人教版小学数学六年级下册 鸽巢问题 教学设计

合集下载

人教版数学六年级下册鸽巢问题教学设计(精推3篇)

人教版数学六年级下册鸽巢问题教学设计(精推3篇)

人教版数学六年级下册鸽巢问题教学设计(精推3篇)〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。

二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程1.游戏引入教师提问:你们玩过“抢椅子”的游戏吗?谁能说说游戏规则呢?学生回答后,组织学生进行几次“抢椅子”的游戏。

请学生注意观察,提问:一个简单的游戏里,蕴含着什么数学知识呢?顺势引入课题。

2.讲授新知活动一:初步认识鸽巢原理出示例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

提问:你得到了什么数学信息?至少和总有是什么意思?总结:总有就是一定存在的意思,至少表示最低限度,有最少的意思。

再提问:这句话对吗?组织小组活动,进行验证。

总结:学生探究出两种方法,方法一是枚举法,将可能的情况都列出进行观察;方法二是假设法。

两种方法都能验证这句话是正确的。

在此基础上,教师把铅笔换成鸽子,笔筒换成鸽笼,介绍鸽巢问题。

活动二:探究一般形式出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。

提问:这句话对吗?为什么?组织小组活动,进行探究。

总结:用枚举法和假设法都能证明这句话是对的,教师利用除法算式7÷3=21,引导理解用“平均分”的思维来理解假设法。

追问:如果有8本书会怎样?10本呢?组织同桌交流,指名学生回答。

学生回答时继续用除法表示,最后提问:观察算式,你发现了什么?师生总结:观察3个算式,发现至少放的本数是商+1,而不是商+余数。

引出鸽巢问题又叫抽屉问题。

3.巩固练习完成做一做4.课堂小结教师提问:你有什么收获?学生回答后教师总结完善。

5.布置作业课后习题1、2题,将今天学到的整理成数学日记〖人教版数学六年级下册鸽巢问题教学设计第【2】篇〗一1.团队:试讲空间第二十三期由第四组成员制作完成。

人教版数学六年级下册鸽巢问题教案3篇

人教版数学六年级下册鸽巢问题教案3篇

人教版数学六年级下册鸽巢问题教案3篇〖人教版数学六年级下册鸽巢问题教案第【1】篇〗一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。

教学“鸽巢问题”,教材安排了两个例题。

这节课教学内容是例1。

例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。

初步接触“鸽巢问题”对于学生来说,有一定的难度。

教学时,应放手让学生自主探索。

教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。

二、教学内容教材第68页例1及“做一做”第1、2题。

三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。

2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。

3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。

四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。

教学难点:初步理解“鸽巢原理”,能口头表达推理过程。

五、教学准备一副扑克牌、课件等。

六、教学过程(一)引入新知1.抢凳子游戏。

2.抽扑克牌游戏。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。

【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探究新知1.教学例1。

(1)把3枝铅笔放进2个笔筒中。

想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。

人教版数学六年级下册鸽巢问题教案模板(推荐3篇)

人教版数学六年级下册鸽巢问题教案模板(推荐3篇)

人教版数学六年级下册鸽巢问题教案模板(推荐3篇)人教版数学六年级下册鸽巢问题教案模板【第1篇】第2课时教学内容教科书P69例2,完成教科书P71“练习十三”中第2、3、6题。

教学目标1.经历“鸽巢原理”的探究过程,进一步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。

2.经历从直观到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力,渗透模型思想。

3.在探究过程中,经历将具体数学问题数学化的过程,培养学生的模型思维。

教学重点掌握“鸽巢原理”的一般形式,会运用除法算式来解决实际问题。

教学难点对“把多于kn(k是正整数)个物体任意分放入n个空抽屉,总有一个抽屉里至少有(k+1)个物体”形成一般性理解。

教学准备课件。

教学过程一、复习导入,揭示课题课件出示教科书P69“做一做”第2题。

【学情预设】预设1:我们把4把椅子看成4个“鸽巢”,把5个人放进4个“鸽巢”中,总有1个“鸽巢”里至少有2个人,即总有一把椅子上至少坐2人。

预设2:我用算式表示:5÷4=1……1,1+1=2,所以总有一把椅子上至少坐2人。

师:同学们研究了物体数比盛放物体的工具数多1的情况,得出了总有一个盛放物体的工具里至少放有两个物体。

“鸽巢原理”真是这样吗今天我们继续来研究相关问题。

【设计意图】通过复习,帮助学生回忆例1学习的有关知识,并直接揭示课题,为新课学习作准备。

二、自主探究,建立模型1.课件出示教科书P69例2。

师:请你试着证明这个结论。

(学生用自己的方式证明。

)【学情预设】预设1:我随便放放看,一个抽屉1本,一个抽屉2本,一个抽屉4本。

可以证明总有一个抽屉里至少放进3本书。

预设2:我用假设法来思考,如果每个抽屉最多放2本,那么3个抽屉最多放6本,最后的1本书一定会放到3个抽屉中的任何一个,可以证明总有一个抽屉里至少放进3本书。

预设3:我用算式来证明:7÷3=2……1,2+1=3。

师:你能理解这道算式表示的意思吗?(板书算式:7÷3=2……1,2+1=3)【学情预设】指导学生规范表达:把7本书平均放进3个抽屉,每个抽屉里放2本,还剩一本。

最新人教版小学数学六年级下册《鸽巢问题》教学设计

最新人教版小学数学六年级下册《鸽巢问题》教学设计

人教版小学数学六年级下册《鸽巢问题》教学设计【教学内容】人教版六年级下册第68--69页《数学广角---鸽巢问题》例1、例2。

【教学目标】1.经历鸽巢原理的探究过程,初步理解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。

2.通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

4.使学生经历将具体问题“数学化”的过程,培养学生的“建模”思想。

【教学重点】经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。

【教学难点】理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

【教学过程】一、创设情境引入课题1.“魔术”表演:规则:一副牌,取出大小王,还剩52张,你们5人每人随意抽一张。

抽到牌后藏好,等老师来猜。

大家猜猜看至少有几个同学的扑克牌花色是相同的?猜谜:老师肯定的说:“这5张牌中,至少有2张牌是同花色的。

老师猜的对不对?”请5个同学举起手中的牌让同学们见证奇迹。

大家表现这么好,我们再来玩游戏。

2.玩游戏游戏要求:老师喊“一、二、三开始”以后,请你们5个都坐在椅子上,每个人必须都坐下。

3. 导入课题:刚才的“魔术”表演和抢椅子游戏,这里面蕴藏着一个非常有趣的数学问题,这节课我们就一起来研究这类问题,下面我们先从简单的情况入手。

“鸽巢问题”。

(板书课题)二、合作探究发现规律(一)教学例1(由枚举法引出假设法,初步“建模”——平均分。

)出示例1把4支笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支笔。

1. 理解“总有”和“至少”的意思。

2.运用“枚举法”初步探究。

(1)把4支笔放进3个笔筒里,有几种不同的放法?自己动手在小组内摆一摆,画一画,说一说,把出现几种情况都记录下来。

(2)汇报展示不同的方法。

(4)讲解:像这样一一列举出来的方法,在数学上叫枚举法。

(板书:枚举法)3.通过比较,引导“假设法”。

人教版数学六年级下册鸽巢问题教学设计推荐3篇

人教版数学六年级下册鸽巢问题教学设计推荐3篇

人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗一、教学内容:教科书第68页例1。

二、教学目标:(一)知识与技能:通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。

(二)过程与方法:结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过立思考与合作交流等活动提高解决实际问题的能力。

(三)情感态度和价值观:在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

三、教学重难点教学重点:经历鸽巢问题的探究过程,初步了解鸽巢原理,会用鸽巢原理解决简单的实际问题。

教学难点:通过操作发展学生的类推能力,形成比较抽象的数学思维。

四、教学准备:多媒体课件。

五、教学过程(一)候课阅读分享:同学们,大家好,课前老师让大家收集了有关“鸽巢问题”的阅读资料,现在就某某同学的阅读在这候课的几分钟内与大家分享一下。

(二)激情导课好,咱们班人数已到齐,从今天开始,我们学习第五单元鸽巢问题,这节课通过数学活动我们来了解鸽巢原理,学会简单的鸽巢原理分析方法。

你准备好了吗?好,我们现在开始上课。

(三)导学1、请同学们先来看例1。

把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2只铅笔。

请你再把题读一次,这是为什么呢?要想解决这个问题,我们首先要理解,总有一个笔筒里至少有2支铅笔这句话。

我们再思考这一句话中,总有和至少是什么意思?对总有就是一定的意思。

至少就是最少的意思至少有两支铅笔,就是说最少有两支铅笔。

或者是说,铅笔的支数要大于或等于两支。

那你能现在说说,总有一个笔筒里至少有两支铅笔这句话的意思了吗?对,这句话就是说,一定有一个笔筒里最少有两支铅笔,或者是说一定有一个笔筒里的铅笔数是大于或等于两支的。

你说对了吗?课前老师已经让大家完成前置性作业,就“4支铅笔放进3个笔筒中有几种摆法呢?”这儿老师收集到了各组组长整理出的大家的各种摆法,我们一起来看一看吧!方法一:用“枚举法”证明。

人教版数学六年级下册鸽巢问题教案(推荐3篇)

人教版数学六年级下册鸽巢问题教案(推荐3篇)

人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题》教学设计【教学内容】人教版课标教材小学数学六年级下册第五单元数学广角第70-71页。

【教学目标】1.通过操作、观察、比较、分析、推理、抽象概括,引导学生经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。

2.在探究的过程中,渗透模型思想,培养学生的推理和抽象思维能力。

3.使学生感受数学的魅力,培养学习的兴趣。

【教学重点】经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。

【教学难点】理解抽屉原理,并对一些简单的实际问题加以模型化。

【教学过程】一、开门见山,引入课题。

承接课前谈话内容,直接揭示课题。

二、经历过程,构建模型。

(一)研究“4个小球任意放进3个抽屉”存在的现象。

1.出示结论:4个小球放进3个抽屉里,不管怎么放,总有一个抽屉里面至少放2个小球。

让学生说说对这句话的理解。

2.验证结论的正确性。

让学生用长方形代替抽屉,用圆代替小球画一画,看有几种不同的放法。

3.全班交流。

学生汇报后,教师引导观察每种放法,通过横向、纵向比较,找到每种放法中放得最多的抽屉,然后从最多数里找最少数,发现不管哪种放法,都能从里面找到这样的一个抽屉,里面至少有2个小球。

从而理解并证明了“不管怎么放,总有一个抽屉里至少放2个小球”这个结论是正确的。

(二)研究“5个小球任意放进4个抽屉”存在的现象,找到求至少数的简便方法。

1.猜测:根据刚才的研究经验猜一猜:把5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放几个小球?2.验证。

学生以小组为单位共同研究:先画出不同的放法。

然后观察分析每种放法,看看哪种猜测是正确的。

3.全班交流。

小组汇报研究结果。

教师追问:通过验证,我们发现5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放2个小球。

那“总有一个抽屉至少放3个小球”为什么不对?学生通过观察各种放法来说明原因。

人教版数学六年级下册《鸽巢问题》教案

人教版数学六年级下册《鸽巢问题》教案

人教版数学六年级下册《鸽巢问题》教案一、教学目标1.了解鸽巢问题的背景和意义。

2.学习用分析思维解决问题的方法。

3.培养学生的逻辑思维能力和数学解题能力。

二、教学重点1.理解鸽巢问题的提出背景。

2.掌握解决鸽巢问题的基本方法。

三、教学难点1.运用分析思维解决问题。

2.能够正确利用数学知识解决实际问题。

四、教学准备1.教材《数学》六年级下册。

2.黑板、彩色粉笔。

3.学生课前阅读教材相关知识,做好预习。

4.预先准备示范解题的案例。

五、教学过程1. 导入介绍鸽巢问题的背景,引发学生对问题本身的思考和兴趣。

2. 学习和讨论1.展示一个简单的鸽巢问题,并让学生表述对问题的理解。

2.引导学生进行讨论,探究解决问题的策略和方法。

3.让学生自行尝试解决问题,并相互交流讨论。

4.结合教材内容,讲解解决鸽巢问题的基本思路和方法。

3. 实例讲解1.通过一个具体的案例进行讲解,详细展示解题的过程和方法。

2.引导学生分析案例,总结解题的关键点和技巧。

4. 练习与巩固1.布置相关练习题,让学生进行独立练习。

2.就学生在练习中遇到的问题进行讲解和指导。

3.鼓励学生相互交流讨论,加深理解和巩固知识。

5. 拓展与应用1.提出一些拓展问题,让学生进行探究和应用。

2.鼓励学生运用所学知识解决实际生活中的问题。

六、课堂小结总结本节课学习的重点和难点,强调解决问题的方法和策略。

七、作业布置布置练习题和拓展问题作为课后作业,以巩固和拓展学生的学习成果。

以上是本节课的教学内容,希望同学们能够认真对待,通过学习鸽巢问题的解决方法,提升自己的数学思维能力和解题水平。

2024年人教版数学六年级下册鸽巢问题说课稿推荐3篇

2024年人教版数学六年级下册鸽巢问题说课稿推荐3篇

人教版数学六年级下册鸽巢问题说课稿推荐3篇〖人教版数学六年级下册鸽巢问题说课稿第【1】篇〗说教学目标:1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。

2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。

3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。

说教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。

说教学难点:理解鸽巢原理,并对一些简单的实际问题加以模型化。

说教学过程:一、创设情境、导入新课1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。

今天我们就一起来研究它。

二、合作探究、发现规律师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。

请看大屏幕。

(生齐读题目)1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。

(1)理解“总有”、“至少”的含义。

(PPT)总有:一定有至少:最少师:这个结论正确吗?我们要动手来验证一下。

(2)同学们的课桌上都有一张作业纸,请同桌两人合作探究:把4支铅笔放进3个笔筒里,有几种不同的摆法探究之前,老师有几个要求。

(一生读要求)(3)汇报展示方法,证明结论。

(展示两张作品,其中一张是重复摆的。

)第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?说板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。

)总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《鸽巢问题》教学设计
教学内容:教材第68-70页例1、例2,及“做一做”的第1题,及第71页练习十三的1-2题。

教学目标:
1、了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。

使学生学会用此原理解决简单的实际问题。

2、经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重、难点:
重点:引导学生把具体问题转化成“鸽巢问题”。

难点:找出“鸽巢问题”解决的窍门进行反复推理。

教学准备:课件。

教学过程:
一、情境导入:
老师组织学生做“抢凳子的游戏”。

请4位同学上来,摆开3张凳子。

老师宣布游戏规则:4位同学跟随着音乐(甩葱歌)围着凳子转圈,音乐“停”的时候,四个人每个人都必须坐在凳子上。

教师背对着游戏的学生。

师:都坐下了不?老师不用瞧,也知道肯定有一张凳子上至少坐着2
位同学。

老师说得对不?
师:老师为什么说得这么肯定呢?其实这里面蕴含一个深奥的道理,今天我们就来探究这个问题——鸽巢问题(板书课题)。

二、探究新知:
教学例1、(课件出示例题1情境图)
思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。

为什么呢?“总有”与“至少”就是什么意思?
学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。

操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。

理解关键词的含义:“总有”与“至少”就是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

探究证明。

方法一:用“枚举法”证明。

方法二:用“分解法”证明。

把4分解成3个数。

由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数就是不小于2的数。

方法三:用“假设法”证明。

通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。

认识“鸽巢问题”
①像上面的问题就就是“鸽巢问题”,也叫“抽屉问题”。

在这里,4支铅笔就是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。

这里的“总有”指的就是“一定有”或“肯定有”的意思;而“至少”指的就是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。

小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。

②如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔……
小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。

归纳总结:
鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n就是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。

2、教学例2(课件出示例题2情境图)
思考问题:(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。

为什么呢?(二)如果有8本书会怎样呢?10本书呢?学生通过“探究证明→得出结论”的学习过程来解决问题(一)。

探究证明。

方法一:用数的分解法证明。

把7分解成3个数的与。

把7本书放进3个抽屉里,共有如下8种情况:
由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就就是每种分法中最多那个数最小就是3,即总有1个抽屉至少放进3本书。

方法二:用假设法证明。

把7本书平均分成3份,7÷3=2(本)、、、、、、1(本),若每个抽屉放2本,则还剩1本。

如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。

得出结论。

通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。

学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。

用假设法分析。

①8÷3=2(本)、、、、、、2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。

②10÷3=3(本)、、、、、、1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。

归纳总结:
综合上面两种情况,要把a本书放进3个抽屉里,如果a÷3=b(本)、、、、、、1(本)或a÷3=b(本)、、、、、、2(本),那么一定有1个抽屉里至少放进(b+1)本书。

鸽巢原理(二):古国把多与kn个的物体任意分别放进n个空抽屉(k就是正整数,n就是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。

三、巩固练习
1、完成教材第70页的“做一做”第1题。

学生独立思考解答问题,集体交流、纠正。

2、完成教材第71页练习十三的1-2题。

学生独立思考解答问题,集体交流、纠正。

四、课堂总结
师:通过这节课的学习您有什么收获?。

相关文档
最新文档