人教版六年级下册鸽巢问题(抽屉原理)

合集下载

六年级数学下册5数学广角(鸽巢问题)1抽屉原理课件新人教版

六年级数学下册5数学广角(鸽巢问题)1抽屉原理课件新人教版

教学新知
例二:8只鸽子飞进3个鸽笼,总有一个鸽笼里至少有4只鸽子,对吗? 并作出解答。
【讲解】做题时首先要明确笼子数即抽屉、鸽子数即物体个数。 根据抽屉原理利用平均分进行分析,因为8÷3=2……2(只),所 以至少有一个笼子里要有3只鸽子,故答案为错误。 【方法小结】解答此类题的关键是找出把谁看作“抽屉个数”, 把谁看作“物体个数”,然后再用除法进行分析。
至少有4枝笔放进同一个盒子里。 3.某次数学竞赛有6个学生参加,总分是547分,则至少有一个同学的得
分不低于92分,为什么? 547÷6=91……1 答:所以至少一个同学的得分不低于92分。
课后习题
4.50名同学在做操,他们至少有几个同学是在同一个月出生的? 50÷12=4……2
答:所以他们中至少有5个同学是在同一个月出生的。 5. 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子
教学新知
做一做: 1.11只鸽子飞进了个鸽笼,总有一个鸽笼至少飞进了3只鸽子。为什么?
11÷4=2……3,每个笼子里平均飞进2只鸽子,剩下的不够每个笼 子里一只,所以至少有一个笼子里飞进3只鸽子。 5个人坐4把椅子,总有一把椅子上至少坐2人。为什么?
4把椅子每把上只能坐一个人,但还剩下一个人,要保证都坐下, 所以至少有一把椅子上要坐2个人。
第五单元 数学广角
5.1 抽屉原理
教材第68~71页
课题引入
想一想:为什么会出现这样的情况?
教学新知
教学新知
讨论: 1.5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么? 2.你理解上面扑克牌魔术的道理了吗?
思考:为什么会有这样的情况? “总有”“至少”是什么意思?
教学新知

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。

教学“鸽巢问题”,教材安排了两个例题。

这节课教学内容是例1。

例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。

初步接触“鸽巢问题”对于学生来说,有一定的难度。

教学时,应放手让学生自主探索。

教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。

二、教学内容教材第68页例1及“做一做”第1、2题。

三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。

2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。

3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。

四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。

教学难点:初步理解“鸽巢原理”,能口头表达推理过程。

五、教学准备一副扑克牌、课件等。

六、教学过程(一)引入新知1.抢凳子游戏。

2.抽扑克牌游戏。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。

【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探究新知1.教学例1。

(1)把3枝铅笔放进2个笔筒中。

想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。

六年级数学下册试题 -鸽巢原理 word含答案 人教版

六年级数学下册试题 -鸽巢原理 word含答案 人教版

鸽巢原理一、方法归纳鸽巣原理是一个重要又基本的组合原理, 在解决数学问题时有非常重要的作用。

①什么是鸽巣原理, 先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法, 如下表无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”。

这个结论是在“任意放法”的情况下, 得出的一个“必然结果”。

类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子。

如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式①利用公式进行解题:物体个数÷鸽巣个数=商……余数至少个数=商+12、摸2个同色球计算方法。

①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。

物体数=颜色数×(至少数-1)+1②极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。

③公式:两种颜色:2+1=3(个)三种颜色:3+1=4(个)四种颜色:4+1=5(个)鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),若m÷n=b……余数,那么一定有1个抽屉里至少放进(b+1)本书。

鸽巢原理(二):古国把kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。

三、课堂精讲例1 (1)用枚举法证明。

由此发现,把4枝铅笔分配到3个文具盒中,一共有()种情况,在每一种情况中,总有一个文具盒中至少有()枝铅笔。

(2)用数的分解法证明。

由此发现,把4分解成3个数,与上面的枚举法相似,共有()种情况,每一种情况分得的3个数中,至少有1个数是至少大于等于()的。

(3)用假设法证明。

六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。

二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。

模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。

【练习1】把4支铅笔放进3个笔筒中,有()种放法。

【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。

【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。

【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。

【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。

规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。

那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。

你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。

六年级数学下册鸽巢问题人教版

六年级数学下册鸽巢问题人教版

抽屉原理
把物体放进抽屉里,如果 平均分后有剩余,那么总有一 个抽屉里至少放“商+1”个; 如果正好分完,至少数等于商。
狄利克雷
计算方法: 物体个数÷抽屉个数
有余数 商+1(个)
总有一个抽屉至
少有(商+1)个物体
无余数
商(个)
试一试吧!
1、5个人坐4把椅子,总有一把椅子上至少坐2人。 为什么? 5÷4=1(人) …… 1(人) 1+1=2(人)
新课标人教版六年级下册《数学广角》
数学小知识:鸽巢问题的由来。
最先发现这个规律的人是谁呢?最 先是由19世纪的德国数学家狄利克雷运 用于解决数学问题的,后人们为了纪念 他从这么平凡的事情中发现的规律,就 把这个规律用他的名字命名,叫“狄里 克雷原理”,又把它叫做“鸽巢原理”, 还把它叫做 “抽屉原理”。
2、学校图书馆有16名小学生在看书,这个学校小学 共有6个年级,至少有几名同学是同一年级的?
16÷6=2(名) …… 4(名) 2+1=3(名)
今天的知识,你学
会了ห้องสมุดไป่ตู้?

六年级下册数学试题鸽巢问题含答案人教版

六年级下册数学试题鸽巢问题含答案人教版

鸽巢问题知识点:鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。

把3个苹果放进2个抽屉里,一定有一个抽屉里放了2个或2个以上的苹果。

类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。

鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。

如:将4支铅笔放入3个笔筒,总有一个笔筒至少有2支铅笔,“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

鸽巢原理(二):如果把多于kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。

如:把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。

我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣,可以得到鸽巣原理最简单的表达形式物体个数÷鸽巣个数=商……余数至少个数=商+1摸同色球计算方法:①要保证摸出同色的球,摸出的球的数量至少要比颜色数多1。

物体数=颜色数×(相同颜色数-1)+1②极端思想(最坏打算):用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。

1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业求证:这5名学生中,至少有两个人在做同一科作业。

2、班上有50名学生,将书分给大家,至少要拿多少本,才能保证至少有一个学生能得到两本或两本以上的书。

3、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?4、把红、白、蓝三种颜色的球各10个放到一个袋子里,至少取多少个球,可以保证取到3个颜色相同的球。

人教版六年级数学下册《鸽巢问题》ppt课件

人教版六年级数学下册《鸽巢问题》ppt课件
5 ÷ 4= 1(只) ······1 (只)
1﹢1= 2(只)
如果一个鸽笼飞进一只鸽子,最多飞进四只 鸽子,剩下一只,要飞进其中的任何一个鸽笼 里。 不管怎么飞,至少有2只鸽子飞进同一 个鸽笼里。
3. 11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞 进了3只
鸽子。为什么?
11÷4=2……3 2+1=3
第一种情况:
第二种情况:
精选ppt课件
35
一、探究新知
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有
2个同色的,至少要摸出几个球?
摸出5个球,肯定有2个 同色的,因为……
有两种颜色。那摸3个 球就能保证……
只摸2个球能保证是 同色的吗?
只要摸出的球数比它们的颜色种数多1,
就能精保选证pp有t课两件个球同色。
不管怎么放,总有
一个文具盒里至少
0
0
0 放进2枝铅笔。
0
不管怎么放总有一个文具盒里 至少有2枝铅笔。
请同学们把4分解成三个数,共有 几种情况?
(4,0,0)、(3,1,0) (2,2,0)、(2,1,1) 每一种结果的三个数中, 至少有一个数不小于2。
分解法
可以假设先在每个文具盒中放1枝铅笔, 最多放3枝。剩下的1枝还要放进其中 的一个文具盒。所以至少有2枝铅笔放 进同一个文具盒。也就是先平均分, 然后把剩下的1枝,不管放在哪个盒子 里,一定会出现总有一个文具盒里至 少有2枝铅笔。
例1:把4枝铅笔放进3个文具盒中,不管
怎么放,总有一个文具盒里至少有2枝铅笔。 为什么呢?怎样解释这种现象?
小组合作:拿出4枝铅笔和 3个文具盒,把这4枝笔放 进这3个文具盒中摆一摆, 放一放,看有几种情况?

人教版六年级下册课件 5数学广角-抽屉原理(鸽巢原理)

人教版六年级下册课件 5数学广角-抽屉原理(鸽巢原理)
解析:数学小组共有20名同学,因此每个同学最多有19个朋友;又由于他们都有朋友 ,所以每个同学至少有1个朋友.因此,这20名同学中,每个同学的朋友数只有19种可 能:1,2,3,……,19.把这20名同学看作20个“苹果”,又把同学的朋友数目看作 19个“抽屉”,根据抽屉原理,至少有2名同学,他们的朋友人数一样多
3.明小学有367名年出生的学生,请问是否有生日相同的学生?
【解析】1年最多有366天,把366天看作366个“抽屉”,将367名学生看作个“苹果”.这样,把 367个苹果放 进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有名同学的生日相同.
答案
探索新知
例2:如果把5个苹果放在2个抽屉里面,不管怎么放,总有一个抽 屉里至少放3个苹果,为什么?如果一共有7个苹果呢?9个呢?
做一做:42个苹果放在5个抽屉里,至少有多少个苹果放在一个抽 屉里?
42÷5 = 8(个) ...... 2(个) 8+1=9(个)
答:至少有9个苹果放在一个抽屉里
答案
知识总结
抽屉原理
将n件物品放入m个抽屉中,如果n÷m=a,那么一
定有一个抽屉里至少抽有屉a件原物理品。
将n件物品放入m个抽屉中,如果n÷m=a...b,那么 一定有一个抽屉里至少有a+1件物品。
答案
例题解析
例6:17名同学参加一次考试,考试题是3道判断题(答案只有对错之分 ),每名同学都在答题纸上依次写上了3道题目的答案。试说明至少有3 名同学的答案是一样的。
解析:3道题所有可能出现的答案有8种,8种答案可以看作8个抽屉,一共有17名同 学,看作17个苹果
17÷8= 2 ...... 1 2+1=3
答:至少有3名同学的答案是一样的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛刀小试
1. 5 只鸽子飞进了 3 个鸽笼,总有一个鸽笼至少飞进了 2 只鸽子。为什么?
5÷3=1······2 1+1=2
2. 我们班有42位同学,至少有几名同学的属相相同?
42÷12=3······6 3+1=4
想一想,商 3 和余数 6 各 表示什么?
3.
如果有100支铅笔要放进30个笔筒里,如
总有一个笔筒里至少 放的铅笔支数
6÷5=1······1 1+1=2
7÷5=1······2 1+1=2
8÷5=1······3 1+1=2
9÷5=1······4 1+1=2
10÷5=2
2=2
11÷5=2······1 2+1=3
先把铅笔平均分,然后把余下的铅笔再平均分,从而找到至少数
小结:把铅笔放进笔筒,要是平均分后有剩 余,那么总有一个笔筒里至少放“商+1”支 铅笔;如果正好分完,那么至少数就等于商。
平均分后有剩余: 至少数=商+1
平均分正好分完: 至少数=商
要原理,它最早 由德国数学家狄里克雷(Dirichlet)提出并运用于 解决数论中的问题,所以该原理又称“狄里克雷原 理”。抽屉原理有两个经典案例,一个是把10个苹果 放进9个抽屉里,总有一个抽屉里至少放了2个苹果, 所以这个原理又称“抽屉原理”;另一个是6只鸽子 飞进5个鸽巢,总有一个鸽巢至少飞进2只鸽子,所以 也称为“鸽巢原理”。
第一个笔筒里放 2 支,第二个笔筒里放 1 支, 第三个笔筒里放 1 支。
4种分配情况:
(4,0,0) (2,2,0)
枚举法 列举法
(3,1,0)
(2,1,1)
如果有100支铅笔要放进30个笔筒里,如 果还用列举法,你觉得怎么样?
还可以怎么想?
假设每个笔筒均匀地放1支铅笔,还余下1支,
这一支任意放进一个笔筒,不管怎么放,总 假设法
鸽巢问题(1)
把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔
筒里至少有2支铅笔,为什么?
请同学们用自己的方法 (画图等),看看有几 种不同的放法。
把 4 支铅笔都放在第一个笔筒里。
第一个笔筒里放 3 支,第二个笔筒里放 1 支, 第三个不放。
第一个笔筒里放 2 支,第二个笔筒里放 2 支, 第三个不放。
有一个抽屉里至少放2支铅笔。
平均分
4÷3 =1 ······1
1+1=2
小结
列举法固然很直观,但当数据比较大的时候就很繁琐, 所以我们可以假设每个笔筒放一支,余下的任意放进 一个笔筒里,这样就能很快找到至少数。
我们还可以用除法算式表示出平均分的过程。
铅笔支数
6 7 8 9 10 11
笔筒个数
5 5 5 5 5 5
正好分完: 至少数=商
先放3支,在每个笔筒中放1支,剩下的 1支就要放进其中的一个笔筒。所以至 少有一个笔筒中有2支铅笔。
果还用列举法,你觉得怎么样?
100÷30=3······10 3+1=4
课外拓展
费衮
二桃杀三士
费衮指出:把一个人出生的年、月、 日、时(八字)作算命的根据,把 “八字”作为“抽屉”,不同的抽 屉只有12×360×60=259200个。以 天下之人为“物品”,进入同一抽 屉的人必然千千万万,因而结论是 同时出生的人为数众多。但是既然 “八字”相同,“又何贵贱贫富之 不同也?
1947年,匈牙利数学家把鸽 巢问题引进到中学生数学竞赛中:
证明:在任何6个人中,一定可以 找到3个互相认识的人,或者3个 互不认识的人。
A B CD EF
与A认识
根据抽屉原理,至少有 一个抽屉里有3个人
与A不认识
课堂小结
列举法
按照一定的顺序依次列 举出所有的可能性。
假设法
平均分
有剩余: 至少数=商+1
相关文档
最新文档