跟踪检测十七数系的扩充和复数的概念课时跟踪检测十八 复数的几何意义课时跟踪检测十九 复数代数形式的加减运算及其几何意义 课时跟踪检测二十 复数代数形式的乘除运算课时跟踪检测(一) 变化率问题、导数的概念一、题组对点训练对点练一 函数的平均变化率1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a =( ) A .-3 B .2 C .3 D .-2解析:选C 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1=a =3.2.若函数f (x )=-x 2+10的图象上一点⎝ ⎛⎭⎪⎫32,314及邻近一点⎝ ⎛⎭⎪⎫32+Δx ,314+Δy ,则Δy Δx =( )A .3B .-3C .-3-(Δx )2D .-Δx -3解析:选D ∵Δy =f ⎝ ⎛⎭⎪⎫32+Δx -f ⎝ ⎛⎭⎪⎫32=-3Δx -(Δx )2,∴Δy Δx =-3Δx -(Δx )2Δx =-3-Δx . 3.求函数y =f (x )=1x在区间[1,1+Δx ]内的平均变化率.解:∵Δy =f (1+Δx )-f (1)=11+Δx-1=1-1+Δx 1+Δx =1-(1+Δx )(1+1+Δx )1+Δx=-Δx(1+1+Δx )1+Δx, ∴Δy Δx =-1(1+1+Δx )1+Δx. 对点练二 求瞬时速度4.某物体的运动路程s (单位:m)与时间t (单位:s)的关系可用函数s (t )=t 3-2表示,则此物体在t =1 s 时的瞬时速度(单位:m/s)为( )A .1B .3C .-1D .0 答案:B5.求第4题中的物体在t 0时的瞬时速度. 解:物体在t 0时的平均速度为v =s (t 0+Δt )-s (t 0)Δt=(t 0+Δt )3-2-(t 30-2)Δt =3t 20Δt +3t 0(Δt )2+(Δt )3Δt=3t 20+3t 0Δt +(Δt )2.因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20,故此物体在t =t 0时的瞬时速度为3t 20 m/s. 6.若第4题中的物体在t 0时刻的瞬时速度为27 m/s,求t 0的值.解:由v =s (t 0+Δt )-s (t 0)Δt =(t 0+Δt )3-2-(t 30-2)Δt=3t 20Δt +3t 0(Δt )2+(Δt )3Δt =3t 20+3t 0Δt +(Δt )2,因为lim Δt →0 [3t 20+3t 0Δt +(Δt )2]=3t 20. 所以由3t 20=27,解得t 0=±3, 因为t 0>0,故t 0=3,所以物体在3 s 时的瞬时速度为27 m/s. 对点练三 利用定义求函数在某一点处的导数 7.设函数f (x )可导,则lim Δx →0 f (1+3Δx )-f (1)3Δx等于( )A .f ′(1)B .3f ′(1)C .13f ′(1) D .f ′(3)解析:选A lim Δx →0f (1+3Δx )-f (1)3Δx=f ′(1).8.设函数f (x )=ax +3,若f ′(1)=3,则a 等于( ) A .2 B .-2 C .3 D .-3 解析:选C ∵f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0a (1+Δx )+3-(a +3)Δx=a ,∴a =3.9.求函数f (x )=x 在x =1处的导数f ′(1).解:由导数的定义知,函数在x =1处的导数f ′(1)=lim Δx →0f (1+Δx )-f (1)Δx,而f (1+Δx )-f (1)Δx =1+Δx -1Δx =11+Δx +1,又lim Δx →0 11+Δx +1=12,所以f ′(1)=12.二、综合过关训练1.若f (x )在x =x 0处存在导数,则lim h →0 f (x 0+h )-f (x 0)h( )A .与x 0,h 都有关B .仅与x 0有关,而与h 无关C .仅与h 有关,而与x 0无关D .以上答案都不对解析:选B 由导数的定义知,函数在x =x 0处的导数只与x 0有关.2.函数y =x 2在x 0到x 0+Δx 之间的平均变化率为k 1,在x 0-Δx 到x 0之间的平均变化率为k 2,则k 1与k 2的大小关系为( )A .k 1>k 2B .k 2<k 2C .k 1=k 2D .不确定解析:选D k 1=f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=2x 0+Δx ;k 2=f (x 0)-f (x 0-Δx )Δx =x 20-(x 0-Δx )2Δx=2x 0-Δx .因为Δx 可正也可负,所以k 1与k 2的大小关系不确定. 3.A ,B 两机关开展节能活动,活动开始后两机关的用电量W 1(t ),W 2(t )与时间t (天)的关系如图所示,则一定有( )A .两机关节能效果一样好B .A 机关比B 机关节能效果好C .A 机关的用电量在[0,t 0]上的平均变化率比B 机关的用电量在[0,t 0]上的平均变化率大D .A 机关与B 机关自节能以来用电量总是一样大解析:选B 由题图可知,A 机关所对应的图象比较陡峭,B 机关所对应的图象比较平缓,且用电量在[0,t 0]上的平均变化率都小于0,故一定有A 机关比B 机关节能效果好.4.一个物体的运动方程为s =1-t +t 2,其中s 的单位是:m,t 的单位是:s,那么物体在3 s 末的瞬时速度是( )A .7 m/sB .6 m/sC .5 m/sD .8 m/s解析:选C ∵Δs Δt =1-(3+Δt )+(3+Δt )2-(1-3+32)Δt=5+Δt ,∴lim Δt →0 Δs Δt =lim Δt →0 (5+Δt )=5 (m/s). 5.如图是函数y =f (x )的图象,则(1)函数f (x )在区间[-1,1]上的平均变化率为________; (2)函数f (x )在区间[0,2]上的平均变化率为________. 解析:(1)函数f (x )在区间[-1,1]上的平均变化率为f (1)-f (-1)1-(-1)=2-12=12.(2)由函数f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x +32,-1≤x ≤1,x +1,1<x ≤3.所以,函数f (x )在区间[0,2]上的平均变化率为f (2)-f (0)2-0=3-322=34.答案:(1)12 (2)346.函数y =-1x在点x =4处的导数是________.解析:∵Δy =-14+Δx+14=12-14+Δx =4+Δx -224+Δx =Δx24+Δx (4+Δx +2). ∴Δy Δx =124+Δx (4+Δx +2). ∴lim Δx →0 Δy Δx =lim Δx →0124+Δx (4+Δx +2) =12×4×(4+2)=116.∴y ′|x =4=116.答案:1167.一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2(位移:m ;时间:s). (1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度; (3)求t =0到t =2时平均速度.解:(1)初速度v 0=lim Δt →0 s (Δt )-s (0)Δt =lim Δt →0 3Δt -(Δt 2)Δt=lim Δt →0 (3-Δt )=3(m/s). 即物体的初速度为3 m/s. (2)v =lim Δt →0s (2+Δt )-s (2)Δt=lim Δt →0 3(2+Δt )-(2+Δt )2-(3×2-4)Δt=lim Δt →0 -(Δt )2-Δt Δt =lim Δt →0 (-Δt -1)=-1(m/s). 即此物体在t =2时的瞬时速度为1 m/s,方向与初速度相反. (3)v =s (2)-s (0)2-0=6-4-02=1(m/s).即t =0到t =2时的平均速度为1 m/s.8.若函数f (x )=-x 2+x 在[2,2+Δx ](Δx >0)上的平均变化率不大于-1,求Δx 的范围.解:因为函数f (x )在[2,2+Δx ]上的平均变化率为: Δy Δx =f (2+Δx )-f (2)Δx=-(2+Δx )2+(2+Δx )-(-4+2)Δx=-4Δx +Δx -(Δx )2Δx =-3-Δx ,所以由-3-Δx ≤-1, 得Δx ≥-2. 又因为Δx >0,即Δx 的取值范围是(0,+∞).课时跟踪检测(二) 导数的几何意义一、题组对点训练对点练一 求曲线的切线方程1.曲线y =x 3+11在点(1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15解析:选C ∵切线的斜率k =lim Δx →0 Δy Δx =lim Δx →0 (1+Δx )3+11-12Δx =lim Δx →0 1+3·Δx +3·(Δx )2+(Δx )3-1Δx =lim Δx →0[3+3(Δx )+(Δx )2]=3, ∴切线的方程为y -12=3(x -1). 令x =0得y =12-3=9.2.求曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2的切线方程.解:因为y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =lim Δx →0 -1x 2+x ·Δx =-1x 2, 所以曲线在点⎝ ⎛⎭⎪⎫12,2的切线斜率为k =y ′|x =12=-4.故所求切线方程为y -2=-4⎝ ⎛⎭⎪⎫x -12,即4x +y -4=0.对点练二 求切点坐标3.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A ∵点(0,b )在直线x -y +1=0上,∴b =1. 又y ′=lim Δx →0 (x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a , ∴过点(0,b )的切线的斜率为y ′|x =0=a =1.4.已知曲线y =2x 2+4x 在点P 处的切线斜率为16,则点P 坐标为________. 解析:设P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0 f (x 0+Δx )-f (x 0)Δx =lim Δx →0 2(Δx )2+4x 0Δx +4ΔxΔx=4x 0+4, 又∵f ′(x 0)=16,∴4x 0+4=16,∴x 0=3,∴P (3,30). 答案:(3,30)5.曲线y =f (x )=x 2的切线分别满足下列条件,求出切点的坐标. (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)切线的倾斜角为135°.解:f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,∴x 0=2,y 0=4,即P (2,4),显然P (2,4)不在直线y =4x -5上,∴符合题意.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,∴x 0=-32,y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,∴x 0=-12,y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14. 对点练三 导数几何意义的应用 6.下面说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )点(x 0,f (x 0))处没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处没有切线,则f ′(x 0)有可能存在解析:选C 根据导数的几何意义及切线的定义知曲线在(x 0,y 0)处有导数,则切线一定存在,但反之不一定成立,故A,B,D 错误.7.设曲线y =f (x )在某点处的导数值为0,则过曲线上该点的切线( ) A .垂直于x 轴B .垂直于y 轴C .既不垂直于x 轴也不垂直于y 轴D .方向不能确定解析:选B 由导数的几何意义知曲线f (x )在此点处的切线的斜率为0,故切线与y 轴垂直.8.如图所示,单位圆中弧AB 的长为x ,f (x )表示弧AB 与弦AB 所围成的弓形面积的2倍,则函数y =f (x )的图象是( )解析:选D 不妨设A 固定,B 从A 点出发绕圆周旋转一周,刚开始时x 很小,即弧AB 长度很小,这时给x 一个改变量Δx ,那么弦AB 与弧AB 所围成的弓形面积的改变量非常小,即弓形面积的变化较慢;当弦AB 接近于圆的直径时,同样给x 一个改变量Δx ,那么弧AB 与弦AB 所围成的弓形面积的改变量将较大,即弓形面积的变化较快;从直径的位置开始,随着B点的继续旋转,弓形面积的变化又由变化较快变为越来越慢.由上可知函数y =f (x )图象的上升趋势应该是首先比较平缓,然后变得比较陡峭,最后又变得比较平缓,对比各选项知D 正确.9.已知函数y =f (x )的图象如图所示, 则函数y =f ′(x )的图象可能是________(填序号).解析:由y =f (x )的图象及导数的几何意义可知,当x <0时f ′(x )>0,当x =0时,f ′(x )=0,当x >0时,f ′(x )<0,故②符合.答案:②二、综合过关训练1.函数f (x )的图象如图所示,则下列结论正确的是( ) A .0<f ′(a )<f ′(a +1)<f (a +1)-f (a ) B .0<f ′(a +1)<f (a +1)-f (a )<f ′(a ) C .0<f ′(a +1)<f ′(a )<f (a +1)-f (a ) D .0<f (a +1)-f (a )<f ′(a )<f ′(a +1)解析:选B f ′(a ),f ′(a +1)分别为曲线f (x )在x =a ,x =a +1处的切线的斜率,由题图可知f ′(a )>f ′(a +1)>0,而f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a表示(a ,f (a ))与(a +1,f (a+1))两点连线的斜率,且在f ′(a )与f ′(a +1)之间.∴0<f ′(a +1)<f (a +1)-f (a )<f ′(a ).2.曲线y =1x -1在点P (2,1)处的切线的倾斜角为( ) A .π6 B .π4 C .π3 D .3π4解析:选D Δy =12+Δx -1-12-1=11+Δx -1=-Δx 1+Δx ,lim Δx →0 Δy Δx =lim Δx →0 -11+Δx =-1,斜率为-1,倾斜角为3π4.3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1 C .y =2x -2D .y =-2x +2解析:选 A 由Δy =(1+Δx )3-2(1+Δx )+1-(1-2+1)=(Δx )3+3(Δx )2+Δx 得lim Δx →0 Δy Δx =lim Δx →0 (Δx )2+3Δx +1=1,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得切线方程为y =x -1.4.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则P 0点的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4)解析:选C f ′(x )=lim Δx →0 (x +Δx )3+(x +Δx )-2-(x 3+x -2)Δx=lim Δx →0 (3x 2+1)Δx +3x (Δx )2+(Δx )3Δx =3x 2+1.由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4.设P 0(x 0,y 0),则有f ′(x 0)=3x 20+1=4,解得x 0=±1,P 0的坐标为(1,0)或(-1,-4).5.已知二次函数y =f (x )的图象如图所示,则y =f (x )在A 、B 两点处的导数f ′(a )与f ′(b )的大小关系为:f ′(a )________f ′(b )(填“<”或“>”).解析:f ′(a )与f ′(b )分别表示函数图象在点A 、B 处的切线斜率,故f ′(a )>f ′(b ).答案:>6.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程为____________.解析:曲线y =3x 2-4x +2在点M (1,1)处的切线斜率k =y ′|x =1=lim Δx →03(1+Δx )2-4(1+Δx )+2-3+4-2Δx=lim Δx →0 (3Δx +2)=2.所以过点 P (-1,2)的直线的斜率为2.由点斜式得y-2=2(x+1),即2x-y+4=0.所以所求直线方程为2x-y+4=0.答案:2x-y+4=07.甲、乙二人跑步的路程与时间关系以及百米赛跑路程和时间关系分别如图①②,试问:(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?解:(1)图①中乙的切线斜率比甲的切线斜率大,故乙跑得快;(2)图②中在快到终点时乙的瞬时速度大,故快到终点时,乙跑得快.8.“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高时爆裂.如果烟花距地面的高度h(m)与时间t(s)之间的关系式为h(t)=-4.9t2+14.7t.其示意图如图所示.根据图象,结合导数的几何意义解释烟花升空后的运动状况.解:如图,结合导数的几何意义,我们可以看出:在t=1.5 s附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s之间,曲线在任何点的切线斜率大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5 s后,曲线在任何点的切线斜率小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.课时跟踪检测(三) 几个常用函数的导数、基本初等函数的导数公式及导数的运算法则一、题组对点训练对点练一 利用导数公式求函数的导数 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π3′=cos π3;③若y =1x 2,则y ′=-1x ;④⎝ ⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( )A .0B .1C .2D .3解析:选B 因为(cos x )′=-sin x ,所以①错误.sin π3=32,而⎝ ⎛⎭⎪⎫32′=0,所以②错误.⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x 3,所以③错误.⎝ ⎛⎭⎪⎫-1x ′=-0-(x 12)′x =12x -12x =12x -32=12x x,所以④正确. 2.已知f (x )=x α(α∈Q *),若f ′(1)=14,则α等于( )A .13B .12C .18D .14 解析:选D ∵f (x )=x α,∴f ′(x )=αx α-1.∴f ′(1)=α=14.对点练二 利用导数的运算法则求导数 3.函数y =sin x ·cos x 的导数是( ) A .y ′=cos 2x +sin 2x B .y ′=cos 2x -sin 2x C .y ′=2cos x ·sin xD .y ′=cos x ·sin x解析:选B y ′=(sin x ·cos x )′=cos x ·cos x +sin x ·(-sin x )=cos 2x -sin 2x . 4.函数y =x 2x +3的导数为________.解析:y ′=⎝ ⎛⎭⎪⎫x 2x +3′=(x 2)′(x +3)-x 2(x +3)′(x +3)2=2x (x +3)-x 2(x +3)2=x 2+6x (x +3)2.答案:x 2+6x (x +3)25.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3, 所以a =3.答案:36.求下列函数的导数.(1)y =sin x -2x 2;(2)y =cos x ·ln x ;(3)y =exsin x.解:(1)y ′=(sin x -2x 2)′=(sin x )′-(2x 2)′=cos x -4x .(2)y ′=(cos x ·ln x )′=(cos x )′·ln x +cos x ·(ln x )′=-sin x ·ln x +cos xx.(3)y ′=⎝ ⎛⎭⎪⎫e x sin x ′=(e x )′·sin x -e x ·(sin x )′sin 2x =e x ·sin x -e x ·cos x sin 2x =e x(sin x -cos x )sin 2x. 对点练三 利用导数公式研究曲线的切线问题7.(2019·全国卷Ⅰ)曲线y =3(x 2+x )e x在点(0,0)处的切线方程为________. 解析:∵y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3), ∴切线斜率k =e 0×3=3,∴切线方程为y =3x . 答案:y =3x8.若曲线f (x )=x ·sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a =________.解析:因为f ′(x )=sin x +x cos x ,所以f ′⎝ ⎛⎭⎪⎫π2=sin π2+π2cos π2=1.又直线ax +2y +1=0的斜率为-a2,所以根据题意得1×⎝ ⎛⎭⎪⎫-a 2=-1,解得a =2.答案:29.已知a ∈R,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a=(a -1)(x -1),令x =0,得y =1.答案:110.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +13上,且在第一象限内,已知曲线C 在点P 处的切线的斜率为2,求点P 的坐标.解:设点P 的坐标为(x 0,y 0),因为y ′=3x 2-10,所以3x 20-10=2,解得x 0=±2.又点P 在第一象限内,所以x 0=2,又点P 在曲线C 上,所以y 0=23-10×2+13=1,所以点P 的坐标为(2,1).二、综合过关训练1.f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N,则f 2 019(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:选D 因为f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f 2 019(x )=f 3(x )=-cos x .2.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .12解析:选A 因为y ′=x 2-3x ,所以根据导数的几何意义可知,x 2-3x =12,解得x =3(x =-2不合题意,舍去).3.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12B .12C .-22D .22解析:选B y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=11+sin 2x ,把x =π4代入得导数值为12,即为所求切线的斜率.4.已知直线y =3x +1与曲线y =ax 3+3相切,则a 的值为( ) A .1 B .±1 C .-1D .-2解析:选A 设切点为(x 0,y 0),则y 0=3x 0+1,且y 0=ax 30+3,所以3x 0+1=ax 30+3…①.对y =ax 3+3求导得y ′=3ax 2,则3ax 20=3,ax 20=1…②,由①②可得x 0=1,所以a =1.5.设a 为实数,函数f (x )=x 3+ax 2+(a -3)x 的导函数为f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在点(2,f (2))处的切线方程为____________.解析:f ′(x )=3x 2+2ax +a -3, ∵f ′(x )是偶函数,∴a =0, ∴f (x )=x 3-3x ,f ′(x )=3x 2-3, ∴f (2)=8-6=2,f ′(2)=9,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -2=9(x -2), 即9x -y -16=0. 答案:9x -y -16=06.设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=________. 解析:令g (x )=(x +1)(x +2)…(x +n ),则f (x )=xg (x ), 求导得f ′(x )=x ′g (x )+xg ′(x )=g (x )+xg ′(x ), 所以f ′(0)=g (0)+0×g ′(0)=g (0)=1×2×3×…×n . 答案:1×2×3×…×n7.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x , ∴y ′=1+1x,y ′|x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1. ∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8. 法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1). ∵y ′=2ax +(a +2), ∴y ′|x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:88.设f (x )=x 3+ax 2+bx +1的导数f ′(x )满足f ′(1)=2a ,f ′(2)=-b ,其中常数a ,b ∈R.求曲线y =f (x )在点(1,f (1))处的切线方程.解:因为f (x )=x 3+ax 2+bx +1,所以f ′(x )=3x 2+2ax +b . 令x =1,得f ′(1)=3+2a +b , 又f ′(1)=2a,3+2a +b =2a , 解得b =-3,令x =2得f ′(2)=12+4a +b , 又f ′(2)=-b , 所以12+4a +b =-b , 解得a =-32.则f (x )=x 3-32x 2-3x +1,从而f (1)=-52.又f ′(1)=2×⎝ ⎛⎭⎪⎫-32=-3, 所以曲线y =f (x )在点(1,f (1))处的切线方程为y -⎝ ⎛⎭⎪⎫-52=-3(x -1), 即6x +2y -1=0.9.已知两条直线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.解:不存在.由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sinx 0.若使两条切线互相垂直,必须使cos x 0·(-sin x 0)=-1,即sin x 0·cos x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直.课时跟踪检测(四) 复合函数求导及应用一、题组对点训练对点练一 简单复合函数求导问题 1.y =cos 3x 的导数是( ) A .y ′=-3cos 2x sin x B .y ′=-3cos 2x C .y ′=-3sin 2xD .y ′=-3cos x sin 2x解析:选A 令t =cos x ,则y =t 3,y ′=y t ′·t x ′=3t 2·(-sin x )=-3cos 2x sin x . 2.求下列函数的导数. (1)y =ln(e x +x 2); (2)y =102x +3;(3)y =sin 4x +cos 4x .解:(1)令u =e x +x 2,则y =ln u .∴y ′x =y ′u ·u ′x =1u ·(e x +x 2)′=1e x +x 2·(e x+2x )=e x+2x e x +x2.(2)令u =2x +3,则y =10u,∴y ′x =y ′u ·u ′x =10u·ln 10·(2x +3)′=2×102x +3ln10.(3)y =sin 4x +cos 4x =(sin 2x +cos 2x )2-2sin 2x ·cos 2x =1-12sin 22x =1-14(1-cos 4x )=34+14cos 4x . 所以y ′=⎝ ⎛⎭⎪⎫34+14cos 4x ′=-sin 4x . 对点练二 复合函数与导数运算法则的综合应用 3.函数y =x 2cos 2x 的导数为( ) A .y ′=2x cos 2x -x 2sin 2x B .y ′=2x cos 2x -2x 2sin 2x C .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x解析:选B y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2(-sin 2x )·(2x )′=2x cos 2x -2x 2sin 2x .4.函数y =x ln(2x +5)的导数为( ) A .ln(2x +5)-x2x +5B .ln(2x +5)+2x2x +5C .2x ln(2x +5)D .x2x +5解析:选 B y ′=[x ln(2x +5)]′=x ′ln(2x +5)+x [ln(2x +5)]′=ln(2x +5)+x ·12x +5·(2x +5)′=ln(2x +5)+2x 2x +5. 5.函数y =sin 2x cos 3x 的导数是________. 解析:∵y =sin 2x cos 3x ,∴y ′=(sin 2x )′cos 3x +sin 2x (cos 3x )′=2cos 2x cos 3x -3sin 2x sin 3x . 答案:2cos 2x cos 3x -3sin 2x sin 3x6.已知f (x )=e πxsin πx ,求f ′(x )及f ′⎝ ⎛⎭⎪⎫12.解:∵f (x )=e πxsin πx ,∴f ′(x )=πe πxsin πx +πe πxcos πx =πe πx(sin πx +cos πx ). f ′⎝ ⎛⎭⎪⎫12=πe π2⎝ ⎛⎭⎪⎫sin π2+cos π2=πe 2π. 对点练三 复合函数导数的综合问题7.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D 令y =ax -ln(x +1),则f ′(x )=a -1x +1.所以f (0)=0,且f ′(0)=2.联立解得a =3.8.曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是( ) A. 5 B .2 5 C .3 5D .0解析:选A 设曲线y =ln(2x -1)在点(x 0,y 0)处的切线与直线2x -y +3=0平行. ∵y ′=22x -1,∴y ′|x =x 0=22x 0-1=2,解得x 0=1,∴y 0=ln(2-1)=0,即切点坐标为(1,0).∴切点(1,0)到直线2x -y +3=0的距离为d =|2-0+3|4+1=5,即曲线y =ln(2x -1)上的点到直线2x -y +3=0的最短距离是 5.9.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( )A .5太贝克B .75ln 2太贝克C .150ln 2 太贝克D .150太贝克解析:选D M ′(t )=-130ln 2×M 02-t30,由M ′(30)=-130ln 2×M 02-3030=-10 ln 2,解得M 0=600, 所以M (t )=600×2-t 30,所以t =60时,铯137的含量为M (60)=600×2-6030=600×14=150(太贝克).二、综合过关训练1.函数y =(2 019-8x )3的导数y ′=( ) A .3(2 019-8x )2B .-24xC .-24(2 019-8x )2D .24(2 019-8x 2)解析:选C y ′=3(2 019-8x )2×(2 019-8x )′=3(2 019-8x )2×(-8)=-24(2 019-8x )2.2.函数y =12(e x +e -x)的导数是( )A .12(e x -e -x) B .12(e x +e -x) C .e x-e -xD .e x+e -x解析:选A y ′=12(e x +e -x )′=12(e x -e -x).3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B 设切点坐标是(x 0,x 0+1),依题意有⎩⎪⎨⎪⎧1x 0+a=1,x 0+1=ln (x 0+a ),由此得x 0+1=0,x 0=-1,a =2.4.函数y =ln ex1+ex 在x =0处的导数为________.解析:y =ln e x1+e x =ln e x -ln(1+e x )=x -ln(1+e x),则y ′=1-e x1+e x .当x =0时,y ′=1-11+1=12. 答案:125.设曲线y =e ax在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________. 解析:令y =f (x ),则曲线y =e ax在点(0,1)处的切线的斜率为f ′(0),又切线与直线x +2y +1=0垂直,所以f ′(0)=2.因为f (x )=e ax ,所以f ′(x )=(e ax )′=e ax ·(ax )′=a e ax,所以f ′(0)=a e 0=a ,故a =2.答案:26.f (x )=ax 2-1且f ′(1)=2,则a 的值为________.解析:∵f (x )=(ax 2-1)12,∴f ′(x )=12(ax 2-1)-12·(ax 2-1)′=ax ax 2-1 .又f ′(1)=2,∴aa -1=2,∴a =2. 答案:27.求函数y =a sin x3+b cos 22x (a ,b 是实常数)的导数.解:∵⎝⎛⎭⎪⎫a sin x 3′=a cos x 3·⎝ ⎛⎭⎪⎫x 3′=a 3cos x3,又(cos 22x )′=⎝ ⎛⎭⎪⎫12+12cos 4x ′=12(-sin 4x )×4=-2sin 4x , ∴y =a sin x3+b cos 22x 的导数为y ′=⎝ ⎛⎭⎪⎫a sin x 3′+b (cos 22x )′=a 3cos x 3-2b sin 4x .8.曲线y =e 2xcos 3x 在(0,1)处的切线与l 的距离为5,求l 的方程. 解:由题意知y ′=(e 2x)′cos 3x +e 2x(cos 3x )′ =2e 2x cos 3x +3(-sin 3x )·e 2x=2e 2x cos 3x -3e 2xsin 3x ,所以曲线在(0,1)处的切线的斜率为k =y ′|x =0=2. 所以该切线方程为y -1=2x ,即y =2x +1. 设l 的方程为y =2x +m ,则d =|m -1|5= 5.解得m =-4或m =6.当m =-4时,l 的方程为y =2x -4;当m=6时,l的方程为y=2x+6.综上,可知l的方程为y=2x-4或y=2x+6.课时跟踪检测(五)函数的单调性与导数一、题组对点训练对点练一函数与导函数图象间的关系1.f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能是下列选项中的( )解析:选C 题目所给出的是导函数的图象,导函数的图象在x轴的上方,表示导函数大于零,原函数的图象呈上升趋势;导函数的图象在x轴的下方,表示导函数小于零,原函数的图象呈下降趋势.由x∈(-∞,0)时导函数图象在x轴的上方,表示在此区间上,原函数的图象呈上升趋势,可排除B、D两选项.由x∈(0,2)时导函数图象在x轴的下方,表示在此区间上,原函数的图象呈下降趋势,可排除A选项.故选C.2.若函数y=f′(x)在区间(x1,x2)内是单调递减函数,则函数y=f(x)在区间(x1,x2)内的图象可以是( )解析:选B 选项A中,f′(x)>0且为常数函数;选项C中,f′(x)>0且f′(x)在(x1,x2)内单调递增;选项D中,f′(x)>0且f′(x)在(x1,x2)内先增后减.故选B.3.如图所示的是函数y=f(x)的导函数y=f′(x)的图象,则在[-2,5]上函数f(x)的递增区间为________.解析:因为在(-1,2)和(4,5]上f′(x)>0,所以f(x)在[-2,5]上的单调递增区间为(-1,2)和(4,5].答案:(-1,2)和(4,5]对点练二判断(证明)函数的单调性、求函数的单调区间4.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2)B.(0,3)C.(1,4) D.(2,+∞)解析:选D f′(x)=(x-3)′e x+(x-3)(e x)′=e x(x-2).由f′(x)>0得x>2,∴f(x)的单调递增区间是(2,+∞).5.函数f (x )=2x 2-ln x 的递增区间是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-12,0和⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎭⎪⎫-∞,-12和⎝ ⎛⎭⎪⎫0,12解析:选C 由题意得,函数的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x=(2x +1)(2x -1)x ,令f ′(x )=(2x +1)(2x -1)x >0,解得x >12,故函数f (x )=2x 2-ln x 的递增区间是⎝ ⎛⎭⎪⎫12,+∞.故选C. 6.已知f (x )=ax 3+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x . (1)求y =f (x )的解析式; (2)求y =f (x )的单调递增区间.解:(1)∵f (x )=ax 3+bx 2+c 的图象经过点(0,1),∴c =1,f ′(x )=3ax 2+2bx ,f ′(1)=3a +2b =1,切点为(1,1),则f (x )=ax 3+bx 2+c 的图象经过点(1,1),得a +b +c =1,解得a =1,b =-1,即f (x )=x 3-x 2+1.(2)由f ′(x )=3x 2-2x >0得x <0或x >23,所以单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫23,+∞.对点练三 与参数有关的函数单调性问题7.若函数f (x )=x -a x 在[1,4]上单调递减,则实数a 的最小值为( ) A .1 B .2 C .4D .5解析:选C 函数f (x )=x -a x 在[1,4]上单调递减,只需f ′(x )≤0在[1,4]上恒成立即可,令f ′(x )=1-12ax -12≤0,解得a ≥2x ,则a ≥4.∴a min =4.8.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,2),则b =________,c =________.解析:f ′(x )=3x 2+2bx +c ,由题意知-1<x <2是不等式f ′(x )<0的解,即-1,2是方程3x 2+2bx +c =0的两个根,把-1,2分别代入方程,解得b =-32,c =-6.答案:-32-69.已知函数f (x )=(x -2)e x+a (x -1)2.讨论f (x )的单调性. 解:f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1)设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0.所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.(2)设a <0,由f ′(x )=0得x =1或x =ln(-2a ).①若a =-e 2,则f ′(x )=(x -1)(e x-e),所以f (x )在(-∞,+∞)上单调递增;②若-e2<a <0,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a ))∪(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减;③若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1)∪(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减.二、综合过关训练1.若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A .f (x )=2-xB .f (x )=x 2C .f (x )=3-xD .f (x )=cos x解析:选A 对于选项A,f (x )=2-x=⎝ ⎛⎭⎪⎫12x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫12x =⎝ ⎛⎭⎪⎫e 2x ,∵e 2>1,∴e x f (x )在R 上单调递增,∴f (x )=2-x具有M 性质.对于选项B,f (x )=x 2,e xf (x )=e x x 2,[e xf (x )]′=e x(x 2+2x ),令e x (x 2+2x )>0,得x >0或x <-2;令e x (x 2+2x )<0,得-2<x <0,∴函数e xf (x )在(-∞,-2)和(0,+∞)上单调递增,在(-2,0)上单调递减,∴f (x )=x 2不具有M 性质.对于选项C,f (x )=3-x=⎝ ⎛⎭⎪⎫13x ,则e x f (x )=e x·⎝ ⎛⎭⎪⎫13x =⎝ ⎛⎭⎪⎫e 3x ,∵e3<1, ∴y =⎝ ⎛⎭⎪⎫e 3x在R 上单调递减,∴f (x )=3-x不具有M 性质.对于选项D,f (x )=cos x ,e xf (x )=e xcos x ,则[e x f (x )]′=e x (cos x -sin x )≥0在R 上不恒成立,故e x f (x )=e xcos x 在R 上不是单调递增的,∴f (x )=cos x 不具有M 性质.故选A.2.若函数f (x )=x -eln x,0<a <e<b ,则下列说法一定正确的是( ) A .f (a )<f (b ) B .f (a )>f (b ) C .f (a )>f (e)D .f (e)>f (b )解析:选C f ′(x )=1-e x =x -ex,x >0,令f ′(x )=0,得x =e,f (x )在(0,e)上为减函数,在(e,+∞)上为增函数,所以f (a )>f (e),f (b )>f (e),f (a )与f (b )的大小不确定.3.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一直角坐标系中,不可能正确的是( )解析:选D 对于选项A,若曲线C 1为y =f (x )的图象,曲线C 2为y =f ′(x )的图象,则函数y =f (x )在(-∞,0)内是减函数,从而在(-∞,0)内有f ′(x )<0;y =f (x )在(0,+∞)内是增函数,从而在(0,+∞)内有f ′(x )>0.因此,选项A 可能正确.同理,选项B 、C 也可能正确.对于选项D,若曲线C 1为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为增函数,与C 2不相符;若曲线C 2为y =f ′(x )的图象,则y =f (x )在(-∞,+∞)内应为减函数,与C 1不相符.因此,选项D 不可能正确.4.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )解析:选C 因为⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2,又因为f ′(x )g (x )-f (x )g ′(x )<0,所以f (x )g (x )在R 上为减函数.又因为a <x <b ,所以f (a )g (a )>f (x )g (x )>f (b )g (b ),又因为f (x )>0,g (x )>0,所以f (x )g (b )>f (b )g (x ).5.(2019·北京高考)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是________.解析:∵f (x )=e x +a e -x(a 为常数)的定义域为R, ∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x-ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立, 即e x≥ae x 在R 上恒成立,∴a ≤e 2x在R 上恒成立.又e 2x>0,∴a ≤0,即a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]6.如果函数f (x )=2x 2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.解析:函数f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x.由f ′(x )>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞;由f ′(x )<0,得函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12.由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0.解得:1≤k <32.答案:⎣⎢⎡⎭⎪⎫1,32 7.已知函数f (x )=x ln x .(1)求曲线f (x )在x =1处的切线方程;(2)讨论函数f (x )在区间(0,t ](t >0)上的单调性. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=ln x +1. 曲线f (x )在x =1处的切线的斜率为k =f ′(1)=1.把x =1代入f (x )=x ln x 中得f (1)=0,即切点坐标为(1,0).所以曲线f (x )在x =1处的切线方程为y =x -1.(2)令f ′(x )=1+ln x =0,得x =1e.①当0<t <1e时,在区间(0,t ]上,f ′(x )<0,函数f (x )为减函数.②当t >1e 时,在区间⎝ ⎛⎭⎪⎫0,1e 上,f ′(x )<0,f (x )为减函数;在区间⎝ ⎛⎭⎪⎫1e ,t 上,f ′(x )>0,f (x )为增函数.8.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解:h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立,令G (x )=1x 2-2x,则a ≥G (x )max .而G (x )=⎝ ⎛⎭⎪⎫1x-12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x .因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x ≤0,即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.课时跟踪检测(六) 函数的极值与导数一、题组对点训练对点练一 求函数的极值1.函数y =x 3-3x 2-9x (-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值D .极小值-27,无极大值解析:选C 由y ′=3x 2-6x -9=0, 得x =-1或x =3.当x <-1或x >3时,y ′>0; 当-1<x <3时,y ′<0.∴当x =-1时,函数有极大值5; 3∉(-2,2),故无极小值.2.已知函数f (x )=x 3-px 2-qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( )A .427,0 B .0,427C .-427,0D .0,-427解析:选A f ′(x )=3x 2-2px -q , 由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1,∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0得x =13或x =1,易得当x =13时f (x )取极大值427,当x =1时f (x )取极小值0.3.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________. ①当x =32时,函数取得极小值;②f (x )有两个极值点; ③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由题图知,当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点,分别为1和2,且当x =2时函数取得极小值,当x =1时函数取得极大值.只有①不正确.答案:①对点练二 已知函数的极值求参数4.函数f (x )=ax 3+bx 在x =1处有极值-2,则a ,b 的值分别为( )A .1,-3B .1,3C .-1,3D .-1,-3解析:选A f ′(x )=3ax 2+b , 由题意知f ′(1)=0,f (1)=-2,∴⎩⎪⎨⎪⎧3a +b =0,a +b =-2,∴a =1,b =-3.5.若函数f (x )=x 2-2bx +3a 在区间(0,1)内有极小值,则实数b 的取值范围是( ) A .b <1 B .b >1 C .0<b <1 D .b <12解析:选C f ′(x )=2x -2b =2(x -b ),令f ′(x )=0,解得x =b ,由于函数f (x )在区间(0,1)内有极小值,则有0<b <1.当0<x <b 时,f ′(x )<0;当b <x <1时,f ′(x )>0,符合题意.所以实数b 的取值范围是0<b <1.6.已知函数f (x )=x 3+3ax 2+3(a +2)x +1既有极大值又有极小值,则实数a 的取值范围是________.解析:f ′(x )=3x 2+6ax +3(a +2),∵函数f (x )既有极大值又有极小值,∴方程f ′(x )=0有两个不相等的实根,∴Δ=36a 2-36(a +2)>0.即a 2-a -2>0,解之得a >2或a <-1.答案:(-∞,-1)∪(2,+∞) 对点练三 函数极值的综合问题7.设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R. (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解:(1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 则g ′(x )=1x -2a =1-2ax x.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,函数g (x )单调递减.所以当a ≤0时,g (x )的单调增区间为(0,+∞); 当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞. (2)由(1)知,f ′(1)=0.。

17版:§9.9课时3 定点、定值、探索性问题(步步高)


解析答案
跟踪训练3
已知椭圆 E:ax22+by22=1(a>b>0)以抛物线 y2=8x 的焦点为顶点,且离心率 为12. (1)求椭圆 E 的方程; 解 抛物线 y2=8x 的焦点为椭圆 E 的顶点,即 a=2.又ac=12, 故 c=1,b= 3. ∴椭圆 E 的方程为x42+y32=1.
解析答案
解析答案
1 2345
(2)过点 S0,-13的动直线 l 交椭圆 C 于 A,B 两点,试问:在坐标平面 上是否存在一个定点 Q,使得以线段 AB 为直径的圆恒过点 Q?若存在, 求出点 Q 的坐标;若不存在,请说明理由.
解析答案
1 2345
3.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA 与l的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由.
解析答案
1 2345
4.设椭圆 C:ax22+by22=1(a>b>0)的离心率 e= 23,左顶点 M 到直线ax+by=1 的距离 d=455,O 为坐标原点. (1)求椭圆 C 的方程;
解析答案
解 由 e= 23,得 c= 23a,又 b2=a2-c2,
所以 b=12a,即 a=2b. 由左顶点 M(-a,0)到直线ax+by=1, 即到直线 bx+ay-ab=0 的距离 d=455,
直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点, 证明:点O到直线AB的距离为定值.
(1)求椭圆的标准方程; 解 设椭圆的焦距为2c,由题意知b=1,且(2a)2+(2b)2=2(2c)2, 又a2=b2+c2,所以a2=3. 所以椭圆的方程为x32+y2=1.

2021届高考数学一轮温习 课时跟踪检测54 定点、定值、探究性问题 文 湘教版(1)

课时跟踪检测(五十四) 定点、定值、探讨性问题(分Ⅰ、Ⅱ卷,共2页) 第Ⅰ卷:夯基保分卷1.已知椭圆C 过点M ⎝⎛⎭⎪⎪⎫1,62 ,点F (-2,0)是椭圆的左核心,点P ,Q 是椭圆C 上的两个动点,且|PF |,|MF |,|QF |成等差数列.(1)求椭圆C 的标准方程;(2)求证:线段PQ 的垂直平分线通过一个定点A . 22,且过点(2,2. (2021·济南模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为2).(1)求椭圆的标准方程;(2)四边形ABCD 的极点在椭圆上,且对角线AC ,BD 过原点O ,假设k AC ·k BD =-b 2a 2.求证:四边形ABCD 的面积为定值.3. (2021·北京东城区期末)在平面直角坐标系xOy 中,动点P 到两点(-3,0),(3,0)的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点E (-1,0)且与曲线C 交于A ,B 两点.(1)求曲线C 的轨迹方程;(2)△AOB 的面积是不是存在最大值,假设存在,求出△AOB 的面积的最大值;假设不存在,说明理由. 第Ⅰ卷:提能增分卷1.已知椭圆C :x 24+y 23=1,点F 1,F 2别离为其左、右核心,点A 为左极点,直线l 的方程为x =4,过点F 2的直线l ′与椭圆交于异于点A 的P ,Q两点.(1)求AP ·AQ 的取值范围;(2)假设AP ∩l =M ,AQ ∩l =N ,求证:M ,N 两点的纵坐标之积为定值,并求出该定值.2. (2021·合肥模拟)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 23-m2=1(0<m 2<3)有公共的核心,过椭圆E 的右极点R 任意作直线l ,设直线l 交抛物线y 2=2x 于M ,N 两点,且OM ⊥ON .(1)求双曲线的核心坐标和椭圆E 的方程;(2)设P 是椭圆E 上第一象限内的点,点P 关于原点O 的对称点为A 、关于x 轴的对称点为Q ,线段PQ 与x 轴相交于点C ,点D 为CQ 的中点,假设直线AD 与椭圆E 的另一个交点为B ,试判定直线PA ,PB 是不是彼此垂直?并证明你的结论.答 案第Ⅰ卷:夯基保分卷1.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由已知,得⎩⎪⎨⎪⎧1a 2+64b 2=1,a 2-b 2=2,解得⎩⎪⎨⎪⎧a 2=4,b 2=2,∴椭圆的标准方程为x 24+y 22=1.(2)证明:设P (x 1,y 1),Q (x 2,y 2), 由椭圆的标准方程为x 24+y 22=1,可知|PF |= x 1+22+y 21=()x 1+22+2-x 212=2+22x 1,同理|QF |=2+22x 2,|MF |=1+22+⎝ ⎛⎭⎪⎪⎫622=2+22, ∵2|MF |=|PF |+|QF |,∴2⎝ ⎛⎭⎪⎪⎫2+22=4+22(x 1+x 2), ∴x 1+x 2=2.(ⅰ)当x 1≠x 2时,由⎩⎪⎨⎪⎧x 21+2y 21=4,x 22+2y 22=4.得x 21-x 22+2(y 21-y 22)=0,∴y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2.设线段PQ 的中点为N (1,n ),由k PQ =y 1-y 2x 1-x 2=-12n, 得线段PQ 的中垂线方程为y -n =2n (x -1), ∴(2x -1)n -y =0,该直线恒过必然点A ⎝ ⎛⎭⎪⎫12,0.(ⅱ)当x 1=x 2时,P ⎝ ⎛⎭⎪⎪⎫1,-62,Q ⎝ ⎛⎭⎪⎪⎫1,62或P ⎝ ⎛⎭⎪⎪⎫1,62,Q ⎝ ⎛⎭⎪⎪⎫1,-62,线段PQ 的中垂线是x 轴,也过点A ⎝ ⎛⎭⎪⎫12,0.综上,线段PQ 的中垂线过定点A ⎝ ⎛⎭⎪⎫12,0.2.解:(1)由题意e =ca =22,4a 2+2b 2=1,又a 2=b 2+c 2,解得a 2=8,b 2=4,故椭圆的标准方程为x 28+y 24=1.(2)证明:设直线AB 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2=8.得(1+2k 2)x 2+4kmx +2m 2-8=0,Δ=(4km )2-4(1+2k 2)(2m 2-8)=8(8k 2-m 2+4)>0, ①由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-81+2k 2.∵k AC ·k BD =-b 2a 2=-12,∴y 1y 2x 1x 2=-12,∴y 1y 2=-12x 1x 2=-12·2m 2-81+2k 2=-m 2-41+2k 2. 又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 22m 2-81+2k 2+km -4km1+2k2+m 2=m 2-8k 21+2k 2,∴-m 2-41+2k 2=m 2-8k 21+2k 2,∴-(m 2-4)=m 2-8k 2, ∴4k 2+2=m 2.设原点到直线AB 的距离为d ,那么 S △AOB =12|AB |·d =121+k 2·|x2-x 1|·|m |1+k2=|m |2 x 1+x 22-4x 1x 2=|m |2 ⎝ ⎛⎭⎪⎫-4km 1+2k 22-4×2m 2-81+2k 2 =|m |28m 21+2k 22=22, ∴S 四边形ABCD =4S △AOB =82,即四边形ABCD 的面积为定值.3.解:(1)由椭圆概念可知,点P 的轨迹C 是以(-3,0),(3,0)为核心,长半轴长为2的椭圆.故曲线C 的轨迹方程为x 24+y 2=1.(2)△AOB 的面积存在最大值.因为直线l 过点E (-1,0),因此可设直线l 的方程为x =my -1或y =0(舍).由⎩⎪⎨⎪⎧x 24+y 2=1,x =my -1.整理得(m 2+4)y 2-2my -3=0,Δ=(2m )2+12(m 2+4)>0.设点A (x 1,y 1),B (x 2,y 2),其中y 1>y 2. 解得y 1=m +2m 2+3m 2+4,y 2=m -2m 2+3m 2+4.那么|y 2-y 1|=4m 2+3m 2+4.因为S △AOB =12|OE |·|y 1-y 2|=2m 2+3m 2+4=2m 2+3+1m 2+3.设t =m 2+3,t ≥3,g (t )=t +1t,则g ′(t )=1-1t2,故当t ≥3时g ′(t )>0恒成立,那么g (t )在区间[3,+∞)上为增函数,因此g (t )≥g (3)=433.因此S △AOB ≤32,当且仅当m =0时取等号. 因此S △AOB 的最大值为32.第Ⅱ卷:提能增分卷1.解:(1)①当直线PQ 的斜率不存在时, 由F 2(1,0)可知PQ 的方程为x =1, 代入椭圆C :x 24+y 23=1,得点P ⎝ ⎛⎭⎪⎫1,32,Q ⎝ ⎛⎭⎪⎫1,-32, 又点A (-2,0),故AP =⎝ ⎛⎭⎪⎫3,32,AQ =⎝⎛⎭⎪⎫3,-32,AP ·AQ =274.②当直线PQ 的斜率存在时,设PQ 的方程为y =k (x -1)(k ≠0),代入椭圆C :x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0.设P (x 1,y 1),Q (x 2,y 2),得x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,y 1y 2=k 2(x 1-1)(x 2-1)=k 2(-x 1-x 2+x 1x 2+1)=-9k 23+4k 2,故AP ·AQ =(x 1+2)(x 2+2)+y 1y 2=x 1x 2+2(x 1+x 2)+4+y 1y 2=27k 23+4k 2=273k 2+4∈⎝⎛⎭⎪⎫0,274,综上,AP ·AQ 的取值范围是⎝⎛⎦⎥⎤0,274.(2)证明:由(1)知,直线AP 的方程为y =y 1x 1+2(x +2),与直线l 的方程x =4联立,得M ⎝ ⎛⎭⎪⎫4,6y 1x 1+2,同理,得N ⎝ ⎛⎭⎪⎫4,6y 2x 2+2, 故M ,N 两点的纵坐标之积y M y N =6y 1x 1+2·6y 2x 2+2=36y 1y 2x 1x 2+2x 1+x 2+4.①当直线PQ 的斜率不存在时,y M y N =36×32×⎝ ⎛⎭⎪⎫-321×1+21+1+4=-9;②当直线PQ 的斜率存在时,由(1)可知,y M y N =-324k 23+4k 24k 2-123+4k 2+16k 23+4k 2+4=-9.综上所述,M ,N 两点的纵坐标之积为定值,该定值为-9. 2.解:(1)由题意可知c 双=m 2+3-m 2=3,故双曲线的核心坐标为F 1(-3,0)、F 2(3,0).设点M (x 1,y 1)、N (x 2,y 2),设直线l :ty =x -a ,代入y 2=2x 并整理得y 2-2ty -2a =0,因此⎩⎪⎨⎪⎧y 1+y 2=2t ,y 1y 2=-2a .故OM ·ON =x 1x 2+y 1y 2=(ty 1+a )(ty 2+a )+y 1y 2 =(t 2+1)y 1y 2+at (y 1+y 2)+a 2=(t 2+1)(-2a )+2at 2+a 2=a 2-2a =0, 解得a =2.又c 椭=c 双=3,因此椭圆E 的方程为x 24+y 2=1.(2)法一:判定结果:PA ⊥PB 恒成立.证明如下:设P (x 0,y 0),那么A (-x 0,-y 0),D (x 0,-12y 0),x 20+4y 20=4, 将直线AD 的方程y =y 04x 0(x +x 0)-y 0代入椭圆方程并整理得(4x 20+y 20)x 2-6x 0y 20x +9x 20y 20-16x 20=0,由题意可知此方程必有一根为-x 0.于是解得x B =6x 0y 204x 20+y 20+x 0, 因此y B =y 04x 0⎝ ⎛⎭⎪⎫6x 0y 204x 20+y 20+2x 0-y 0 =y 30-2x 20y 04x 20+y 20,因此k PB =y 30-2x 20y 04x 20+y 20-y 06x 0y 204x 20+y 20=-6x 20y 06x 0y 20=-x 0y 0, 故k PA k PB =-x 0y 0×y 0x 0=-1,即PA ⊥PB . 法二:判定结果:PA ⊥PB 恒成立.证明如下:设B (x 1,y 1),P (x 0,y 0),那么A (-x 0,-y 0),D ⎝ ⎛⎭⎪⎫x 0,-y 02,x 214+y 21=1,x 204+y 20=1,两式相减得y 21-y 20x 21-x 20=-14,故k BA ·k BP =y 1+y 0x 1+x 0· y 1-y 0x 1-x 0=y 21-y 20x 21-x 20=-14. 又k AB =k AD =-12y 0+y 0x 0+x 0=y 04x 0,代入上式可得k PB =⎝ ⎛⎭⎪⎫-14÷y 04x 0=-x 0y 0, 因此k PA k PB =y 0x 0·⎝ ⎛⎭⎪⎫-x 0y 0=-1, 即PA ⊥PB .。

课时跟踪检测(五十五) 定点与定值、探索性问题

课时跟踪检测(五十五) 定点与定值、探索性问题1.(2020·保定一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F 2与抛物线y 2=4x 的焦点重合,且其离心率为12.(1)求椭圆C 的方程;(2)已知与坐标轴不垂直的直线l 与C 交于M ,N 两点,线段MN 中点为P ,问k MN ·k OP (O 为坐标原点)是否为定值?请说明理由.解:(1)∵抛物线y 2=4x 的焦点为(1,0), ∴椭圆C 的半焦距c =1,又椭圆的离心率e =c a =12,∴a =2,则b =a 2-c 2=3.∴椭圆C 的方程为x 24+y 23=1.(2)由题意可知,直线l 的斜率存在且不为0,设l 的方程为y =kx +m ,联立⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2-12=0,得(3+4k 2)x 2+8kmx +4m 2-12=0.由Δ>0,可得m 2<4k 2+3.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km3+4k 2,y 1+y 2=k (x 1+x 2)+2m =6m3+4k 2,∴P ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2,∴k OP =3m3+4k 2-4km 3+4k 2=-34k .∴k MN ·k OP =-34. 2.如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上的动点P 到一个焦点的距离的最小值为3(2-1). (1)求椭圆C 的标准方程;(2)已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.解:(1)由题意得c a =22,故a =2c .又椭圆上的动点P 到一个焦点的距离的最小值为3(2-1), 所以a -c =3(2-1),所以c =3,a =32,所以b 2=a 2-c 2=9, 所以椭圆C 的标准方程为x 218+y 29=1.(2)当直线l 的斜率为0时,对于x 218+y 29=1,令y =-1,得x =±4,此时以线段AB 为直径的圆的方程为x 2+(y +1)2=16.当直线l 的斜率不存在时,以线段AB 为直径的圆的方程为x 2+y 2=9.联立⎩⎪⎨⎪⎧ x 2+(y +1)2=16,x 2+y 2=9,解得⎩⎪⎨⎪⎧x =0,y =3,即两圆的交点为(0,3),记T (0,3).猜想以线段AB 为直径的圆恒过定点T (0,3).当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx -1(k ≠0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -1,x 218+y 29=1,得(1+2k 2)x 2-4kx -16=0,所以Δ=(-4k )2+64(1+2k 2)=144k 2+64>0,x 1+x 2=4k 1+2k 2,x 1x 2=-161+2k 2. 因为TA ―→·TB ―→=(x 1,y 1-3)·(x 2,y 2-3)=x 1x 2+y 1y 2-3(y 1+y 2)+9=x 1x 2+(kx 1-1)(kx 2-1)-3(kx 1-1+kx 2-1)+9=(k 2+1)x 1x 2-4k (x 1+x 2)+16=-16(k 2+1)1+2k 2-16k 21+2k 2+16=-16(1+2k 2)1+2k2+16=0,所以TA ⊥TB ,故以线段AB 为直径的圆过点T (0,3). 综上,以线段AB 为直径的圆恒过定点(0,3).3.在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (4m,0)(m >0,m 为常数),离心率等于0.8,过焦点F 、倾斜角为θ的直线l 交椭圆C 于M ,N 两点.(1)求椭圆C 的标准方程;(2)若θ=90°时,1|MF |+1|NF |=529,求实数m ;(3)试问1|MF |+1|NF |的值是否与θ的大小无关,并证明你的结论. 解:(1)由题意知,c =4m ,ca =0.8,∴a =5m ,b =3m ,∴椭圆C 的标准方程为x 225m 2+y 29m 2=1.(2)当θ=90°时,N ⎝⎛⎭⎫4m ,95m ,|NF |=|MF |=95m . ∵1|MF |+1|NF |=529,∴109m =529,解得m = 2. (3)1|MF |+1|NF |=109m ,证明如下: 由(2)知,当斜率不存在时,1|MF |+1|NF |=109m. 当斜率存在时,设l :y =k (x -4m ),代入椭圆方程得(9+25k 2)x 2-200mk 2x +25m 2(16k 2-9)=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=200mk 29+25k 2,x 1x 2=25m 2(16k 2-9)9+25k 2. ∵|MF |=5m -45x 1,|NF |=5m -45x 2,∴ 1|MF |+1|NF |=10m -45(x 1+x 2)25m 2-4m (x 1+x 2)+1625x 1x 2=109m与θ无关. 4.(2019·兰州二模)椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是53,过点P (0,1)做斜率为k的直线l ,椭圆E 与直线l 交于A ,B 两点,当直线l 垂直于y 轴时|AB |=3 3.(1)求椭圆E 的方程;(2)当k 变化时,在x 轴上是否存在点M (m,0),使得△AMB 是以AB 为底的等腰三角形,若存在,求出m 的取值范围;若不存在,说明理由.解:(1)由已知椭圆过点⎝⎛⎭⎫332,1,可得⎩⎪⎨⎪⎧274a 2+1b 2=1,a 2=b 2+c 2,c a =53,解得a 2=9,b 2=4,所以椭圆E 的方程为x 29+y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),AB 的中点C (x 0,y 0),由⎩⎪⎨⎪⎧y =kx +1,x 29+y 24=1消去y 得(4+9k 2)x 2+18kx -27=0,所以x 0=x 1+x 22=-9k 4+9k 2,y 0=kx 0+1=44+9k 2. 当k ≠0时,设过点C 且与l 垂直的直线方程y =-1k ⎝ ⎛⎭⎪⎫x +9k 4+9k 2+44+9k 2, 将M (m,0)代入得,m =-54k +9k .若k >0,则4k +9k ≥24k ×9k =12,若k <0,则4k +9k =-⎣⎢⎡⎦⎥⎤-4k +(-9k )≤-2-4k ×(-9k )=-12,所以-512≤m <0或0<m ≤512.当k =0时,m =0,综上所述,存在点M 满足条件,m 取值范围是⎣⎡⎦⎤-512,512. 5.如图,已知直线l :y =kx +1(k >0)关于直线y =x +1对称的直线为l 1,直线l ,l 1与椭圆E :x 24+y 2=1分别交于点A ,M 和A ,N ,记直线l 1的斜率为k 1.(1)求k ·k 1的值;(2)当k 变化时,试问直线MN 是否恒过定点?若恒过定点,求出该定点坐标;若不恒过定点,请说明理由.解:(1)设直线l 上任意一点P (x ,y )关于直线y =x +1对称的点为P 0(x 0,y 0),直线l 与直线l 1的交点为(0,1),∴l :y =kx +1,l 1:y =k 1x +1,k =y -1x ,k 1=y 0-1x 0,由y +y 02=x +x 02+1,得y +y 0=x +x 0+2,① 由y -y 0x -x 0=-1,得y -y 0=x 0-x ,②由①②得⎩⎪⎨⎪⎧y =x 0+1,y 0=x +1,∴k ·k 1=yy 0-(y +y 0)+1xx 0=(x +1)(x 0+1)-(x +x 0+2)+1xx 0=1.(2)由⎩⎪⎨⎪⎧y =kx +1,x 24+y 2=1得(4k 2+1)x 2+8kx =0,设M (x M ,y M ),N (x N ,y N ),∴x M =-8k4k 2+1,y M =1-4k 24k 2+1.同理可得x N =-8k 14k 21+1=-8k4+k 2,y N =1-4k 214k 21+1=k 2-44+k 2.k MN =y M -y N x M -x N =1-4k 24k 2+1-k 2-44+k 2-8k 4k 2+1--8k 4+k 2=8-8k 48k (3k 2-3)=-k 2+13k ,直线MN :y -y M =k MN (x -x M ), 即y -1-4k 24k 2+1=-k 2+13k ⎝ ⎛⎭⎪⎫x --8k 4k 2+1, 即y =-k 2+13k x -8(k 2+1)3(4k 2+1)+1-4k 24k 2+1=-k 2+13k x -53.∴当k 变化时,直线MN 过定点⎝⎛⎭⎫0,-53.6.已知点M 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2分别为C 的左、右焦点,且F 1F 2=4,∠F 1MF 2=60°,△F 1MF 2的面积为433. (1)求椭圆C 的方程;(2)设N (0,2),过点P (-1,-2)作直线l ,交椭圆C 异于N 的A ,B 两点,直线NA ,NB 的斜率分别为k 1,k 2,证明:k 1+k 2为定值.解:(1)在△F 1MF 2中,由12MF 1·MF 2·sin 60°=433,得MF 1·MF 2=163.由余弦定理,得F 1F 22=MF 21+MF 22-2MF 1·MF 2cos 60°=(MF 1+MF 2)2-3MF 1·MF 2=16,解得MF 1+MF 2=4 2.从而2a =MF 1+MF 2=42,即a =2 2. 由F 1F 2=4得c =2,从而b =2, 故椭圆C 的方程为x 28+y 24=1.(2)证明:当直线l 的斜率存在时,设斜率为k , 则其方程为y +2=k (x +1), 由⎩⎪⎨⎪⎧x 28+y 24=1,y +2=k (x +1),消去y , 得(1+2k 2)x 2+4k (k -2)x +2k 2-8k =0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-4k (k -2)1+2k 2,x 1x 2=2k 2-8k 1+2k 2.从而k 1+k 2=y 1-2x 1+y 2-2x 2=2kx 1x 2+(k -4)(x 1+x 2)x 1x 2=2k -(k -4)·4k (k -2)2k 2-8k =4.当直线l 的斜率不存在时, 可得A ⎝⎛⎭⎫-1,142,B ⎝⎛⎭⎫-1,-142,得k 1+k 2=4. 综上,k 1+k 2为定值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(五十四) 定点、定值、探索性问题(选用)(分Ⅰ、Ⅱ卷,共2页) 第Ⅰ卷:夯基保分卷1.已知椭圆C 过点M ⎝⎛⎭⎫1,62 ,点F (-2,0)是椭圆的左焦点,点P ,Q 是椭圆C 上的两个动点,且|PF |,|MF |,|QF |成等差数列.(1)求椭圆C 的标准方程;(2)求证:线段PQ 的垂直平分线经过一个定点A .2. (2013·济南模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点(2,2).(1)求椭圆的标准方程;(2)四边形ABCD 的顶点在椭圆上,且对角线AC ,BD 过原点O ,若k AC ·k BD =-b 2a 2.求证:四边形ABCD 的面积为定值.3. (2013·北京东城区期末)在平面直角坐标系xOy 中,动点P 到两点(-3,0),(3,0)的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点E (-1,0)且与曲线C 交于A ,B 两点.(1)求曲线C 的轨迹方程;(2)△AOB 的面积是否存在最大值,若存在,求出△AOB 的面积的最大值;若不存在,说明理由.第Ⅱ卷:提能增分卷1.已知椭圆C :x 24+y 23=1,点F 1,F 2分别为其左、右焦点,点A 为左顶点,直线l 的方程为x =4,过点F 2的直线l ′与椭圆交于异于点A 的P ,Q 两点.(1)求AP ·AQ 的取值范围;(2)若AP ∩l =M ,AQ ∩l =N ,求证:M ,N 两点的纵坐标之积为定值,并求出该定值.2. (2013·合肥模拟)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 23-m 2=1(0<m 2<3)有公共的焦点,过椭圆E 的右顶点R 任意作直线l ,设直线l 交抛物线y 2=2x 于M ,N 两点,且OM ⊥ON .(1)求双曲线的焦点坐标和椭圆E 的方程;(2)设P 是椭圆E 上第一象限内的点,点P 关于原点O 的对称点为A 、关于x 轴的对称点为Q ,线段PQ 与x 轴相交于点C ,点D 为CQ 的中点,若直线AD 与椭圆E 的另一个交点为B ,试判断直线P A ,PB 是否相互垂直?并证明你的结论.答 案第Ⅰ卷:夯基保分卷1.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由已知,得⎩⎪⎨⎪⎧1a 2+64b 2=1,a 2-b 2=2,解得⎩⎪⎨⎪⎧a 2=4,b 2=2,∴椭圆的标准方程为x 24+y 22=1.(2)证明:设P (x 1,y 1),Q (x 2,y 2), 由椭圆的标准方程为x 24+y 22=1,可知|PF |=(x 1+2)2+y 21=()x 1+22+2-x 212=2+22x 1,同理|QF |=2+22x 2, |MF |=(1+2)2+⎝⎛⎭⎫622=2+22,∵2|MF |=|PF |+|QF |, ∴2⎝⎛⎭⎫2+22=4+22(x 1+x 2),∴x 1+x 2=2.(ⅰ)当x 1≠x 2时,由⎩⎪⎨⎪⎧x 21+2y 21=4,x 22+2y 22=4. 得x 21-x 22+2(y 21-y 22)=0,∴y 1-y 2x 1-x 2=-12·x 1+x 2y 1+y 2.设线段PQ 的中点为N (1,n ),由k PQ =y 1-y 2x 1-x 2=-12n ,得线段PQ 的中垂线方程为y -n =2n (x -1), ∴(2x -1)n -y =0, 该直线恒过一定点A ⎝⎛⎭⎫12,0. (ⅱ)当x 1=x 2时,P ⎝⎛⎭⎫1,-62,Q ⎝⎛⎭⎫1,62 或P ⎝⎛⎭⎫1,62,Q ⎝⎛⎭⎫1,-62, 线段PQ 的中垂线是x 轴, 也过点A ⎝⎛⎭⎫12,0.综上,线段PQ 的中垂线过定点A ⎝⎛⎭⎫12,0. 2.解:(1)由题意e =c a =22,4a 2+2b 2=1,又a 2=b 2+c 2,解得a 2=8,b 2=4,故椭圆的标准方程为x 28+y 24=1.(2)证明:设直线AB 的方程为y =kx +m , A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2=8.得(1+2k 2)x 2+4kmx +2m 2-8=0, Δ=(4km )2-4(1+2k 2)(2m 2-8)=8(8k 2-m 2+4)>0, ① 由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-81+2k 2.∵k AC ·k BD =-b 2a 2=-12,∴y 1y 2x 1x 2=-12,∴y 1y 2=-12x 1x 2=-12·2m 2-81+2k 2=-m 2-41+2k 2. 又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 22m 2-81+2k 2+km -4km 1+2k2+m 2=m 2-8k 21+2k 2,∴-m 2-41+2k 2=m 2-8k 21+2k 2,∴-(m 2-4)=m 2-8k 2, ∴4k 2+2=m 2.设原点到直线AB 的距离为d ,则 S △AOB =12|AB |·d =121+k 2·|x 2-x 1|·|m |1+k 2=|m |2(x 1+x 2)2-4x 1x 2=|m |2⎝ ⎛⎭⎪⎫-4km 1+2k 22-4×2m 2-81+2k 2=|m |28m 2(1+2k 2)2=22,∴S 四边形ABCD =4S △AOB =82, 即四边形ABCD 的面积为定值.3.解:(1)由椭圆定义可知,点P 的轨迹C 是以(-3,0),(3,0)为焦点,长半轴长为2的椭圆.故曲线C 的轨迹方程为x 24+y 2=1.(2)△AOB 的面积存在最大值.因为直线l 过点E (-1,0),所以可设直线l 的方程为x =my -1或y =0(舍).由⎩⎪⎨⎪⎧x 24+y 2=1,x =my -1.整理得(m 2+4)y 2-2my -3=0, Δ=(2m )2+12(m 2+4)>0.设点A (x 1,y 1),B (x 2,y 2),其中y 1>y 2. 解得y 1=m +2m 2+3m 2+4,y 2=m -2m 2+3m 2+4.则|y 2-y 1|=4m 2+3m 2+4.因为S △AOB =12|OE |·|y 1-y 2|=2m 2+3m 2+4=2m 2+3+1m 2+3.设t =m 2+3,t ≥ 3,g (t )=t +1t,则g ′(t )=1-1t 2,故当t ≥3时g ′(t )>0恒成立,则g (t )在区间[3,+∞)上为增函数,所以g (t )≥g (3)=433.所以S △AOB ≤32,当且仅当m =0时取等号. 所以S △AOB 的最大值为32. 第Ⅱ卷:提能增分卷1.解:(1)①当直线PQ 的斜率不存在时, 由F 2(1,0)可知PQ 的方程为x =1, 代入椭圆C :x 24+y 23=1,得点P ⎝⎛⎭⎫1,32,Q ⎝⎛⎭⎫1,-32, 又点A (-2,0),故AP =⎝⎛⎭⎫3,32,AQ =⎝⎛⎭⎫3,-32, AP ·AQ =274.②当直线PQ 的斜率存在时,设PQ 的方程为y =k (x -1)(k ≠0),代入椭圆C :x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0.设P (x 1,y 1),Q (x 2,y 2),得x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,y 1y 2=k 2(x 1-1)·(x 2-1)=k 2(-x 1-x 2+x 1x 2+1)=-9k 23+4k 2,故AP ·AQ =(x 1+2)(x 2+2)+y 1y 2=x 1x 2+2(x 1+x 2)+4+y 1y 2=27k 23+4k 2=273k2+4∈⎝⎛⎭⎫0,274,综上,AP ·AQ 的取值范围是⎝⎛⎦⎤0,274. (2)证明:由(1)知,直线AP 的方程为y =y 1x 1+2(x +2),与直线l 的方程x =4联立,得M ⎝ ⎛⎭⎪⎫4,6y 1x 1+2,同理,得N ⎝ ⎛⎭⎪⎫4,6y 2x 2+2,故M ,N 两点的纵坐标之积y M y N =6y 1x 1+2·6y 2x 2+2=36y 1y 2x 1x 2+2(x 1+x 2)+4.①当直线PQ 的斜率不存在时,y M y N =36×32×⎝⎛⎭⎫-321×1+2(1+1)+4=-9;②当直线PQ 的斜率存在时,由(1)可知,y M y N =-324k 23+4k 24k 2-123+4k 2+16k 23+4k 2+4=-9.综上所述,M ,N 两点的纵坐标之积为定值,该定值为-9. 2.解:(1)由题意可知c 双=m 2+3-m 2=3,故双曲线的焦点坐标为F 1(-3,0)、F 2(3,0).设点M (x 1,y 1)、N (x 2,y 2),设直线l :ty =x -a ,代入y 2=2x 并整理得y 2-2ty -2a =0,所以⎩⎪⎨⎪⎧y 1+y 2=2t ,y 1y 2=-2a .故OM ·ON =x 1x 2+y 1y 2=(ty 1+a )(ty 2+a )+y 1y 2 =(t 2+1)y 1y 2+at (y 1+y 2)+a 2=(t 2+1)(-2a )+2at 2+a 2=a 2-2a =0,解得a =2.又c 椭=c 双=3,所以椭圆E 的方程为x 24+y 2=1.(2)法一:判断结果:P A ⊥PB 恒成立. 证明如下:设P (x 0,y 0),则A (-x 0,-y 0), D (x 0,-12y 0),x 20+4y 20=4,将直线AD 的方程y =y 04x 0(x +x 0)-y 0代入椭圆方程并整理得(4x 20+y 20)x 2-6x 0y 20x +9x 20y 20-16x 20=0,由题意可知此方程必有一根为-x 0.于是解得x B =6x 0y 24x 20+y 20+x 0,所以y B =y 04x 0⎝ ⎛⎭⎪⎫6x 0y 204x 20+y 20+2x 0-y 0 =y 30-2x 20y 04x 20+y 20,所以k PB =y 30-2x 20y 04x 20+y 20-y 06x 0y 204x 20+y 2=-6x 20y 06x 0y 20=-x 0y 0, 故k P A k PB =-x 0y 0×y 0x 0=-1,即P A ⊥PB .法二:判断结果:P A ⊥PB 恒成立.证明如下:设B (x 1,y 1),P (x 0,y 0),则A (-x 0,-y 0),D ⎝⎛⎭⎫x 0,-y 02,x 214+y 21=1,x 204+y 20=1,两式相减得y 21-y 20x 21-x 20=-14,故k BA ·k BP =y 1+y 0x 1+x 0· y 1-y 0x 1-x 0=y 21-y 20x 21-x 20=-14.又k AB =k AD =-12y 0+y 0x 0+x 0=y 04x 0,代入上式可得k PB =⎝⎛⎭⎫-14÷y 04x 0=-x0y 0, 所以k P A k PB =y 0x 0·⎝⎛⎭⎫-x 0y 0=-1, 即P A ⊥PB .。

相关文档
最新文档