鸽巢问题l教学案例

合集下载

鸽巢问题l教学案例

鸽巢问题l教学案例

鸽巢问题教学设计一、创设情境,提出问题师:同学们,你们喜欢看魔术表演吗?生:喜欢。

师:今天老师给大家表演一个魔术,想看吗?生:想。

师:请五名同学上来,每人随意抽取一张牌。

我猜这五张牌中至少有2张是同一花色的,你们信吗?生有的信,有的不信。

师:要不要再来一次?生:要。

师:请这五名同学再抽一次牌。

我猜这五张牌中至少有2张是同一花色的,你们信吗?生有的信,有的不信。

师:如果请这五位同学反复抽牌,我敢肯定,总是至少有2张牌是同一花色。

你们信吗?师:知道老师刚才为什么猜的那么准吗?因为它属于一类有趣的数学问题,今天我们就一起来探究这个问题——鸽巢问题。

看到这个题目,你想问什么?生:什么是鸽巢问题?生:鸽子和巢之间有什么问题?生:学了鸽巢问题能解决什么问题?师:学了这节课,你们的这些问题就迎刃而解了。

二、探究交流,解决问题1. 师:我们先从简单情景入手。

3根小棒放入2个杯子里,怎样放?有几种不同的放法?你可以动手摆一摆,也可以在纸上直接画。

生操作。

师:你是怎么放的?请把你的画到黑板上。

大家来看,有想说话的吗?生:那两种是一种方法。

师:是。

我们就擦掉一个。

还有不同的记录方法吗?生:我用数字记录的师:把你的给大家展示一下。

行吗?生:行。

师:观察这种放法,放小棒最多的那个杯子里放了几根?生:2根。

师:观察这种放法,放小棒最多的那个杯子里放了几根?生:3根。

师:观察这两种放法,放小棒最多的那个杯子里的根数有什么共同点?生:有2根有3根.生:2根或2根以上。

生:至少2根。

生:不管怎么放,总有一个杯子里至少放2根小棒。

师:“总有”什么意思?生:一定有。

师:“至少”什么意思?生:最少。

2. 师:4根小棒放进3个杯子里,怎样放?有几种不同的放法?生继续摆小棒。

(1)师:把你的写在黑板上。

生把几种摆法画在黑板上。

师:观察这几种不同的放法,放小棒最多的那个杯子里的根数有什么共同点?生:至少有2根小棒。

生:总有一个杯子里至少放2根小棒。

鸽巢问题教案教学设计名师公开课获奖教案百校联赛一等奖教案

鸽巢问题教案教学设计名师公开课获奖教案百校联赛一等奖教案

鸽巢问题教案教学设计一、教学目标1.了解鸽巢问题的概念及背景知识。

2.熟悉鸽巢问题的解题方法。

3.培养学生的逻辑思维和问题解决能力。

4.提高学生的合作意识和团队合作能力。

二、教学准备1.教师准备:鸽巢问题的教学材料、黑板、白板、笔、缩放器等。

2.学生准备:纸、铅笔、计算器等。

三、教学过程1.导入(5分钟)教师通过提问的方式引出鸽巢问题,并简单介绍鸽巢问题的背景和相关概念。

2.讲解(10分钟)教师详细讲解鸽巢问题的定义和解题思路,包括确定鸽巢数量、确定鸽子数量、应用抽屉原理判断是否有鸽子必在同一个鸽巢内,以及确定最大鸽巢数量和最小鸽巢数量的计算方法。

3.示例演练(15分钟)教师选择几个鸽巢问题的例子放在黑板上,并与学生一起进行解题分析和讨论,引导学生理解鸽巢问题的解题方法。

4.小组合作(20分钟)将学生分为小组,每组4-5人,让他们在小组内选择一道鸽巢问题,并用所学的解题方法进行讨论和解答。

教师在小组间巡回指导,并鼓励学生之间的合作和交流。

5.展示与总结(10分钟)每个小组派一名代表上台展示他们的解题过程和答案,并由全班一起进行讨论和评价。

教师提出问题及解题过程中的易错点和注意事项,引导学生总结鸽巢问题的解题方法和思路。

6.拓展练习(15分钟)教师出示一些拓展练习题,以加深学生对鸽巢问题解题方法的理解和应用能力。

让学生独立思考和解答,然后进行讲解和讨论。

7.课堂检测(5分钟)教师出一道鸽巢问题的题目供学生在课堂上解答,用于检测学生对知识的掌握情况。

四、教学反思通过本次鸽巢问题的教学设计,学生能够了解并掌握鸽巢问题的概念和解题方法。

通过小组合作和展示的形式,培养了学生的合作意识和团队合作能力。

同时,通过拓展练习和课堂检测的安排,能够更好地检验和巩固学生的学习效果。

在今后的教学中,可以进一步引导学生将鸽巢问题的思维方法应用到更复杂的问题中,提高学生的问题解决能力和创新思维能力。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。

2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。

3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。

4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。

二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

三、教学准备纸杯、吸管、多媒体课件。

四、教学过程(一)创设情境揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。

(二)探索新知(1)初步感知。

把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有”“至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。

教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有”“至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。

(2)逐步深入初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。

(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。

鸽巢问题教学设计范文(精选5篇)

鸽巢问题教学设计范文(精选5篇)

鸽巢问题教学设计范⽂(精选5篇)鸽巢问题教学设计范⽂(精选5篇) 作为⼀位兢兢业业的⼈民教师,就有可能⽤到教学设计,教学设计是实现教学⽬标的计划性和决策性活动。

那么写教学设计需要注意哪些问题呢?以下是⼩编为⼤家收集的鸽巢问题教学设计范⽂(精选5篇),供⼤家参考借鉴,希望可以帮助到有需要的朋友。

鸽巢问题教学设计1 本节课是数学⼴⾓内容,也叫“抽屉原理”。

实际上是⼀种解决某种特定结构的数学或⽣活问题的模型,体现了⼀种数学的思想⽅法。

反思如下: 1.从学⽣喜欢的“游戏”⼊⼿,激发学⽣学习的兴趣和求知欲望,从⽽提出需要研究的数学问题。

这样设计使学⽣在⽣动、活泼的数学活动中主动参与、主动实践、主动思考,使学⽣的数学知识、数学能⼒、数学思想、数学情感得到充分的发展,从⽽达到动智与动情的完美结合,全⾯提⾼学⽣的整体素质。

2.引导学⽣在经历猜测、尝试、验证的过程中逐步从直观⾛向抽象。

在例1中针对实验的所有结果,在学⽣总结表征的基础上,进⽽提出“你还可以怎样想?”的问题,组织学⽣展开讨论交流。

我引导学⽣借助平均分即每个笔筒⾥先只放1⽀,这时学⽣看到还剩下1⽀铅笔,这1⽀铅笔不管放⼊其中的哪⼀个笔筒,这个笔筒都会有2⽀铅笔。

进⼀步引导学⽣加深对“⾄少有⼀个笔筒中有2⽀铅笔”的理解。

最后,组织学⽣进⼀步借助直观操作,讨论诸如“5⽀铅笔放进4个笔筒,不管怎么放,总有⼀个笔筒中⾄少有2⽀铅笔,为什么?”的问题,并不断改变数据(铅笔数⽐笔筒数多1),让学⽣继续思考,引导学⽣归纳得出⼀般性的结论:(+1)⽀铅笔放进个笔筒⾥,总有⼀个笔筒⾥⾄少放进2⽀铅笔。

注重让学⽣在观察、实验、猜想、验证等活动中,发展合情推理能⼒,培养学⽣能进⾏有条理的思考,能⽐较清楚地表达⾃⼰的思考过程与结果,经历与他⼈合作交流解决问题的过程。

本节课⾸先通过三个基础练习回顾了“鸽巢原理”,接下来的练习题是鸽巢问题的原理⽐较简单,但是在实际的题⽬当中,最主要的.是帮助学⽣在不同的题⽬中找出该道题⽬的“鸽巢”是什么,然后要放到“鸽巢”⾥的东西是什么,只有帮助学⽣在解题时有了构建鸽巢问题模型的能⼒,才能使学⽣真正的理解鸽巢问题,以便更好地解决鸽巢问题。

人教版数学六年级下册鸽巢问题教案(推荐3篇)

人教版数学六年级下册鸽巢问题教案(推荐3篇)

人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题》教学设计【教学内容】人教版课标教材小学数学六年级下册第五单元数学广角第70-71页。

【教学目标】1.通过操作、观察、比较、分析、推理、抽象概括,引导学生经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。

2.在探究的过程中,渗透模型思想,培养学生的推理和抽象思维能力。

3.使学生感受数学的魅力,培养学习的兴趣。

【教学重点】经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。

【教学难点】理解抽屉原理,并对一些简单的实际问题加以模型化。

【教学过程】一、开门见山,引入课题。

承接课前谈话内容,直接揭示课题。

二、经历过程,构建模型。

(一)研究“4个小球任意放进3个抽屉”存在的现象。

1.出示结论:4个小球放进3个抽屉里,不管怎么放,总有一个抽屉里面至少放2个小球。

让学生说说对这句话的理解。

2.验证结论的正确性。

让学生用长方形代替抽屉,用圆代替小球画一画,看有几种不同的放法。

3.全班交流。

学生汇报后,教师引导观察每种放法,通过横向、纵向比较,找到每种放法中放得最多的抽屉,然后从最多数里找最少数,发现不管哪种放法,都能从里面找到这样的一个抽屉,里面至少有2个小球。

从而理解并证明了“不管怎么放,总有一个抽屉里至少放2个小球”这个结论是正确的。

(二)研究“5个小球任意放进4个抽屉”存在的现象,找到求至少数的简便方法。

1.猜测:根据刚才的研究经验猜一猜:把5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放几个小球?2.验证。

学生以小组为单位共同研究:先画出不同的放法。

然后观察分析每种放法,看看哪种猜测是正确的。

3.全班交流。

小组汇报研究结果。

教师追问:通过验证,我们发现5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放2个小球。

那“总有一个抽屉至少放3个小球”为什么不对?学生通过观察各种放法来说明原因。

《鸽巢问题》教学设计(通用8篇)

《鸽巢问题》教学设计(通用8篇)

《鸽巢问题》教学设计(通用8篇)《鸽巢问题》教学设计(通用8篇)作为一位杰出的教职工,就难以避免地要准备教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。

你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编收集整理的《鸽巢问题》教学设计,希望对大家有所帮助。

《鸽巢问题》教学设计篇1一、教学内容:教科书第68页例1。

二、教学目标:(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。

(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

三、教学重难点教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。

教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

四、教学准备:多媒体课件。

五、教学过程(一)候课阅读分享:同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。

(二)激情导课好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。

你准备好了吗?好,我们现在开始上课。

(三)民主导学1、请同学们先来看例1。

把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。

请你再把题读一次,这是为什么呢?要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。

我们再思考这一句话中,总有和至少是什么意思?对总有就是一定的意思。

至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。

或者是说,铅笔的支数要大于或等于两支。

那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。

数学广角-《鸽巢问题》教案

此外,我还发现部分学生在解决实际问题时,对于如何运用鸽巢原理仍然感到困惑。针对这一点,我将在复习环节加强对重点难点的讲解,并通过更多实例让学生巩固知识。
1.注重学生的个体差异,因材施教。
2.增加案例分析,让学生在具体情境中感受数学知识的应用。
3.加强课堂讨论的引导,确保讨论围绕主题进行。
4.提高学生的表达能力,让成果分享更加高效。
数学广角-《鸽巢问题》教案
一、教学内容
《鸽巢问题》选自人教版数学四年级下册第九单元数学广角。本节课主要内容包括:
1.理解鸽巢问题的含义,掌握其基本原理。
2.学会运用鸽巢问题解决实际生活中的问题。
3.掌握抽屉原理,并能运用其解决简单问题。
4.举例说明鸽巢问题在实际生活中的应用。
二、核心素养目标
1.培养学生逻辑推理能力,通过鸽巢问题的探讨,使学生理解并掌握抽屉原理,能运用逻辑推理解决问题。
三、教学难点与重点
1.教学重点
-理解鸽巢问题的基本原理:即如果有n个鸽子,要放到m个巢里(n>m),那么至少有一个巢里至少有两个鸽子。这一原理是本节课的核心,需要学生深刻理解并能够应用。
-掌握抽屉原理的应用:通过鸽巢问题引出抽屉原理,使学生能够将这一原理应用到其他类似的问题中,如袜子配对、书本分配等。
-解决实际生活中的问题:培养学生将数学知识应用于解决实际问题的能力,例如在日常生活中如何合理分配资源等。
举例:在讲解鸽巢问题时,可以通过具体的例子(如10个学生分配5个奖品),让学生理解并掌握鸽巢原理。
2.教学难点
-逻辑推理的严谨性:学生需要理解并掌握从一般到特殊的推理过程,对于四年级学生来说,这可能是一个挑战。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容:人教版小学数学六年级下册教材第68~69页。

教材分析:鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。

这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。

学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。

学情分析:“鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。

但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。

设计理念:在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。

教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。

2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。

3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。

教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

教学准备:多媒体课件、微视频、合作探究作业纸。

教学过程:一、谈话引入:1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。

你们信吗?2、验证:学生报出生月份。

根据所报的月份,统计13人中生日在同一个月的学生人数。

六年级下册数学人教版第2课时鸽巢问题优秀教学案例

3.学生能够通过解决鸽巢问题,培养逻辑思维能力、分析问题和解决问题的能力。
(二)过程与方法
1.学生能够通过观察、操作、思考、交流等过程,体验和理解鸽巢问题的解决方法。
2.学生能够在解决鸽巢问题的过程中,学会与他人合作、分享和交流,培养团队合作意识。
3.学生能够运用直观的图形和实物模型进行思考和分析,提高直观思维和模型思想的能力。
4.反思与评价的重视:本节课注重引导学生进行自我反思,让学生思考自己在解决鸽巢问题过程中的优点和不足之处。通过设计评价量表或问题,让学生对自己的学习过程进行评价,培养学生的自我评价和自我改进的能力。教师还关注学生的学习进步和成长,及时给予鼓励和反馈,帮助学生建立自信心,培养积极的学习态度。
5.全面的教学目标:本节课的教学目标涵盖了知识与技能、过程与方法、情感态度与价值观三个部分。通过解决鸽巢问题,学生不仅能够掌握解决实际问题的基本方法和解题步骤,还能够培养逻辑思维能力、分析问题和解决问题的能力。同时,学生能够在解决鸽巢问题的过程中,体验到数学的乐趣和价值,培养对数学的兴趣和好奇心,树立自信心,勇于面对困难和挑战,培养坚持不懈、克服困难的精神。
2.设计小组讨论和合作的活动,让学生在讨论中思考、在合作中学习,培养学生的团队合作意识和沟通能力。
3.教师在小组合作过程中要进行适当的引导和监督,确保每个学生都能积极参与并从中获益。
(四)反思与评价
1.在教学过程中,教师要引导学生进行自我反思,让学生思考自己在解决鸽巢问题过程中的优点和不足之处。
2.教师可以设计评价量表或问题,让学生对自己的学习过程进行评价,培养学生的自我评价和自我改进的能力。
2.利用实物模型、图形和动画等直观手段,帮助学生建立直观的数学观念,更好地理解和解决鸽巢问题。

鸽巢问题优秀教学实录

鸽巢问题优秀教学实录(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、实习报告、职业规划、职场语录、规章制度、自我介绍、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, internship reports, career plans, workplace quotes, rules and regulations, self introductions, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!鸽巢问题优秀教学实录鸽巢问题优秀教学实录(精选5篇)通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸽巢问题教学设计
一、创设情境,提出问题
师:同学们,你们喜欢看魔术表演吗?
生:喜欢。

师:今天老师给大家表演一个魔术,想看吗?
生:想。

师:请五名同学上来,每人随意抽取一张牌。

我猜这五张牌中至少有2张是同一花色的,你们信吗?
生有的信,有的不信。

师:要不要再来一次?
生:要。

师:请这五名同学再抽一次牌。

我猜这五张牌中至少有2张是同一花色的,你们信吗?
生有的信,有的不信。

师:如果请这五位同学反复抽牌,我敢肯定,总是至少有2张牌是同一花色。

你们信吗?
师:知道老师刚才为什么猜的那么准吗?因为它属于一类有趣的数学问题,今天我们就一起来探究这个问题——鸽巢问题。

看到这个题目,你想问什么?
生:什么是鸽巢问题?
生:鸽子和巢之间有什么问题?
生:学了鸽巢问题能解决什么问题?
师:学了这节课,你们的这些问题就迎刃而解了。

二、探究交流,解决问题
1. 师:我们先从简单情景入手。

3根小棒放入2个杯子里,怎样放?有几种不同的放法?你可以动手摆一摆,也可以在纸上直接画。

生操作。

师:你是怎么放的?请把你的画到黑板上。

大家来看,有想说话的吗?
生:那两种是一种方法。

师:是。

我们就擦掉一个。

还有不同的记录方法吗?
生:我用数字记录的
师:把你的给大家展示一下。

行吗?
生:行。

师:观察这种放法,放小棒最多的那个杯子里放了几根?
生:2根。

师:观察这种放法,放小棒最多的那个杯子里放了几根?
生:3根。

师:观察这两种放法,放小棒最多的那个杯子里的根数有什么共同点?
生:有2根有3根.
生:2根或2根以上。

生:至少2根。

生:不管怎么放,总有一个杯子里至少放2根小棒。

师:“总有”什么意思?
生:一定有。

师:“至少”什么意思?
生:最少。

2. 师:4根小棒放进3个杯子里,怎样放?有几种不同的放法?
生继续摆小棒。

(1)师:把你的写在黑板上。

生把几种摆法画在黑板上。

师:观察这几种不同的放法,放小棒最多的那个杯子里的根数有什么共同点?
生:至少有2根小棒。

生:总有一个杯子里至少放2根小棒。

师:谁能说的更完整些?
生:把4根小棒放入3个杯子,不管怎么放,总有一个杯子里至少放2根小棒。

(2)师:有跟他方法不一样的吗?
生:我没摆,我是想的。

4根小棒放进3个杯子里,每个杯子里放1根,还剩1根,把这1根任意放入一个杯子,这样,不管怎么放,总有一个杯子里至少放2根小棒。

师:那你能上来给大家演示一下吗?
生演示。

师:谁明白了?
生:4根小棒放进3个杯子里,每个杯子里放1根,还剩1根,把这1根任意放入一个杯子,这样,不管怎么放,总有一个杯子里至少放2根小棒。

师:你怎么知道每个杯子里放1根小棒?
生:用除法4÷3=1 (1)
师:你知道这两个1表示的意义吗?
生:商1表示每个杯子里放1根,余1表示还剩1根,把这1根任意放入一个杯子,这样,不管怎么放,总有一个杯子里至少放2根小棒。

3. 师:5根小棒放入4个杯子里,还会是那个结果吗?
这一次我们比一比,看看谁先得到结果。

师:你第一个举手的。

说说你的想法。

生:5÷4=1……1,5根小棒放进4个杯子里,每个杯子里放1根,还剩1根,把这1根任意放入一个杯子,这样,不管怎么放,总有一个杯子里至少放2根小棒。

4. 师:6根小棒放入5个杯子里呢?
生:6÷5=1……1,6根小棒放进5个杯子里,每个杯子里放1根,还不管怎么放,总有一个杯子里至少放2根小棒。

剩1根,把这1根任意放入一个杯子,这样,不管怎么放,总有一个杯子里至少放2根小棒。

5. 师:7根小棒放入6个杯子呢?
生:不管怎么放,总有一个杯子里至少放2根小棒。

6. 师:81根小棒放入80个杯子呢?
生:不管怎么放,总有一个杯子里至少放2根小棒。

7. 师:100根小棒放入99个杯子呢?
生:不管怎么放,总有一个杯子里至少放2根小棒。

8. 师:观察小棒的个数和杯子的个数,你能用一句话概括吗?
生:小棒的个数比杯子的个数多1时,不管怎么放,总有一个杯子里至少放2根小棒。

师:同意吗?
生:同意。

师:还有想说的吗?
生:设杯子数为N,则小棒数为N+1时,不管怎么放,总有一个杯子里至少放2根小棒。

师:你们太牛了!明日的数学家肯定会从你们中诞生的。

如果把小棒换成鸽子,你们可以吗?
生:可以。

师:6只鸽子飞进5个鸽巢,总有一个鸽巢里至少飞进几只鸽子?生:2只。

6÷5=1……1,总有一个鸽巢里至少飞进2只鸽子。

师:同学们,我发现你们太厉害了!今天我们探究的这些,其实就是著名的数学原理,请看大屏幕。

介绍鸽巢原理。

三、应用原理,深化问题
师:鸽巢原来虽然简单,却能解决很多有趣的问题,运用它时,关键是要找出谁是鸽子,谁是鸽巢。

鸽巢原理不仅在数学中应用,在现实生活中也随处可见。

请看说一说:实验小学六一班第一组有13名同学,至少有2名同学是同一属相。

请说明理由。

任意367名同学中,至少有2名同学是在同一天过生日。

请说明理由。

5只鸽子飞进3个鸽巢,总有一个鸽巢里至少有2只鸽子吗?
9只鸽子飞进5个鸽巢,总有一个鸽巢里至少有几只鸽子?请说明理由。

四、总结归纳,升华问题
师:咱们今天探究出了什么原理?
生:鸽巢原理
狄里克雷原理
抽屉原理。

师:现在,你能用这一原理来解释刚开始的扑克牌问题了吗?
生:5张牌相当于鸽子,4种花色相当于鸽巢,总是至少有2张牌是同一花色的。

师:如果我请在座的每一位各抽一张牌,那这个原理还存在吗?
生迷茫,有些说存在有些说不存在。

师:这个问题留给我们下节课继续探究。

相关文档
最新文档